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1 Introduction
Determining the strength and location of acoustic sources is
crucial for studying aeroacoustic noise generation such as in
vortical flows [1]. A robust technique is needed for the ac-
curate mapping of these sources. The conventional acous-
tic beamforming method [2] is reliable but has limitations,
suffering from spatial aliasing and poor resolution at lower
source frequencies. Deep learning algorithms have emerged
as powerful tools in a growing number of disciplines due to
their ability to learn patterns and extract features from limited
or unstructured data. Researchers have utilised deep learn-
ing to overcome the limitations of traditional methods. Xu et
al [3] have used Densely connected neural networks (DNNs)
for acoustic source imagine and while this paper employs
largely the same methodology, it uses a Convolutional Neural
Network (CNN) which is computationally less expensive, to
determine the spatial and temporal characteristics of station-
ary and moving sound sources [4]. A training database was
developed using analytically-defined monopoles which were
randomly distributed over a scanning grid of fixed size. A
64-channel microphone array was simulated in a plane par-
allel to the plane of the scanning grid to gather information
about the sources in the form of the Cross-Spectral Matrix
(CSM) which was then used as an input feature to the CNN.
The results showed that the CNN model was able to identify
position, strength, and velocity of the sources over a range of
frequencies with far better accuracy and resolution than the
traditional methods.

2 Method
The proposed method is data-driven and hence a database
containing enough data samples for training the CNN has to
be generated first. The CNN model is then explained in detail.

2.1 Data Generation
The scanning grid is a 1.2m x 1.2m area divided into anNxN
grid. The computational power and training requirement in-
creases as the resolution of the scanning grid increases. It
contains S sources distributed randomly across the N2 grid
points. The microphone array plane containsM microphones
arranged in the shape of a logarithmic spiral (M=64 in this
case) and is located 1.2m below the scanning grid. The log-
arithmic spiral arrangement was chosen to ensure good per-
formance over a range of frequencies. The sound sources are
modelled as monopoles and are assumed to radiate spherical
pressure signals. Fast fourier transform has been applied on
the signal to convert it from time domain to frequency do-
main. The pressure signal from a source s on the scanning

∗arnavjoshi.iiti.me@gmail.com

grid to a microphone m on the array plane [3] is given as

Ps(m) =
e−j2πrs/c0

4π|rs|
(1)

where rs is the distance between the particular source s
and the microphone m and c0 is the speed of sound in air
which is 343 m/s. Pressure signals from every source are
added at every microphone to generate the pressure vector
P given as

P = [

S∑
s=1

Ps(1),

S∑
s=1

Ps(2), ...,

S∑
s=1

Ps(M)](2)

Vector P has dimensions Mx1. The Cross-Spectral Ma-
trix (CSM) is defined as

CSM = PPH (3)

where PH is the complex conjugate of the pressure vec-
tor. The Ground Truth Matrix (GTM) contains the actual
source position data. Sources are positioned randomly within
the matrix and the entries that have a source are assigned the
source strength values. The remaining entries (where there
is no source) are assigned the value zero. The CSM is an
MxM matrix and will be used as an input to the CNN. The
network will be trained against the GTM which has the same
dimensions as that of the scanning grid. A training sample
consists of the CSM obtained from the random positioning of
the sources within the GTM and, the GTM.

2.2 Convolutional Neural Network
An artificial neural network is a simulation of the biological
brain composed of artificial neurons or nodes. These nodes
make up layers which are interconnected to progressively ex-
tract features and learn from the data being fed to the network.
The inputs to a neuron are assigned weights by the network.
The activation function associated with the node calculates
the output of the node based on the weighted sum of the in-
puts. During training, the network compares its prediction
with the actual output through a loss function and modifies
the weights accordingly until they reach the optimal values.
Typically, an artificial neural network has an input layer, mul-
tiple hidden layers, and an output layer.

A Convolutional Neural Network (CNN) [5] is a type of
neural network that finds its application extensively in image
classification and segmentation. The network takes an image
for its input. The convolution layer applies a series of filters
to it that help the network capture the high-level features of
the image. The pooling layer then reduces the dimensions of
the image, preserving the dominant features and reducing the
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number of parameters and computational requirements. Once
the convolution and pooling operations are done, the final im-
age is flattened and fed to a regular neural network.
The input image or feature in this case is the Cross-Spectral
Matrix which encapsulates the pressure signal data of the
sound sources obtained by the microphone array. The net-
work is trained against the ground truth which too is flattened
before training thus converting it into an N2x1 vector. The
number of hidden layers can vary and while more number of
hidden layers enable the model to learn better, care should
be taken to avoid overfitting the data. The activation func-
tion used is Rectified Linear Unit (ReLU) which ouputs the
input value if it is greater than or equal to zero, and zero
otherwise. The optimizer is ADAM (derived from Adaptive
Moment Estimation) which is a gradient-based optimization
algorithm for updating the weights, and the loss function is
mean squared error (mse) which is given as

mse =

∑N
i=1(ypred − ygt)2

N
(4)

where ypred is the predicted vector given by the network
and ygt is the ground truth vector.

3 Results
Various CNN models were developed, each of them trained
to detect a fixed number of uniform sources at a particu-
lar frequency. The input source strength was taken to be 1
Pa. 50000 random samples were generated for training and
10000 for validation. The models were trained for around
100 epochs. Results for a particular case- 6 sources at 8000
Hz spread randomly over a 12x12 scanning grid- are shown
in this paper as a representative of the general trend.

Figure 1: Ground Truth (left) and CNN prediction (right).

Figure 2: Beamforming Output (in decibels)

4 Discussion
Figure 1 shows that the model managed to locate all the 6
sources perfectly. The predictions were far more accurate

and of much better resolution compared to the beamforming
output (Figure 2) at higher frequencies, and even more so at
lower frequencies where beamforming was rendered virtually
unhelpful. The model can not only detect static sources but
also track moving sources. Pressure data recorded at an in-
stant through the microphone array can be used to predict the
source’s position at that instant from which the its velocity
and acceleration can be extrapolated. Furthermore, models
trained to detect random number of sources and sources with
different strengths were also developed to explore the perfor-
mance on more realistic scenarios.

5 Conclusions
The limitations of conventional beamforming at resolving
complex source distributions, especially at lower frequen-
cies, prompted the search for an alternative method that was
more robust and accurate. A data-driven approach based on
deep learning was employed. A Convolutional Neural Net-
work trained to detect and track static and moving acoustic
sources was developed. The Cross-Spectral Matrix contain-
ing the pressure data obtained by the microphone array was
used an input to the network while it was trained against the
Ground Truth Matrix. Multiple CNN models were developed
to span a range of source frequencies and the performance
was found to be far better than acoustic beamforming. To
challenge the model further, it was trained for scenarios with
a greater degree of randomness like detecting sources with
different strengths or detecting a number of sources within a
fixed range. There is still some scope for refinement but over-
all, the results show much promise and it is expected that with
more data and training, a robust and generalized deep learn-
ing framework for detection of acoustic sources in real-life
applications can be successfully built. This preliminary work
will be extended to identify locations of acoustic sources in
vortical and turbulent flows.
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