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1 Introduction
The wall-pressure fluctuations induced by a turbulent bound-
ary layer (TBL) are of interest in multiple applications,
among them the aeronautical sector, wind energy genera-
tion, ground transportation and general use machines with
rotating components. Under clean, laminar flow, the mini-
mum noise level produced by rotating machines comes from
the interaction between the turbulent boundary layer devel-
oping on the wall and the airfoil trailing edge. Moreover,
these wall-pressure fluctuations may induce fluid-structural
coupling and vibro-acoustic transmission. So, there is a spe-
cial interest in finding simplified models that relate the wall-
pressure fluctuations –or their spectrum (WPS)– to the main
characteristics of the TBL.

Several semi-empirical models have been proposed in the
past. All of them relating the WPS to boundary layer statisti-
cal parameters such as inner or outer layer scaling variables,
e.g. BL thickness, external velocity or friction velocity. The
empirical model of Chase-Howe was modified by Goody to
account for Reynolds number effects. Then, further exten-
sions were introduced by Kamruzzaman et al. , Rozenberg
et al. , Hu or Lee to account for pressure gradient effects on
the boundary layer development. The main drawback of such
models is that they were generated ad-hoc for the specific
dataset used to tune the model, or they are valid only within
specific ranges of pressure gradient or flow conditions.

Deep Learning has been considered as an alternative to
find complex dependencies between the TBL physical param-
eters [1]. The use of Artificial Neural Networks (ANN) as
universal function approximator may permit to find a rela-
tionship between the BL and the WPS.
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Figure 1: Boundary layer development on a flat plate. Forward,
zero and adverse pressure gradient effects.

The proposed approach, differently from previous stud-
ies, uses the complete boundary layer profile. With that, the
information of the flow evolution is retained in the model i.e.
there is no a-priori choice of TBL parameters nor potential
loss of relevant characteristics of the flow. The ANN training
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and analysis is performed on data coming from Large Eddy
Simulations (LES) of a Controlled Diffusion (CD) airfoil pro-
duced by the European SCONE project [2]. The set of data
includes zero and adverse pressure gradient effects, compris-
ing flows experiencing strong adverse pressure gradients at
various Mach and Reynolds numbers, which provides a large
variety of flow conditions over the airfoil surface.

2 Boundary layer and wall-pressure spectrum
The boundary layer development over a flat plate is repre-
sented in Fig. 1. The thickness of the boundary layer in-
creases as the pressure gradient becomes more negative. To
find boundary layer thickness δ(x), the recovery of the 99%
of the stagnation pressure is used: ptot = p+1/2ρU2. Veloc-
ity profile in the normal direction of the airfoil suction side is
collected and normalized with the free-stream velocity U∞.

The semi-empirical WPS models mentioned in the in-
troduction can be collected in the Universal WPS (Eq. (1)).
The constants a-h, FS and SS have different definitions for
each one of the models, for instance Goody, Rozenberg and
Lee [3]. These definitions rely on the use of inner and/or outer
boundary layer parameters. The presence of pressure gradi-
ent effects and their strength is crucial in the formulation of
such models and their range of application.
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3 Numerical datasets
The dataset employed in the current study contains the nu-
merical LES data of SCONE project [2] on the flow over a
controlled diffusion (CD) airfoil. The seven LES computa-
tions are collected in Tab. 1, where the flow conditions (Mach,
Reynolds and angle of attack) are specified for each one.

The data points are split in three different groups: train-
ing, validation and testing. The case C32 is reserved for test-
ing, and the remaining cases are used for training (80%) and
validation (20%). The validation dataset is used only to eval-
uate the training.

Table 1: Flow parameters covered by the dataset

Case Mach [-] Reynolds [-] AoA [◦]
C11 | C12 0.3 8.30× 105 4 | 7

C21 0.3 2.40× 106 7
C31 | C32 | C33 0.5 2.29× 106 4 | 5 | 6

C41 0.7 2.40× 106 1
N pts. per case: 119 Total data: 833
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4 Artificial Neural Network (ANN)
A 1D ANN structure is developed for the prediction of wall-
pressure fluctuations on the CD airfoil. The structure of
such a network, sketched in Fig. 2, contains two main parts.
First, an autoencoder (Fig. 2, bottom) is used to compress the
boundary layer profile into a reduced latent space, to avoid
ad hoc parametrization. Second, this latent space, which con-
tains all the information to reconstruct the boundary layer, is
used as an input, together with the flow and position input
data, into the WPS prediction ANN (Fig. 2, top). In this ar-
chitecture, three fully connected layers have been employed.
Each neuron computes a weighted sum of the input compo-
nents X, adding a bias b, and applying an nonlinear activation
function σ. The output of the fully connected layer l is input
into the following one: y(l+1) = σ(l+1)

(
w(l)y(l) + b(l+1)

)
.

The training uses the NAdam optmizer (stochastic gradient
descent) and the mean-squared error as loss function.
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Figure 2: ANN schematic. Use of encoder as ANN input.

5 Results
The boundary layer autoencoder is used to compress the data
of the velocity profile into its minimum expression. A para-
metric study has been performed in order to evaluate the min-
imal dimension of the latent space required to reconstruct the
input boundary layer profile. It has been found that a three-
dimensional latent space is sufficient to reconstruct accurately
the velocity profile. Fig. 3 shows the reconstruction in three
locations over the airfoil suction side on case C32, unseen
by the autoencoder. The locations are characterized by FPG,
ZPG and APG effects.

The prediction of the WPS under strong APG effects is
shown in Fig. 4, as it is the regime which presents the most
difficulties for the semi-empirical models. The ANN pro-
vides a good agreement with the numerical LES data avail-
able. There is an overall offset with the reference data lower
than 5 dB, whereas the semi-empirical models produce, in
the best case, offsets of about 10 dB. Furthermore, the trends
in the low, mid and high frequency range are observed satis-
factorily. It is not the case of the slopes provided by Goody,
Rozenberg and Lee semi-empirical models.
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(a) FPG.
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(b) ZPG.
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Figure 3: Boundary layer reconstruction from autoencoder on case
C32, unseen during training. Encoder with 3 latent spaces.
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Figure 4: Prediction of the ANN, and compared to semi-empirical
models. Testing on APG data of case C32, unseen during training.

6 Conclusions
The existing semi-empirical models fail to predict WPS when
evaluated in cases of strong APG driving the boundary layer
on a CD airfoil. ANNs have been proven to be an alternative
for such predictions. It is first able to reduce the BL veloc-
ity profile into its minimum expression and then to use the
latter to predict the WPS with lower error compared to semi-
empirical models.
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