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1 Introduction 

At cruise conditions, the most significant source of aircraft 
cabin noise are wall-pressure fluctuations induced by the tur-
bulent boundary layer (TBL). This noise is often significant 
and has been associated with an elevated risk of cardiovascu-
lar disease, hearing loss, and sleep deprivation in flight crews 
[1, 2]. Therefore, the development of an accurate empirical 
model that predicts noise generated from TBLs is an im-
portant ongoing research topic. Early models, such as those 
from Lowson and Robertson, were primarily derived by sim-
plifying and solving the Reynolds-averaged Navier-Stokes 
equations for the pressure fluctuation term and adding length 
and velocity scales to best match experimental data. Subse-
quent models were derived by applying statistical and math-
ematical techniques to simplify earlier models, or via modi-
fications that addressed apparent shortcomings. Past research 
has had varying success. Most models are accurate only near 
their design Mach and Reynolds numbers [3]. Only recently 
was the possibility of using machine learning techniques ex-
plored by Dominique, who produced a highly accurate TBL 
model via an artificial neural network [4]. This paper extends 
Dominique’s work by applying a different machine learning 
technique, nonlinear least squares regression (NLS).  

 
2 Method 

The model was derived in five steps, as outlined in [5]. First, 
an exploratory data analysis (EDA) was performed, which 
sought to identify data sources and possible candidate varia-
bles. In total, 14 data sources were available, consisting of 
wind tunnel data procured at Carleton University. 12 experi-
mental runs were placed in the training dataset, which had an 
average airspeed of 10.6 m/s and Reynolds number of ap-
proximately 850,000; while the testing dataset had an average 
airspeed of 8.92 m/s and Reynolds number of 650,000. Addi-
tionally, a total 23 candidate variables were to be considered 
‒most were selected based on their appearance in previous 
TBL noise models, but some other common dimensionless 
fluid dynamic parameters were also considered. 

The second step was dimensional analysis, which sought 
to establish a priori knowledge on the final form of the model 
via consideration of the dimensions. Specifically, the since 
the PSD of pressure fluctuations in the TBL has units of 
[Pa2/Hz], Equation 1 represented a highly simplified model 
that could theoretically predict the PSD: 
 

∅(𝑓) =
𝐴[𝑃]ଶ

1/𝑡
 (1) 

 

where 𝑃 is any candidate variable in units of Pa, 1/𝑡 is any 
candidate variable in units of Hz, and A is some coefficient 
to be fit to the model. 

While dimensional analysis made it theoretically possi-
ble to create candidate models and iteratively add complexity 
(via the addition of terms), it left two unanswered problems: 
how to fit coefficients/exponents and how to identify the per-
formance of each model. These problems were solved via the 
third and fourth steps, model development and testing, re-
spectively. For the third step, the NLS algorithm was imple-
mented in R to fit the model against all possible candidate 
variable combinations. Next, model testing was performed 
via a combination of its Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC), and Mean Squared 
Prediction Error (MSPE). After the optimum form of any 
given candidate model was selected, its shortcomings were 
identified, a new model form was proposed, and steps three 
and four were repeated. This process stopped only when it 
became clear that added complexity failed to yield a superior 
model. At this point, the final selected model underwent val-
idation, which sought to assess model accuracy against out-
side data. However, due to the limited availability of outside 
data, only freestream velocities from 7.20 m/s to 27.1 m/s and 
Reynolds numbers from approximately 530,000 to 6,200,000 
could be considered [6]. 

 
3 Results 

In total, iterative model generation procedure allowed for 186 
unique model forms to be tested. The best performing model, 
per the statistical tests, is presented in Equation 2 below: 
 

∅(𝑓) =
(0.39031)𝑀ଶ.ଶସଵ𝑞ଶ

ቀ
𝑈ఛ

𝛿
ൗ ቁ [(0.019972)𝑆𝑡ହ.ଶଵଽ + 𝑅𝑒்

ଵ.ଷଽ଼]
 (2) 

 

where M is the Mach number, q is the dynamic pressure, Uτ 
is the friction velocity, δ is the boundary layer thickness, St 
is the Strouhal number, and ReT is the turbulence Reynolds 
number. Figures 1-3 show plots of Equation 2 against internal 
training data, testing data, and validation data, respectively. 
Additionally, note that the iterative procedure itself provided 
several useful insights into the nature of TBL modelling. 
First, the optimum candidate variables to use in the veloc-
ity/time term in the denominator has been a source of disa-
greement amongst researchers; however, the algorithm re-
peatedly suggested that either Uτ/δ or U∞/δ* (freestream ve-
locity and displacement boundary layer thickness) were the 
optimum options. Second, the optimum Reynolds number in 
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the denominator has been disputed, but this paper suggests 
ReT is optimum; and finally, concerning pressure in the nu-
merator, this paper suggests q is optimal.  
 
4 Discussion and Conclusion 

Overall, Equation 2 showed a better agreement with all three 
plots, albeit with a tendency to underestimate PSD in the me-
dium-to-high frequency regions. Furthermore, while less ap-
parent in the plots, the model tended to lose accuracy against 
validation data if it was at higher airspeed and Reynolds num-
ber. However, given the limited number of cases covered in 
validation datasets, this should not be seen as an absolute con-
clusion. Possible causes of this discrepancy include the lim-
ited number of unique parameters in the training dataset lead-
ing to low data over-fitting issues; the noisiness of the train-
ing datasets at low and high frequencies necessitating cleans-
ing; compilation issues with the NLS algorithm, reducing the 
number of available candidate models to choose from; the in-
ability of statistical tests to filter out frequencies that were 
less important to human hearing; limited validation data; and 
the highly negative exponent on St leading to the PSD roll-
off occurring at too low of a frequency. 

This technique offered several advantages that were not 
present in earlier TBL modelling techniques. First, it permit-
ted 186 unique model forms to be tested. This is unmatched 
in prior literature, except by Dominique. However, the use of 
the neural networks in the Dominque model did not permit 
the same number of statistics, plots, and visual analysis to be 
performed/calculated on each model [4]. Second, the open-
ness of the NLS technique allowed unanswered TBL-model-
ling questions to be answered, such as the optimum candidate 
variables to use in the numerator and denominator. Finally, 
as the model generation technique did not rely on TBL-spe-
cific physics, it can be generally applied to other engineering 
applications. Overall, the performance of the model presented 
and advantages demonstrate that future researchers may con-
sider extending these techniques to novel problems and da-
tasets.  
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Figure 1: Plot of Equation 2 against selected training data. 

 

 
Figure 2: Plot of Equation 2 against selected testing data. 

 

 
Figure 3: Plot of Equation 2 against selected validation data. 
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