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1 Introduction
Despite the advantages of wood as a constructional material,
it has a lower subjective quality of sound insulation, due to its
relatively low stiffness and mass, compared with heavy struc-
tural materials, such as concrete [1]. The sound insulation
measurements are cost and time-demanding due to the large
construction efforts of full-size assemblies. In addition, the
acoustic performance of tested structures is sometimes var-
ied between laboratory to on-site measurements. This paper
aims to develop a prediction model based on the ANN ap-
proach to estimate the field sound insulation of multi-layered
CLT-based floor systems.

2 Method
2.1 On-site sound insulation measurements
The database collection comprises 104 acoustic field mea-
surements implemented on multi-layered CLT-based floor
systems for different buildings in Europe that are reported
in one-third-octave bands (50 Hz − 5 kHz). Fifty-one of
them are airborne insulation measurements, and fifty-three
are impact curves. Measurements were carried out accord-
ing to ISO 16283 (Part 1 & 2) [2, 3] and ISO 717 (Part 1 &
2) [4, 5]. The database includes several structural parame-
ters of each measured floor, such as linked walls and specific
information about junctions ( T or X-junction, the thickness
of visco-elastic interlayer). For each acoustic measurement,
the structural materials of each floor and wall and their instal-
lation orders, thickness, densities, floor construction system,
and wall type are considered in the modeling. In addition,
each test floor’s area and the receiving room’s volume are in-
cluded in the classification.

2.2 Artificial neural networks modeling
This study developed a multi-layer perceptron ANN model
with three hidden layers. Cross-validation and dropout tech-
niques were employed to avoid overfitting and validate the
network model. LeakyReLU (Leaky Rectified Linear Unit)
is used as an activation function for the three hidden layers.
The data is split into three subsets: training, validation, and
testing set with percentages of 80%, 10%, and 10%, respec-
tively. The root-mean-square error (RMSE) function is used
as the cost function to calculate the difference between each
measured and predicted curve in one-third-octave bands from
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50 Hz to 5 kHz. The same model is used to predict the acous-
tic performance of floors by using each measurement type
separately (airborne, impact insulation curves).

3 Results
3.1 Prediction of airborne and impact sound insu-

lation
Five measurements related to different buildings are used to
test the model’s accuracy. Figure 1 shows each test floor’s
plan view and construction material. Errors are viewed for
each measured curve against its prediction in each 1/3-octave
band. Figure 2 shows the five test floor systems’ measured
and predicted insulation curves. The gray area in the back-
ground of each sub-figure represents the mean and standard
deviation values used to train the network model. The single
number quantities and RMSE values for each acoustic curve
are presented in Tables 1 and 2.

Table 1: Predicted and measured weighted standardized level dif-
ferences of test floors (in dB).

Floor no. RMSE DnTw DnTwPred

1 3.44 54 54
2 3.56 58 58
3 2.97 51 51
4 2.90 54 55
5 3.34 60 60

Table 2: Predicted and measured weighted standardized impact
sound pressure level of test floors (in dB).

Floor no. RMSE L
′
nTw L

′
nTwPred

1 4.58 45 47
2 1.61 51 52
3 2.90 53 55
4 2.26 50 49
5 3.34 54 53

4 Discussion
The estimations for both airborne and impact sound were
found to be close to measured ones; see Figure 2. Compared
to other study [6], a good agreement was found in estima-
tions near both the fundamental (below 200 Hz) and critical
frequencies (1.25 - 3 kHz). This is likely due to multiple mea-
surements on the same floor composition but with different
connected walls, floor surfaces (and therefore room volume),
and junctions, allowing the model to capture the structure’s
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Figure 1: A schematic layout and section drawing of each test floor
assembly.

Figure 2: Airborne and impact sound insulation predictions.

insulation behavior around these frequencies accurately. In
certain cases, discrepancies are observed between the pre-
dicted and measured curves at mid and high frequencies. The

latter can be explained due to sound flanking transmission
paths, which usually exist in those ranges in field measure-
ments. The highest discrepancy in the prediction of DnTw

(Table 1) was 1 dB (test floor #4). However, it is 2 dB in the
prediction of L

′

nTw (test floor #1 and #3).

5 Conclusions
The present publication reveals a potential means of predict-
ing on-site acoustic insulation curves for CLT-based floor sys-
tems using an ANN approach. The network model is devel-
oped using various structural parameters for 104 field acous-
tic insulation curves. The highest deviation is 1 dB in the
estimation of weighted standardized level differences DnTw,
while it is 2 dB for weighted standardized impact pressure
level L

′

nTw. The results encourage acoustic designers to adapt
the network model in practical engineering works, especially
differences up to 2 dB are less than noticeable human differ-
ences in noise level.
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