
DEEP LEARNING-BASED APPROACH FOR ACOUSTIC SOURCE LOCALIZATION IN
TURBULENT FLOWS

Arnav Joshi *1 and Jean-Pierre Hickey †1

1Mechanical and Mechatronics Engineering, University of Waterloo

1 Introduction
Detection of acoustic sources in turbulent flows forms an
important part of the study of aeroacoustic noise. Passive
Acoustic Source Localization uses the pressure fluctuations
recorded by a microphone array to triangulate the location
of the source, an application of this is the detection of air-
craft wakes. Aircraft wakes are responsible for causing wake
turbulence, and thus airports have to factor in the conven-
tional time it takes for the wakes to dissipate. These wakes
are characterized by wake vortices that are formed on the
wing tips and have been shown to emit characteristic noise
that generally lies in the low-frequency range (100-500 Hz).
Accurate detection of these wakes is critical and could lead
to an increase in airport efficiency and throughput. The low-
frequency nature of the noise causes traditional methods such
as Acoustic Beamforming to fail. Thus in this work, we tackle
the problem of low-frequency, Passive Acoustic Source Loca-
lization (ASL) using a Deep Learning-based approach. The
ability of deep learning algorithms to extract features from
data in any shape or form provides a lot of scope for their
application in ASL. Building a robust framework for ASL in-
volves identifying the right input features and selecting the
appropriate architecture. We developed various test cases to
study the viability of different input features and architec-
tures. Ultimately, a Convolutional Neural Network (CNN)
using the input feature best suited to that case was employed.
The test cases include two-dimensional ASL for detecting
sources on the horizon or on a scanning plane parallel to the
microphone array plane, three-dimensional ASL, and moving
source localization. Section 2 gives a brief description of all
the simulated test cases. Section 3 provides results that tes-
tify to the approach’s viability followed by Discussion and
Conclusion.

2 Method
The method is summed up in Figure 1. Acoustic pressure data
is obtained using a microphone array. The data is then proces-
sed to generate an input feature which is then fed to the CNN.

FIGURE 1 – Flow of Information in the Method

2.1 Microphone Array and Source Simulation
A virtual microphone array and two types of sources with dif-
ferent levels of complexity are simulated for all cases. Source
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1 is a traditional, analytically defined monopole that oscillates
at a fixed frequency f . The expression Ps(m) [1] shows the
acoustic pressure due to a monopole s as detected by a micro-
phone m located at a distance rs from the source. Here, c0 is
the speed of sound in air. Ps(m) = e−j2πfrs/co

4π|rs| The second
type of source, Source 2, is also an analytical source howe-
ver unlike the monopole, it is represented by a time-domain
sinusoidal signal of amplitude A, frequency f , and phase dif-
ference ϕ, polluted with noise : P (t) = Asin(2πft + ϕ) +
Noise. It is computationally more expensive than the mono-
pole source as it has to be processed. The monopole source
allows us to test the model rapidly while Source 2 provides
scope for the application of signal processing techniques, a
procedure we would have to do when working with real si-
gnals.

2.2 Case 1 : Stationary Source Localization on a
Scanning Plane

This case is based on validating the work done by Xu
et al. [1]. A 64-microphone array in the shape of a lo-
garithmic spiral was simulated. To generate the training
dataset, S monopole sources were randomly distribu-
ted across the plane, and the acoustic pressure of all
the sources was calculated at all the microphones (M )
to form the combined pressure vector P given as P =[∑S

s=1 Ps(1),
∑S

s=1 Ps(2),
∑S

s=1 Ps(3), ,
∑S

s=1 Ps(M)
]
.

This, in turn, was used to get the Cross-Spectral Matrix
(CSM) as CSM = PPH , where PH is the conjugate
transpose of P . The CSM was used as an input feature to the
CNN that was trained against the ground truth to predict the
strength and location of the sources.

2.3 Case 2 and 3 : Two-Dimensional ASL on the
Horizon and Three-Dimensional ASL

A classification-based approach was used for these two cases.
This focuses on determining the Direction of Arrival (DoA)
of the acoustic signal from the source. For locating sources
on the horizon, only the azimuth angle (θ) has to be determi-
ned, whereas, for 3D ASL, both the azimuth and the elevation
(α) angles have to be determined simultaneously. The range
of possible values of θ (0-180◦) and α (0-90◦) is discretized
into classes and the output of the network is the probability
distribution of all the classes. To generate the training set, a
monopole is placed at a random angle from the center of the
4-microphone array at a fixed radial distance r. The CSM is
calculated and used as an input feature. The setups of the two
cases are shown in Figures 2 and 3 respectively. For Source 2,
the Generalized Cross Correlation (GCC) algorithm was ap-
plied to microphone pairs, and the resulting GCC vector was
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FIGURE 2 – Case 2 : Two-Dimensional ASL on the Horizon

FIGURE 3 – Case 3 : Three-Dimensional ASL

reshaped and fed to the CNN. GCC is a Time Delay of Arrival
(TDOA) approach and is known to be robust to noise and re-
verberation. Figure 4 shows the GCC pattern obtained using
a pair of microphone signals that are polluted with correlated
and uncorrelated noise sources.

FIGURE 4 – GCC Pattern for a Pair of Microphone Signals

2.4 Case 4 : Moving Source Localization
The moving source localization problem is the most expen-
sive and complicated case as the amplitude, frequency by vir-
tue of the Doppler effect, and phase of the source change at
every instant. The Short-Time Fourier Transform (STFT) of
the signal gives the time variation of frequency as sensed by
the microphone and is used as input to the model. We defined
a Source 2 signal at 100 Hz moving in a straight line away
from a single microphone and used the STFT calculated over
a given time interval to predict the initial and final coordinates
of the source.

3 Results
A result for source localization on a plane parallel to the array
plane (Case 1) is shown in Figure 5. The model was trained to
detect 6 monopole sources at 300 Hz, spread randomly across
a 12x12 scanning grid plane.

FIGURE 5 – Case 1 : ASL on a Scanning Plane

Tables 1 and 2 show the prediction accuracies for the mo-
nopole source and Source 2 at 100 Hz in classification-based
cases (Cases 2 and 3) respectively.

TABLE 1 – Prediction Accuracy for a Monopole Source.

Case θ α
2D ASL 98% -
3D ASL 88% 78%

TABLE 2 – Prediction Accuracy for Source 2 with GCC Input in 2D
ASL.

No. of Classes Accuracy
90 (2◦class size) ≈ 40%
60 (3◦class size) ≈ 52%

Table 3 shows the prediction of source coordinates for a
moving source (Case 4).

TABLE 3 – Prediction for Position of a Moving Source (Initial and
Final Coordinate.

Sr. No. Ground Truth Model Prediction
1 (72.794, 91.381) (72.305, 91.696)
2 (16.008, 76.569) (16.401, 76.287)

4 Discussion and Conclusion
It can be seen from Figure 5 that for ASL on a scanning place,
the model was able to capture the source distribution reasona-
bly well. For Source 2 detection on the horizon (Table 2), an
accuracy greater than 50% for 60 classes in the presence of
noise shows the robustness and reliability of GCC as an input
feature.

Overall, this work managed to test out the various aspects
of Acoustic Source Localization using a Deep Learning-
based Approach. The results are testimony to the viability of
the approach and it is expected that with more data and dee-
per networks, a robust framework for ASL can be built and
successfully applied to the detection of acoustic sources in
turbulent flows.
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