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1 Introduction 

The study of nasality in speech has long been focused on 
developing methods to obtain accurate measures from acous-
tic signals [1, 2]. However, the effectiveness of these acoustic 
measures has been a subject of debate, primarily due to their 
limited generalizability across different speakers [3]. As a re-
sult, researchers have sought more direct measures of nasa-
lity, such as recordings of aerodynamic data in the form of 
nasal airflow [4, 5]. Nasal airflow (nasalance) data obtained 
through nasal airflow measurements is considered the gold 
standard due to its reliability for inter-speaker comparability. 
In recent years, there has been a growing interest in utilizing 
machine learning models to improve the prediction of nasa-
lity from acoustic features (NAF). Studies [6] have demons-
trated that a principal component analysis (PCA)-based re-
gression approach can yield remarkably similar results to na-
salance data. Additionally, XGBoost learning algorithm has 
also been effectively used to obtain NAF from a wide range 
of acoustic correlates [7]. 

Parallel to these efforts, researchers have also explored 
techniques for measuring the actual size of the velopharyn-
geal opening (VPO) in nasal sounds. Recent studies [8] have 
investigated variations in the size of the VPO across nasal 
segments and languages, shedding light on the interplay bet-
ween nasality and VPO dimensions. 

Given the impressive predictive capabilities of NAF with 
respect to nasalance, it is worth exploring whether these 
acoustic measures can also be used to predict the actual size 
of the velopharyngeal opening (VPO) or the dynamic 
changes of VPO over time. Investigating the relationship bet-
ween NAF and VPO can provide valuable insights into whe-
ther nasality in speech is more associated with the amount of 
air passing through the velopharyngeal port or with the size 
of the VPO. Understanding this relationship can contribute to 
a deeper understanding of the mechanisms underlying nasa-
lity in speech production. 
 
2 Method 

2.1 VPO data 

For our investigation, we utilized sentence-level speech 
samples produced by four Canadian English speakers, obtai-
ned from the Université Laval X-ray videofluorography da-
tabase [9]. To assess the size of the velopharyngeal opening 
(VPO), we extracted frames at a rate of 30 frames per second 
from the X-ray video files. These frames were processed 
using ImageJ software [10], where we counted the number of 

black pixels along a diagonal line approximating the 
movement of the velum. This pixel count served as a proxy 
for the size of the VPO. Further details regarding this method 
can be found in [8]. Figure 1 illustrates a sample frame that 
displays the size of the VPO during a nasal segment. 

 
Figure 1: VPO measurement (red = velum outline, green = ve-
lopharyngeal wall, yellow = VPO) 

2.2 NAF data 

To obtain an acoustic measure of nasality, we followed the 
methods employed by Carignan and colleagues [7] and im-
plemented a machine learning model based on the XGBoost 
algorithm. A total of 72 acoustic features were extracted from 
the audio signals. To measure 18 of these features, we used 
the Nasality Automeasure Praat [11] script developed by Will 
Styler [3]. These features included the frequencies, ampli-
tudes, and bandwidths of F1-F3, P0 and P1 amplitude, P0 
prominence, A1-P0 and A1-P1, along with their formant-
compensated analogs. Additionally, A3-P0, H1-H2, and the 
first four spectral moments (center of gravity, variance, skew, 
and kurtosis) were measured. Furthermore, we extracted 14 
Mel-frequency cepstral coefficients (MFCCs) using the tu-
neR R package. Lastly, delta coefficients were computed for 
all 36 features, resulting in a total of 72 features used for trai-
ning the XGBoost model. These acoustic features were ex-
tracted at 11 evenly-spaced time points within a token. A 
token was included in the dataset if it belonged to one of the 
following phonological environments: CVC, CV#, VNC, 
CNV, CVN, VNV, VC#, VN#, NVN, or NVC. Out of the ten 
frames of measurements for each token, frames adjacent to a 
nasal segment were labeled as "nasal," while frames adjacent 
to an oral segment were labeled as "oral." 

To construct the gradient-boosted decision tree models, 
we employed the R [12] package XGBoost (version 1.7.5.1). 
Following Carignan [6, 7], we trained the NAF model using 
oral and nasal observations, with oral labeled as 0 and nasal 
as 1, specifying the model to minimize linear regression error. 
The model generated predicted values on a scale of 0 to 1, 
indicating the degree of nasality. 
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3 Results 

Figure 1 presents peak NAF and VPO values during nasal and 
oral segments. As the figure indicates, NAF values reveal si-
milar patterns as the VPO values do; the NAF values for na-
sals are larger than the ones for oral; in fact, NAF values ap-
pear to distinguish nasals from orals in a more extreme way 
(i.e., the difference is larger).  
 

 

Figure 2: VPO vs. NAF in nasal and oral segments 

 

 
Figure 3: VPO vs. NAF for the duration of segments 

To investigate the correspondence between VPO and 
NAF at a finer scale, Figure 3 presents VPO and NAF values 
across the duration of segments grouped according to their 
phonological environments (arbitrarily chosen from the data-
set). The lines in the figure represent the smoothed average 
obtained via GAM method; the error bars represent 68% (1 
SD) confidence intervals.  

As Figure 3 reveals, NAF has a high degree of corres-
pondence in revealing the overall changes to the degree of 
nasality over time. E.g., both VPO and NAF start low and end 
higher in CVN while both start high and lower in NVC, which 
completely aligns with the position of the nasal segment in 
the sequence. In CN#, however, the ending looks dramati-
cally different; the VPO remains high while NAF goes low. 
This too is completely expected since the sequence is pre-
pausal where the velum is lower for an inter-utterance rest 

position and there is no acoustic speech signal being produ-
ced (hence no nasal features).  
 
4 Conclusion 

The results of our study indicate a positive alignment bet-
ween nasality measurements derived from acoustic signals 
and the VPO data. This finding suggests that NAF mea-
surements can be a decent predictor of the dynamic changes 
in VPO across a segment. Having differently scaled NAF 
values, however, may not be directly correlated with the ac-
tual size of the VPO in terms of numeric values. The results 
also indicate that nasality is similarly associated with NAF 
and VPO in most environments.  
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