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1 Introduction
The study of nasality in speech has long been focused on
developing methods to obtain accurate measures from
acoustic signals [1,2]. However, the effectiveness of these
acoustic measures has been a subject of debate, primarily
due to their limited generalizability across different speakers
[3]. As a result, researchers have sought more direct
measures of nasality, such as recordings of aerodynamic
data in the form of nasal airflow [4,5]. Nasal airflow
(nasalance) data obtained through nasal airflow
measurements is considered the gold standard due to its
reliability for inter-speaker comparability.
In recent years, there has been a growing interest in utilizing
machine learning models to improve the prediction of
nasality from acoustic features (NAF). Studies [6] have
demonstrated that a principal component analysis
(PCA)-based regression approach can yield remarkably
similar results to nasalance data. Additionally, XGBoost
learning algorithm has also been effectively used to obtain
NAF from a wide range of acoustic correlates [7].
Parallel to these efforts, researchers have also explored
techniques for measuring the actual size of the
velopharyngeal opening (VPO) in nasal sounds. Recent
studies [8] have investigated variations in the size of the
VPO across nasal segments and languages, shedding light
on the interplay between nasality and VPO dimensions.
Given the impressive predictive capabilities of NAF with
respect to nasalance, it is worth exploring whether these
acoustic measures can also be used to predict the actual size
of the velopharyngeal opening (VPO) or the dynamic
changes of VPO over time. Investigating the relationship
between NAF and VPO can provide valuable insights into
whether nasality in speech is more associated with the
amount of air passing through the velopharyngeal port or
with the size of the VPO. Understanding this relationship
can contribute to a deeper understanding of the mechanisms
underlying nasality in speech production.

2 Method
2.1 VPO data
For our investigation, we utilized sentence-level speech
samples produced by four Canadian English speakers,
obtained from the Université Laval X-ray
videofluorography database [9]. To assess the size of the
velopharyngeal opening (VPO), we extracted frames at a
rate of 30 frames per second from the X-ray video files.
These frames were processed using ImageJ software [10],
where we counted the number of black pixels along a

diagonal line approximating the movement of the velum.
This pixel count served as a proxy for the size of the VPO.
Further details regarding this method can be found in [8].
Figure 1 illustrates a sample frame that displays the size of
the VPO during a nasal segment.

Figure 1: VPO measurement (red = velum outline, green =
velopharyngeal wall, yellow = VPO)
2.2 NAF data
To obtain an acoustic measure of nasality, we followed the
methods employed by Carignan and colleagues [7] and
implemented a machine learning model based on the
XGBoost algorithm. A total of 72 acoustic features were
extracted from the audio signals. To measure 18 of these
features, we used the Nasality Automeasure Praat [11] script
developed by Will Styler [3]. These features included the
frequencies, amplitudes, and bandwidths of F1-F3, P0 and
P1 amplitude, P0 prominence, A1-P0 and A1-P1, along with
their formant-compensated analogs. Additionally, A3-P0,
H1-H2, and the first four spectral moments (center of
gravity, variance, skew, and kurtosis) were measured.
Furthermore, we extracted 14 Mel-frequency cepstral
coefficients (MFCCs) using the tuneR R package. Lastly,
delta coefficients were computed for all 36 features,
resulting in a total of 72 features used for training the
XGBoost model. These acoustic features were extracted at
11 evenly-spaced time points within a token. A token was
included in the dataset if it belonged to one of the following
phonological environments: CVC, CV#, VNC, CNV, CVN,
VNV, VC#, VN#, NVN, or NVC. Out of the ten frames of
measurements for each token, frames adjacent to a nasal
segment were labeled as "nasal," while frames adjacent to
an oral segment were labeled as "oral."
To construct the gradient-boosted decision tree models, we
employed the R [12] package XGBoost (version 1.7.5.1).
Following Carignan [6,7], we trained the NAF model using
oral and nasal observations, with oral labeled as 0 and nasal
as 1, specifying the model to minimize linear regression
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error. The model generated predicted values on a scale of 0
to 1, indicating the degree of nasality.

3 Results
Figure 1 presents peak NAF and VPO values during nasal
and oral segments. As the figure indicates, NAF values
reveal similar patterns as the VPO values do; the NAF
values for nasals are larger than the ones for oral; in fact,
NAF values appear to distinguish nasals from orals in a
more extreme way (i.e., the difference is larger).

Figure 2: VPO vs. NAF in nasal and oral segments

Figure 3: VPO vs. NAF for the duration of segments

To investigate the correspondence between VPO and NAF
at a finer scale, Figure 3 presents VPO and NAF values
across the duration of segments grouped according to their
phonological environments (arbitrarily chosen from the
dataset). The lines in the figure represent the smoothed
average obtained via GAM method; the error bars represent
68% (1 SD) confidence intervals.
As Figure 3 reveals, NAF has a high degree of
correspondence in revealing the overall changes to the
degree of nasality over time. E.g., both VPO and NAF start
low and end higher in CVN while both start high and lower
in NVC, which completely aligns with the position of the
nasal segment in the sequence. In CN#, however, the ending
looks dramatically different; the VPO remains high while

NAF goes low. This too is completely expected since the
sequence is pre-pausal where the velum is lower for an
inter-utterance rest position and there is no acoustic speech
signal being produced (hence no nasal features).

4 Conclusion
The results of our study indicate a positive alignment
between nasality measurements derived from acoustic
signals and the VPO data. This finding suggests that NAF
measurements can be a decent predictor of the dynamic
changes in VPO across a segment. Having differently scaled
NAF values, however, may not be directly correlated with
the actual size of the VPO in terms of numeric values. The
results also indicate that nasality is similarly associated with
NAF and VPO in most environments.
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