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1 Introduction 

In today's interconnected world, air travel is a vital mode of 
transportation for people and goods, yet it also poses risks for 
spreading communicable diseases due to the large number of 
travelers sharing the confined spaces of airport terminals and 
aircraft cabins. Elevated noise levels in these environments, 
often prompt travelers to speak louder and gather closely, in-
advertently increasing the risk of spreading respiratory parti-
cles and infectious agents. Understanding this risk is crucial. 
This paper discusses the use of advanced signal processing 
techniques, specifically artificial intelligence-based speaker 
diarization [1], to accurately analyze speech patterns in noisy 
environments with multiple interlocutors. Speaker diarization 
involves determining "who spoke when" in a multi-speaker 
audio stream, with applications ranging from information re-
trieval to healthcare, including neuropsychology and 
COVID-19 analysis [2]. Despite its potential, the application 
of speaker diarization in noisy environments remains limited. 
This paper explores its relevance in such settings, particularly 
in air travel scenarios, aiming at the development of measures 
and protocols to effectively manage communicable diseases 
in confined spaces like airports and aircraft cabins. 

 
2 Modeling 

Speaker diarization, the process of segmenting an audio 
stream based on speaker identity, is supported by various 
open-source tools. S4D, an extension of SIDEKIT [3], is a 
Python package offering comprehensive speaker diarization 
capabilities. It covers the entire processing chain, from audio 
data to system performance analysis, with educational and 
practical aims. In contrast, Kaldi [4] provides speaker diari-
zation recipes but is not Python environment and is mainly 
focused on speech and speaker recognition systems. ALIZÉ 
and its LIASpkSeg extension, developed in C++, lack recent 
deep learning approaches for speaker diarization. For broader 
audio signal analysis, pyAudioAnalysis, implemented in Py-
thon, is available and adaptable for speaker diarization. Al-
ternatively, pyannote.audio [5], a Python-based open-source 
toolkit utilizing the PyTorch machine learning framework, 
offers end-to-end neural building blocks for speaker diariza-
tion pipelines with pre-trained models. In this paper, pyan-
note.audio software was chosen for its user-friendly interface 
and a wider range of pre-trained models. Its operational prin-
ciple involves five steps (Fig. 1): (i) Feature Extraction, (ii) 
Speaker Segmentation, (iii) Speaker Embedding, Clustering 
of Speaker Embeddings, and (iv) Speaker Diarization. These 
steps encompass crucial tasks like extracting relevant 

information from raw audio data, segmenting conversations 
into distinct speaker turns, generating concise representations 
of a speaker's voice, clustering similar speaker embeddings, 
and ultimately identifying different speakers in the audio 
stream. 
 

 

Figure 1: Speaker diarization process diagram. 

3 Speaker segment characterization 

Characterizing speaker segments involves evaluating the 
overall sound pressure level associated with an individual 
during a conversation. The process begins by identifying 
"who speaks and when?" Utilizing established diarization 
tools like Pyannote, coupled with a Python script, allows the 
calculation of the Overall Sound Pressure Level (OASPL) for 
each speech segment resulting from the diarization.  
 
3.1 Audio track 

To validate the approach, three audio samples were com-
piled in-house, each containing the same 20 sentences deliv-
ered by four different speakers. The first audio track (Audio 
0) served as the baseline configuration, with no changes made 
to the peak Sound Pressure Level (SPL) between consecutive 
speakers. In the second track (Audio 1), the SPL peak differ-
ence between consecutive speakers was set to 8 dB, resulting 
in peak level adjustments of +0 dB and +8 dB between 
speaker segments. In the third track (Audio 2), the SPL peak 
difference between consecutive speakers was increased to 
16 dB. These compilations constituted a validation dataset for 
assessing the efficacy of the developed speaker segment char-
acterization tool. The difference in SPL can be observed in 
the waveform and frequency spectrum of each audio track, 
allowing for an easy detection of alternating acoustic levels 
between consecutive speakers (Fig. 2). 

 
3.2 Results 

The OASPL is a crucial metric when assessing the im-
pact of noise, as it provides a comprehensive measure of the 
overall intensity or loudness of a sound across different fre-
quencies within a specified frequency range. Its expression is 
given by  

 

𝑂𝐴𝑆𝑃𝐿 = 10 logଵ଴(∑ 𝑉ே೑ೝ೐೜.
), (1) 
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Figure 2: Audio tracks: Waveforms (top figure) and spectrum  
(3 bottom figures). 

where 𝑉 = 𝑃𝑆𝐷/𝑝௥௘௙
ଶ  with PSD is Power Spectral Density of 

the signal with a reference to unit. 
The characterization of speaker segments for the three 

aforementioned audio tracks is detailed in Fig. 3. For each 
audio track, the diarization model successfully identified four 
speakers along with the corresponding timestamps for each 
speaker. The Fig. 3 showcases the speech segments of each 
speaker, where each segment aligns with a sentence attributed 
to a specific speaker. The OASPL for each segment, meas-
ured in dB, is indicated above or below the corresponding 
speaking duration segment. All values have been rounded to 
the nearest integer and calculated using a reference value of 
𝑝௥௘௙ = 1. 

In the case of Audio 0, the baseline audio, all speakers 
exhibit an OASPL of -82 dB. Transitioning to Audio 1, the 
developed tool predicts an average decrease of 5 dB for 
speaker 02, resulting in an average value of -87 dB, and a de-
crease of 2 dB for speaker 03. However, the OASPL for the 
other speakers, 00 and 01, remains unchanged at -82 dB. 
Moving on to audio 2, a notable average decrease of -12.5 dB 
for speaker 02 and -10 dB for speaker 03 is predicted, while 
the OASPL for speakers 00 and 01 remains constant at -
82 dB. These reductions affirm the efficacy of the developed 
algorithms in capturing variations in sound pressure levels 
across different speakers and audio tracks. 

 

 
Figure 3: Speaker segment characterization prediction. 

To summarize, these fluctuations demonstrate that the 
developed algorithms, accurately capture the variations in 
sound pressure levels across diverse speakers and audio 
tracks.  
 
4 Conclusion 

In conclusion, this study highlights the importance of accu-
rately understanding the communicable diseases spreading 
risks due to speaking in noisy environments, such as airports 
or aircraft cabins, where elevated noise levels prevail. The 
involuntary behavior of speaking loudly in these settings in-
advertently increases the dispersion of respiratory particles, 

potentially carrying infectious agents. To address this chal-
lenge, advanced signal processing strategies, particularly AI-
based speaker diarization approaches, were implemented to 
accurately determine speech patterns, including duration and 
sound pressure level. Implementing and adapting these algo-
rithms offer promising tools aiming at the development of 
measures and protocols to manage communicable diseases 
spread in air travel settings.  
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