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ABSTRACT

To a good f irs t  approximation acoustic propagation in an underwater sound 
channel is dominated by a fin ite  number o f trapped modes. However, e xa c t solutions 
are known fo r only a few  special cases, making it  necessary in general to  use 
numerical methods to  solve the normal mode equation. But o ften  one is in terested only 
in the  gross fea tu res , such as the number o f modes or cu to ff frequencies, and one 
does not need the  deta il provided by a complete normal mode calculation. Even if a 
normal mode calculation is desired, the computation time can be reduced considerably if  
the  mode wavenumbers can be estimated in advance. In such a case, the WKB method 
can be used to  obtain formulae which, although th e y  are approximate, are given in 
closed form. In th is  paper formulae based on e x a c t and WKB solutions are presented 
fo r the  number o f modes trapped in some simple sound channels and fo r the wave 
numbers and c u to ff frequencies associated w ith these modes. The number o f trapped 
modes is shown to  depend on the gross fea tu res  o f the  sound channel, while the 
distribution o f modal wave numbers depends to  a greate r degree on the  details o f the 
sound speed profile  shape.

RESUME

Dans une bonne premiere approximation, la propagation acoustique dans un canal 
de son sous-marin e s t dominée par un nombre fin i de modes piégés. Cepandant, des 
solutions e xa c te s  ne sont connues que pour quelques cas spéciaux, ce qui oblige en 
général à utiliser des méthodes numériques pour résoudre l'équation du mode normal. 
Souvent pourtant, le chercheur ne s 'in té resse  qu'aux caracté ris tiques brutes comme le 
nombre de modes ou les fréquences de coupure e t il n 'a pas besoin de la quantité de 
déta ils  fournie par un calcul complet du mode normal. Même, lorsqu'un calcu du mode 
normal e s t voulu, le temps de calcul peut ê tre  considérablement réduit si les nombres 
d'onde du mode peuvent ê tre  estimés auparavant. Dans un te l cas, la méthode WKB 
peut se rv ir à obtenir des formules qui, bien qu'e lles so ient approximatives, se 
p résen ten t sous une forme fermée. Dans c e tte  communication, l'au teur présente des 
formules basées sur des solutions e xac te s  e t sur des approximations WKB pour le 
nombre de modes piégés dans des canaux de son simple e t pour les nombres d'onde e t 
les fréquences de coupure liés à ces modes. Il démontre que le nombre de modes 
piégés depend des caractéris tiques brutes du canal de son, tandis que la distribution 
des nombres d'onde modaux dépend dans une plus grande mesure des détails de la 
forme du profil de la v itesse  du son.

* Presented a t the 101s t meeting o f the Acoustical Society o f America in Ottawa, 1 8 -2 2  
May, 1981.
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1 In troduction

Acoustic propagation in an underwater sound channel is dominated by a fin ite  number o f 
trapped modes whose wavenumbers depend on the sound speed profile in the  channe l Exact 
solutions are known fo r only a fe w  specia l profiles, making it  necessary in general to  use numerical 
methods to  solve the normal mode equation. But o ften  one is in te res ted  only in the gross fea tu res, 
such as the number o f modes or the c u to ff frequencies, and one does not need the  detail provided 
by a complete normal mode calculation. Moreover, even if a normal mode calculation is desired, the 
computation time can be reduced considerably if the  mode numbers can be estimated in advance. 
In such cases the WKB (a fte r  Wentzel-Kramers-Brillouin and o thers) method can be used to  obtain

formulae which, although they are approxim ate1, are given in closed form.

In this paper, formulae based on WKB solutions are presented fo r the number o f modes 
trapped in some simple sound channels and fo r the w ave numbers and cu to ff frequencies 
associated with these modes. The number o f trapped modes is shown to  depend on the  gross 
fea tu res o f the sound channel, while the distribution o f mode wavenumbers depends to  a g reate r 
degree on the details o f the profile shape. Results are presented fo r the  square ( isove loc ity - 
channel) profile, the parabolic profile, and the bilinear profile. An example shows how the simple 
formulae can be applied to  a rea lis tic  ocean environment.

While the analysis is presented in terms o f underwater acoustics, the  results are applicable 
to  other areas, such as transmission in an inhomogeneous waveguide or to  the solution o f the

Schrodinger equation. Most o f the  results presented here have been known for some time2, but 
what is new is tha t the formulae fo r some o f the more complicated waveguides can be put in the 
same functional form as the  well known formulae fo r the ideal waveguide. The physical 
parameters, such as frequency, depth, and sound speed are easily distinguished from the deta ils 
o f the shape of the sound speed profile, which can be tre a te d  as a dimensionless quantity. The 
ve ry  simple form of the  expressions makes them useful fo r back o f the envelope calculations or for 
use with a pocket calculator. Moreover, using the  same functional form fo r the expressions allows 
the e ffe c t  o f the shape of the sound speed profile to  be easily seen.

2 The normal mode equation

The normal mode equation can be w ritten  as,

un"(z) + [ûù2/ c 2( z ) - k > n(z) = 0 (1 )

where,

z is the depth coordinate (increasing w ith  depth from the  surface),

ûù = 27Tf is the angular frequency,

c(z) is the sound speed as a function o f depth,

kn is the wave number or eigenvalue,

un(z) is the normal mode function,

and u" denotes the  second derivative  o f u w ith  respec t to  z.



In general one w ants to  determ ine the normal mode w ave numbers kn and the  associated

mode functions un(z), su b je c t to  certa in  boundary conditions. Notice the  quantity  [C02/c 2(z)-kn ] 

which w ill be im portant in the  discussion la ter; in particular, i t  is equal to  zero a t a turning point, 
where ûû/c(z) = kn.

SOUND SPEED

Figure 1. Normal mode solution (heavy dashed line) superimposed on a sound speed profile 
(heavy solid line).

Figure 1 shows a sound speed profile (heavy solid line) w ith  a normal mode function (heavy 
dashed line) superimposed (w ith  a rb itra ry amplitude) a t the  appropriate phase ve loc ity  v n = co/kn. 
Notice a number o f things about the  mode function:

1) At the  turning points z-, and z2, 0)/c(z-,) = ûù/c(z2) = kn. These are the 

classica l turning points fo r the  equivalent ray trave lling  in the sound channel.

2) At the  a ir-w a te r in te rface  the pressure, and hence the  mode function, is 
zero; i.e. un(0 ) = 0.

3 ) Between 0 and z1 the normal mode function  has an increasing 

exponentia l type  o f behaviour.

4 ) Between z2 and » the  solution has a decreasing exponential type  o f 

behaviour.

5 ) Between z1 and z2 there  are th ree  zero crossings since th is is the 

fourth  mode; (in general the  n -th  mode w ill have n-1 zero crossings).

Furthermore, note the  sinusoidal behaviour betw een z 1 and z2; note also th a t un =: sin(7T/4) a t 

the  upper turning point and un sin(n-1/4)7T a t the  lower turning point.
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3 The WKB method

If the sound speed profile is changing slowly with respec t to an acoustic wavelength, the 
WKB approximation1 allows the solution to be written in terms of a slowly varying amplitude r(z) 
and a monotonically increasing phase $(z):

and M is a normalization constant. The integral in Eq. (4) will be referred to as the phase integral. 
Note several points:

1) the term in square brackets is the same term that appeared in Eq. (1).

2) near a turning point r(z) is singular.

3) <f>(z) is well behaved, however, and can be used to determine the WKB 
eigenvalues kn.

4) 0(z-,) = 81 at the upper turning point.

5) 0(z2) = n7T-62 at the lower turning point.

Figure 2 shows how the phase S1 a t the upper turning point depends on boundary effects. 

If the surface is a pressure release one, the pressure is zero, un(0) -  0 and the phase 61 = 0; if 
the surface is rigid, the normal derivative of the pressure is zero, i.e. un'(0) = 0, and the phase

6-I = 7T/2. At a turning point the phase 5-j is between 0 and 7T/2; St = 7T/4 is the usual choice1. 
The same comments apply to the phase at the lower turning point.

In the WKB method the total phase change between the turning points is given by:

un(z) = M r(z) sin[$(z)] (2)

where

r(z) = [C02/ c 2(z) - k2] ' 1' 4 (3)

(4)

:/c 2(z) - k2] 1/2dz + 6-, + 82 = n?r. (5)
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PRESSURE RELEASE RIGID TURNING POINT

8, = 0 8, = %  0 < 8, < Vg

Figure 2. E ffe c t o f various boundary types on the phase S.

where S 1 and S2 are the  phases a t the upper and lower turning points. With the usual choice o f 

§1 = ô2 = 7T/4 the  WKB eigenvalue equation becomes

r [C02/ c 2(z) -  k ^ ]1/2dz = ( n - 1 / 2 )7r (6)

C, C(Z) 0 Cm Ct C(Z) 0 c, C(Z)
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Figure 3. Three simple sound channel shapes: (a ) the square isovelocity-channel profile, 
(b ) the parabolic sound channel, and (c ) the bilinear sound channel.

-  11



One wishes to  solve equation (6 ) fo r kn which appears e xp lic it ly  in the  integrand and 

implicitly in the limits z 1 and z2. However, fo r certa in  sound speed pro files c(z) the  in tegral can be 
evaluated analytica lly and an expression obtained fo r kn. Three such sound speed p ro files are 

shown in Figure 3 : (a) the  square isove locity-channe l profile, (b) the  parabolic sound channel, and

(c) the bilinear sound channel. Note tha t it  is actua lly  c '2 ra ther than c which is parabolic or linear. 
Some notation is also introduced a t this point: cm = the  minimum sound speed in the channel, c t = 

the maximum sound speed in the channel, and h = z^-zu = the  maximum ve rtica l e x te n t o f the  sound 

channel.

4  The number o f trapped modes

The WKB eigenvalue equation can be solved fo r the  number o f trapped modes N if  the  phase 
in tegral can be evaluated e ither ana lytica lly  or numerically. Using n-»N, z1 = zu, z2 = z^, kN = C0/ct 

and rearranging Eq. (6 ) g iyes h = z  ̂ -  zu and x  = z /h :

N = 1 /2  + (2 h f/c m) [1 -c 2 / c f ] 1/2 f { [ c 2/ c 2(x ) -c 2/ c f ] / [ 1 - c 2 /c £ ]}1/2 dx  (7 )

* '0

By introducing the  dimensionless quantities

(8)

and

«. /  
* n

{  [c 2/ c 2(x ) - c 2/c f ] / [ 1  -c 2/c £ ]}1/2 dx (9 )

equation (7 ) can then be w ritte n  as

N = 1 /2  + (2 h f/c m) a a (1 0 )

The quantity a is introduced s tr ic t ly  fo r notational convenience. The quan tity  a, however, is 
re la ted  to  the shape o f the sound speed profile, but contains none o f the  physical parameters 
such as the frequency, depth or sound speeds. Note th a t in the  case o f an isove loc ity  or square 
profile a = 1, and Eq. (1 0 ) g ives the classica l formula fo r the  number o f trapped modes. Figure 4 
graphically illus tra tes the  s ign ificance o f the  in tegra l in Eq. (9 ), where the ve rtica l e x te n t o f the 
channel z  ̂ - zu gets mapped into the range 0 to  1, and where the  sound speeds betw een cm and c t

get mapped into 0 to  1 and where the integrand o f Eq. (9 ) (denoted by g (x ) ) is enclosed in a 
square box o f unit size. The in tegra l a is given by the  shaded area, which can be ca lculated 
ana lytica lly  or numerically or even estim ated by eye.
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Figure 4 . The sound channel and the  assoc ia ted  fu n c tio n  g (x ) ;  th e  shaded a rea  a  is de fined  
in Eq. (9 ).

5 C u to ff fre q u e n c ie s

The c u to ff frequency fo r the n -th  mode can be obtained by rearranging Eq. (1 0 ) to  give

6 W ave num bers

For the  th ree  sound speed profiles shown in Figure 3, the  eigenvalue equation (6 ) can be 
solved fo r the  wavenumbers kn, giving results o f the  form

where the  sp ec ific  values o f A and p are given in Table 1. For the  three profiles considered p 
varies betw een 2 /3  and 2, while the  corresponding values o f the  shape parameter a  varies only 
betw een 2 /3  and 1. Moreover, a  enters equations (1 0 ) and (1 1 ) in a linear fashion, while p 
appears as an exponent in equation (12 ). Thus, the  w ave numbers are much more sensitive  to  the 
profile  shape than are the  trapped modes and the c u to ff frequencies.

C *  = [c m(n -1 /2 ) ]  I  [2 h a a ] (11)

= W2/c *  -  A(n-1 / 2 ) P (12)
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Table 1

Specific values of a,  p and A fo r th ree  simple profiles.

Profile Shape cr p A

Square 1 2 (7T/h)2
Parabolic 7T/4 = 0 .79  1 4aûù/(cmh)

Bilinear 2 /3  2 /3  [37Tü)2a2/ ( 2 c 2h )]2/3

7 Example

Table 2 shows an example o f how the  formulae might be applied to  a rea lis tic  ocean 
environment, and compares the w ave numbers w ith  those obtained from a normal mode calculation. 
The sound speed profile  approxim ates a typ ica l summer sound speed profile in 100 m o f w a te r on 
the  Scotian Shelf: a 20 m isove loc ity  layer o f speed 1 5 20  m /s a t the surface, a minimum sound 
speed o f 1460 m/s a t a depth o f 40 m, and a speed o f 1490  m/s a t the bottom. The table 
compares the wave numbers, or phase ve loc ities , obtained using the  bilinear formula w ith  those 
from a complete normal mode calculation a t 200  Hz.

Table 2

Comparison of the phase velocities obtained from equation (1 2 )  

with those from a complete normal mode calculation.

Mode Number Phase Velocities (m /s)
Normal mode Equation (1 2 ) D iffe rence

1 1465 .72  146 5 .46  -0 .2 6
2 1471 .34  147 1 .4 3  0.09
3 1475 .99  1 47 6 .1 5  0.16
4 1480 .13  148 0 .2 9  0.16
5 1484 .94  148 4 .0 9  0 .15
6 1487 .48  1487 .63  0 .15

The WKB method gives a good approximation to  the  normal mode wave numbers; fou r or f ive  
d ig its accuracy as in the above example is not unreasonable. In fa c t  fo r the parabolic p rofile  the 
WKB and e xa c t calculations give the  identica l resu lts. Provided th a t th is  is o f su ff ic ie n t accuracy, 
the  value o f the analytic formula is obvious from a computational point o f view.

8 Discussion

Equations (1 0 )- (1 2 )  toge the r w ith the  values o f a ,  p and A given in Table 1 summarize the 
resu lts o f this paper: simple analytica l formulae fo r normal mode w ave numbers, c u to ff frequencies, 
and the  number o f modes trapped in a sound channel o f simple shape. The fa c to r o f 1 /2  appearing 
in Eqs. (1 0 )-(1 2 ) can be generalized to  a 5 which depends on the  boundaries o f the sound channel 
as well as the  type  o f turning point tha t the mode "se e s ". Equations (1 0 ) and (1 1 ) fo r the  number
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of modes and the cutoff frequencies are useful for more general profiles provided that the integral 
of Eq. (9 )  can be estimated.

The results show the sensitivity of the modes to the shape of the sound speed profile: the 
number of modes depends on the shape parameter a  of the sound speed profile, while the 
distribution of mode numbers is more sensitive to the details of the profile shape.
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