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Introduction

Statistical models are often used in the analysis of vibration levels
of complicated dynamic structures, particularly at high frequencies when
the high numbers of modes involved in the vibration make both the usual
modal analysis and also numerical analysis unfeasible. Results from such
models often compare favourably with experimental results. There has been
little effort, however, to compare the results from statistical models
with exact analytic results, or to estimate analytically how well the
statistical model of the structure represents the actual structure.

A particular simple coupled-beams structure is considered here
(Figure 1). The vibration analysis is carried out within the framework
of statistical energy analysis. In particular, results for the power flow
from one beam to another are obtained. An ensemble of similar structures
is constructed by varying the lengths of the beams. Exact values of the
mean and standard deviation of the power flow are calculated for this
ensemble. Approximate results from statistical models of the structure,
including the statistical energy analysis result, are shown to compare
very well with the exact results. Also, the standard deviation is found
to be surprisingly small. One concludes that it is indeed justifiable when
analyzing complicated dynamic structures to model not the structure it-
self but the simplest-to-analyze sample (in this case the symmetric case
of beams of equal length) from an ensemble of structures similar to the
actual one.

Statistical modelling of dynamic structures

SEA [1] is one way of estimating the dynamical response of complicated
structures to high frequency excitation. In this approach the structure
is treated as a number of interacting component subsystems. The energy
of vibration of each sybsystem is the variable chosen to define the state
of the system. Other dynamical variables such as acceleration or stress
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are found once the energy is known. The word statistical implies not

necessarily that the excitation is random but that the parameters des-
cribing each subsystem are chosen from a known statistical distribution
of similar parameters. The actual structure of interest is treated

as one sample of an ensemble of similar structures.

The basic power flow and energy balance relations for a two subsystem
case where only one of the sybsystems is externally excited is shown in
Figure 2. P represents power, E represents the energy of the linear
oscillators or modes of vibration that are used to characterise each of
the subsystems and N represents the number of modes of each subsystem
taking part in the energy exchange.

The power dissipated by each subsystem is related simply to the
modal bandwidth A (which may be measured). For example Rj = AjNPE-j .

One of the basic results of SEA is that a similar expression can be
written for the power flow between the subsystems:

where A-~ is a constant of proportionality which depends only on the

dynamical parameters of the structure. With reasonable assumptions E

may represent either the actual modal energies of the coupled subsystems,
or the modal energies they would have if they were uncoupled but the same
forces acted, although the constant A”, of course,, is different in each

case. Results for the power flow P~ between the beams shown in Figure 1
are discussed below.

Considerable effort has been put into estimating the value of A”™ for

coupling between various structural components such as beams, plates and
shells, and into comparing the basic SEA results such as (1) with experi-
mental measurements. Lyon [1] lists several references on these topics.
Almost all of this work is concerned with mean value estimates of the
energies and power flows. Some general results for the variance of these
estimates based on assumed distributions of parameters have been obtained
[1,2]. Two aspects are of interest: the amount of spatial response con-
centration on a particular structure, and the accuracy with which the
statistical model describes the actual structure. It has been shown
recently [3,4] that very marked concentrations indeed are found in some
cases. On the other hand, little work has been done to compare SEA re-
sults with those obtained from exact calculations for a particular structure.
Remmington and Manning [5] compared mean values of power flow with an

exact calculation for a few parameter values on a simple system. Smith [6]
in his reworking of SEA from a wave propagation point of view has compared
an SEA result with a precise statistical result. A more complete statistical
treatment of the power flow in a simple structure is described below.
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Calculations of the mean and variance of the power flow P-* shown in

Figure 1 are discussed for a wide range of parameters. Three types of
averaging are considered, ensemble, spatial and frequency, for two limiting
types of random force, rain-on-the-roof and point excitation [7,8].

Power flow in a beam-beam structure

A simply supported coupled beam-beam structure is shown in Figure 1.
y represents the transverse vibrational displacement response to the
distributed transverse loading f(x,t). The coupling is at the central
simple support. The power flow between the beams is described by the prod-
uct of the bending moment and rate of change of slope at the coupling
point. This structure was chosen because it is sufficiently complicated
to exhibit many of the multi-modal interactions inherent in the SEA
assumptions yet sufficiently simple that an exact solution can easily be
obtained, at least within the limits of the Bernoulli-Euler bending theory.

Two limiting types of random forces are considered here: rain-on-the-
roof where f(x,t) is white in both space and time, and a point force at
the point x = z so that f(x,t) = & (t) <5(x-z) where f (t) represents a
white noise force. In both cases only beam 1 is externally excited.

The problem can be solved either in terms of the simple support-
simple support eigenfunctions of the beams or by using a closed form Green's
function. For rain-on-the-roof excitation the modal forces are uncorrelated.
This fact was used in [7] to obtain an eigenfunction expansion for the power
flow which was subsequently summed. For point excitation a closed-form
Green's function is obviously more appropriate. A Green's function for the
beam-beam structure was obtained in [8] by superposing results for the
point force at x=z and an unknown force at the coupling point, and eval-
uating the unknown force from the requirement that the displacement be
zero at the coupling poing.

Expressions for the spectrum of the power flow, or more strictly for
the frequency decomposition of that part of the power flow at the coupling
point that can be dissipated in beam 2 can be written in non-dimensional
variables in the form

146 (“) , L
B g 2 gAY )
E1'E2 “TLL ’ L1*wW

Here represents the fundamental resonance frequency of beam 1 and n the

loss factor which is assumed the same for both beams. The z/L-j dependence

occurs of course only for the point excitation case. Ald, is a damping
loss factor.
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The functional form in (2) is sufficiently complicated that general
results concerning changes in structural parameters that may be required
in a design process are not easy to determine. Various statistical averages
of the spectrum can be considered instead for given values of the loss
factor. Frequency averages over dg/w, are typically over one-third octave
or octave bandwidths. Since in many if not most cases of practical interest
energy exchange between subsystems is by resonant modes the important
parameter in frequency averages is not the averaging bandwidth itself but
the number of modes that have resonance frequencies within the band. Aver-
ages over can be thought of as ensemble averages. The ensemble of

similar systems considered here has a uniform distribution of between
the values one and two. Spatial averages are taken over the variable z/L-j.
It is assumed here that z/L-j is uniformly distributed between the values
zero and one.

Numerical Results

Figures 3 and 4 are for the case of rain-on-the-roof excitation.
Figure 5 includes results for both types of excitation considered here.
Typical values of the normalised spectrum of power flow are shown in Figure 3
for L2=1.4L-j for three values of the loss factor n* The corresponding value

of the modal overlap ratio M the ratio of modal bandwidth to average spacing
between resonance frequencies is also shown. The bars underneath the graph
show the modal bandwidths for each mode of the uncoupled beams.

The modal nature of the response is seen clearly, and it is evident that
at low values of the damping the power flow is predominantly by resonant
mode interaction. Proximate modes whose bandwidths overlap give high values
of the power flow spectrum. As the modal bandwidth increases the power
flow in the octave band shown in Figure 3 increases, at least in the range
M< 1. Figure 4 shows that the relation is in fact linear. Considerable
smoothing of the spectrum occurs as Mincreases. For the case M= 1.2 shown
the spectrum varies only slightly about a mean value of almost 0.5. The SEA
result due to Lotz [9] using Lyon's [1] wave propagation approximation gives
a value of 0.5 for this problem.

The graphs in Figure 3 emphasise the complicated nature of the function
in equation (2). Meaningful results concerning structural parameter depend-
ence can only be obtained in general terms if suitable average values of the
power flow are considered.

It is shown in references [7] and [8] that some smoothing of the spectrum
is obtained by ensemble averaging over an "octave" of structures 1£ *2/™|—n*

Marked peaks in the ensemble spectrum still occur near the resonance frequencies
of beam 1, and it is still not easy to determine the effect of various struct-
ural parameters on the results. O the other hand, if frequency averages

are taken, the rain-on-the-roof octave band spectrum is rather insensitive

to changes in LA/LA
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Octave band results for rain-on-the-roof excitation are shown in
Figures 4 and 5. Frequency averaged values of the spectrum of power flow
are plotted against the modal overlap ratio for two octave bands. Curves
labelled 1 and 2 in Figure 4 are for 10 < wwj < 20 and 100< ucoj < 200,

respectively. These are the exact octave band mean values for the ensemble
1£ ~ML-j <2. For M«1l the curves are the same. In the region M= 1 and

for M> 1 there are small differences. Figure 5 shows the mean + standard
deviation (curve 3) for curve 2, the deviation being over the ensemble
1£ LML £ 2. The deviation is surprisingly small. For curve 2 there are

4.8 resonant modes in the octave band. For curve 1 there are only 1.3
resonant modes. The deviation (not shown) even in this case is still
surprisingly small.

Several approximate results are also shown in Figure 4. The SEA result
is due to Lotz [9] and as expected shows good agreement with the exact
results when the modal overlap ratio is high. The curves LMand HV are
approximate results for the case L" . The symmetry in this case makes

the calculation simpler. The curve LM is obtained by considering only the
resonant mode contribution from the perfectly overlapping modes of the two
systems [7]. Curves HM and HWR are obtained by assuming that because of
the smoothing caused by high modal overlap, summations over modes can be

replaced by integrals [7].

Figure 5 shows standard deviations of the octave band power flow for
the case 100 < g/aj < 200. Curve 2 is the same as in Figure 4 for the rain-

on-the-roof excitation. Curves 3 are the mean * standard deviation for this
case. Curves 4 are the mean * standard deviation for the octave band power
flow in the point force case when 12 = Lj/ T, the deviation being taken over

the spatial average O £ z £ L-|. The mean value for this case is so close to

curve 2 that it has not been shown. For rain-on-the-roof excitation the
smoothing caused by high modal overlap makes the standard deviation very
small. High modal overlap here implies high damping. For Me 1, the damping
is so high that there is appreciable decay of waves along beam 1 emanating
from the point of excitation. For small z there is very little energy
incident on the coupling point so the power-flow through the coupling point
is small. On the other hand, for z -Lj there is considerable energy incident
on the coupling point. The deviation over the spatial average thus increases
as Mincreases. This decay effect for the point excitation case is examined
in more detail in reference [8].

Conclusion

Figures 4 and 5 add considerable credence to the use of statistical
models in vibration analysis. Excellent agreement is obtained if octave
band values are considered adequate. As expected the SEA wave transmission
result [9] which assumes in essence that the beams are infinitely long shows
good agreement with exact values when the modal overlap ratio is high.
Because the standard deviation is so small, a statistical model using equal
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beams and uniformly spaced perfectly overlapping modes shows good agreement
for all values of M although different approximations must be used for Ml
and M>1. Again provided octave band values are used results for the spatially

averaged point force case agree well with those for the rain-on-the-roof
case.

Further work is in progress at UNB extending the results to more
complicated structures and examining spatial concentration of vibration
levels along the beams. It is expected that this work will confirm the
conclusions outlined above. One may conclude it indeed seems justifiable
that when analyzing the vibration of a complicated structure one may use
results obtained from the simplest to analyze (for example, a symmetric
case) sample from an ensemble of similar structures.
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