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Abstract:
The F2 trajectories for /b, d, g/ in /CVd/ syllables are often summarized by the 

initial F2 frequency (F2i) and th a t of the “steady-state vowel” (F2v). Trajectories were 
measured for 660 Canadian English /CVd/ syllables (3 stops x 11 vowels x 10 speakers 
x 2 repetitions). Plots for each stop (vowels pooled) indicated a strong linear relationship 
between F2i and F2v. A regression line fitted to each plot represents an invariant 
relational property of the corresponding consonant. F2 trajectories are not sufficient to 
specify the stops uniquely, since the lines for the three consonants intersect (indicating 
category overlap). However, the slopes and intercepts for the three consonants are 
distinct and thus represent partly distinctive invariant properties or partial invariants. 
Similar patterns obtain for F3. Use of partial invariants of F2/F3 trajectories in a 
classification algorithm (based on minimum distance from category regression lines) 
result in an identification rate of over 70%, which compares favorably with a number 
of other statistical classification schemes. Possible extensions of this approach and 
relationships to aspects of perception are discussed.

Sommaire:
On représente souvent les trajectoires de F2 pour /b,d,g/ en syllabes du type /CV/ 

par la fréquence initiale de F2 (F2i) et sa fréquence dans l’é tat stable de la voyelle (F2v). 
Les graphiques obtenus pour chaque occlusive (avec regroupement de voyelles) à partir 
des mesures effectuées sur 660 syllabes du type/CVd/ en anglais canadien (3 occlusives 
x 11 voyelles x 10 locuteurs x 2 répétitions) révèlent sans équivoque un rapport linéaire 
entre F2i et F2v. Pour chaque graphique, la droite de régression représente une 
propriété relative invariante de la consonne, bien que les trajectoires ne soient pas 
suffisantes pour décrire les occlusives de façon non-ambigüe, puisque les droites de 
régression des trois consonnes se coupent (ce qui indique un chevauchement des 
catégories). Cependant, les pentes de ces droites et leurs points de rencontre avec les 
axes de coordonnées ont des valeurs distinctes et par conséquent représentent des 
propriétés invariantes partiellement distinctives ou invariants partiels. On note des 
résultats semblables pour F3. L’utilisation d’invariants partiels pour les trajectoires de 
F2/F3 dans une classification algorithmique (basée sur la distance entre chaque point 
et les droites de régression des trois catégories) aboutit à un taux d’identification de plus 
de 70%, résu ltat qui s’avère au moins aussi bon que ceux obtenus par plusieurs autres 
procédés statistiques de classification. L’article se termine par une discussion des 
ramifications possibles de cette approche et de ses rapports avec des problèmes de 
perception.

Introduction
The purpose of this study is twofold: 1 ) To show that vowel-dependent variation 

in the onsets of F2 and F3 transitions in stop+vowel syllables is systematic. 2) To show 
how this systematic variation can be exploited in a pattern  recognition model for place 
in voiced stops. Variation in the onsets of CV transitions as a function of both the
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consonants and the vowels involved has been well documented (e.g., Fant 1973, see also Shammass 
1985 for an extensive review). Preliminary examination of plots of formant transition data from the 
literature indicated that strong linear relationships existed between the onsets and steady states for 
voiced stop+vowel syllables. The present study was undertaken to clarify the nature of these 
relationships and to attem pt to exploit them in a consonant recognition scheme.

Experim ent
Sahiesia

Subjects were 10 (5 male and 5 female) phonetically trained speakers of Canadian English and 
were all graduate students or faculty members in linguistics at the University of Alberta.

M aterials and Methods
Speakers were provided with a randomized list of phonetically transcribed syllables which 

they were asked to read. Two repetitions of each of 33 /CVd/ ’s (with C ranging over /b, d, g/ and V 
ranging over / i ,  i,  e , e, as, a , d, o , © , u, ar /, were collected from each of the speakers. The 660 tokens 
were digitized a t 16 kHz and analyzed as follows. A 16 ms Hamming window was advanced in 5 ms 
frames over the first 80 ms following stop release. Each frame underwent an autocorrelation LPC- 
based spectral analysis. A lag window (rectangular in the frequency domain with a bandwidth of 50 
Hz; see Tohkura, Itakura and Hashimoto 1978) was applied to the autocorrelation coefficients prior 
to the estim ate of the inverse filter. A 20 coefficient analysis was used for all male speakers and 16 
to 18 coefficients were used for females. Printouts of estimated formant frequencies and amplitudes 
(using a method similar to that described by Christensen, Strong and Palmer 1976, involving the 
second derivative of the smoothed log magnitude spectrum derived from the LPC analysis) were 
examined and four measurements were derived manually: 1) F2v, the frequency of “steady-state 
vowel” F2 at 60 ms following stop release; 2) F 2 i, the “initial” frequency of F2, taken as early as possible 
after stop release, subject to continuity of the track with F2v; 3) F3v and 4) F3i, analogous measures 
for F3. The measurement points for a typical stimulus are illustrated2 in Figure 1. For some of the 
female voices, the initial estimates proved difficult to track. For each of these voices, an ad hoc 
adjustm ent of the number of coefficients was made on a few syllables until usable results were 
obtained. Data for these speakers was then re-analysed with the 16 ms windows which were advanced 
in 2.5 ms frames.
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Figure 1. Schematic spectrogram showing measurement points for initial (F2i, F3i) and “steady - 
sta te” (F2v, F3v) formant frequencies.
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ANALYSIS
Graphical analysis

Scatterplots of initial F2 as a function of F2 of the following vowel nucleus (F2i X F2v) 
confirmed that a strong linear relationship existed for each of the three consonants considered 
separately. These plots are shown in the left half of Figure 2. All three plots indicate a strong positive 
correlation between F2i and F2v. However, /d/ shows less “tuning” of F2 onset (F2i) with changes in 
F2v, consistent with a 7d/-locus” near 1800 Hz (Delattre et al. 1955; Fant 1973). On the other hand, 
/b/ and especially /g/ are more strongly vowel-dependent. Note that /b/-onsets generally occur at or 
below the diagonal (F2i=F2v), while /g/-onsets lie slightly above i t . Similar patterns exist for the three 
consonants for F3. (See right half of Figure 2.) However, the differences in the distributions of the three 
consonants in F3 is less striking.

Regression analysis
The left half Figure 2 also displays the results of least-squares regressions3 of F2i on F2v for 

each of the consonant categories considered separately. A similar analysis of F3i and F3v is presented 
in the right half. The regression coefficients coefficients reported in Figure 2 may be used as the basis 
of a simple minimum distance classification procedure as described below. It should be noted that the 
relationships described here are similar in many ways to those exploited by Klatt for formant 
frequency transition calculation in speech synthesis by rule (see Allen, Hunnicut and Klatt 1987:111- 
116).4

C lassification results

Minimum distance classification
After using the data as a training set for the regression lines, each spoken syllable was re­

classified as a member of /b/, /d/or/g/on the basis of its distance to each of the corresponding regression 
lines. More precisely, each token is mapped into the F2i X F2v plane, where its vertical distance, D2c, 
to the regression lines for each consonant (c) is calculated. A similar set of distances, D3c, is calculated 
in the F3i X F3v plane. The decision was based on the combined distance measure D2c = [(D2c)2 + 
(D3c)2]. A token is classed as the consonant for which D2c is minimum.

This minimum distance classification rule results in a correct partition rate of 73.9%, when 
the training data are re-classified. A cross-validation approach, in which the data from an arbitrary 
subsample of five of the speakers were used as the training set while the remaining 5 were used as 
the test set, actually yielded slightly higher correct classification rate for the test data, 76.1%.

Alternative parametric classification methods
The present analysis shows that there is considerable information available in formant 

frequency transitions for the identification of stop consonants. It should be noted that the analysis 
used acoustic context only and did not require prior phonetic categorization of the following vowel. 
Kewley-Port (1982) investigated linear discriminant analyses of Pol, /d/ and Igl based on F2-F3 
transition measurements of syllables spoken by a single speaker. She found that automatic classifi­
cation of place features for stop consonants was quite high (97%) when linear discriminant analyses 
were carried out separately for individual vowel contexts. However , it should be bom in mind that 
only 5 repetitions for each vowel token were involved. Shammass (1985) reports separate vowel-wise 
linear discriminant analyses for the present data and finds an overall correct identification rate of 81 %
and ranging from 72% for /  S’ /  to 90% for / a  /. Shammass’s classification results involved 20 points per 
vowel (2 repetitions by each of 10 speakers). Furthermore her results were based on the so called U- 
method (or jackknife, Gray and Schucany 1972) of classification which reduces bias in classification 
scores for small samples. Classifications results reported by Kewley-Port were considerably lower 
(68% correct) when a single linear discriminant analysis (pooling over vowels) was conducted. A single 
linear discriminant analysis of the present multi-speaker data yielded an identification rate of 66% 
(compared to about 74% for the regression method described above).
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Figure 2. Left panel: Scatterplot of the frequencies of initial F2 (F2i) and F3 of t;he vowel at 60 
ms from consonant release (F2v). Right panel: analagous plots for F3i and F3v.
(Top to bottom in each panel: data for lb!, /d/, /g/ ). Least-squares regression lines, their 
coefficients and Pearson’s r  are shown for each analysis.
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Linear discriminant analysis is based on the assumption th a t the samples used in the 
determination of the classification rule are drawn from normal distributions th a t differ only in their 
mean vectors (i.e., the means for F2i, F2v, F3i, F3v may be distinct for each of/b/, /d/, /g/) but th a t the 
groups have a common covariance matrix. The scatter plots and regression analysis indicate th a t this 
latter assumption is likely not correct, since, e.g. the regression of F2i on F2v has a substantially more 
positive slope for/g/than for/d/. (Indeed, the differences in the orientations of these distributions seem 
more salient than  their overall locations.5) A formal test of the equality of covariance matrices provides 
strong evidence for rejection of the common covariance assumption6 (Box’s M = 249.0, approximate 
F(6,120)=41.3, p<.Q001). Bayesian classification schemes using separate estim ates of the covariance 
matrices for each group are more appropriate than  linear discriminant analysis in such cases. These 
procedures, sometimes referred to as quadratic discrimination (Lachenbruch 1975: 20-23), may be 
performed either in the full space of the original measurements or in a reduced dimensional space 
based on a prior linear discriminant analysis (Tatsuoka 1971:232 -233). Classification of the present 
data using separate covariance estimates in a reduced (2-dimensional) space was investigated by 
Shammass (1985), resulting in 72% correct identification. A full 4 -dimension quadratic discriminant 
analysis (equivalent to a maximum likelihood classification scheme) actually showed a slightly lower 
overall classification rate of 71%. These rates are similar to th a t of the minimal distance regression 
rule. Confusion matrices for the regression classification, linear and quadratic discriminant analysis 
are given in Table 1. The similarity of the error patterns for the regression and quadratic methods may 
indicate they are exploiting essentially the same properties of the distributions.7

TABLE I: Consonant-wise identification rates (in percent) for selected classification procedures:

L inear D iscrim inant Analysis

Actual Predicted Group 
Group.

/b/ /d/ /g/
Pol 89.5 9.1 1.4
/d/  10.4 47.7 35.9
/g/ 15.0 25.0 60.0

Q uadratic D iscrim inant Analysis (2-Dimensional)

A ctual Predicted Group
Group

Ihl /d/ /g/
Ibl 84.1 10.0 5.9
/d/ 10.5 71.4 18.2
/g/ 11.8 26.4 61.8

Minimum distance Regression Classification (all data pooled) 

A ctual ,Pxedict.e,d-Gmu^
Group

Ibl Id/ /g/
/b/ 89.5 6.4 4.1
/d/ 11.8 69.1 19.2
/g/ 15.0 21.8 63.2
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D iscussion
The regression lines for each consonant may be regarded as representing invariant relational 

properties for each consonant. These invariants are not sufficient individually to separate the groups 
in all cases (superposition of Figures 2, 3 and 4 shows considerable category overlap). But, since the 
lines for the three categories are not identical, the properties may be considered partially distinctive.8

Other factors such as the shape of onset spectra and VOT are im portant cues in analytic 
recognition of stops (Blumstein and Stevens 1979; Edwards 1981; Searle et al. 1979; Kewley-Port 
1982) as well as in speech perception (Blumstein and Stevens 1980). Walley and Carrell (1983) show 
that formant frequency information can, in certain cases, override other cues. Shammass (1985) 
confirms that both spectral shape information and formant frequencies play a role in listeners’ 
perception of synthetic stops. She compares a regression classification of synthetic stimuli (similar to 
that presented here) to listeners’ judgments. Predictions are good only in the case of front vowels. 
F urther research is needed to clarify the nature of the interaction of cues in listeners’ perception and 
to apply these results to automatic speech recognition. We hope that, given a suitable parametric 
representation of spectral shape information, methods similar to those applied here and in Shammass 
(1985) will result in improved recognition performance.

Notes

1. Portions of this research were presented as Poster Session D15,111th Meeting Acoustical Society 
of America Cleveland, Ohio 13 May 1986 and stem from work performed in  conjunction with the 
doctoral dissertation of the second author.

2. The size of the marks in Figure 1 is linearly related to the formant amplitude estimates (in dB). This 
figure is included for illustrative purposes only. The actual measurements were extracted manually 
from numerical printouts.

3. As noted by an anonymous reviewer, ordinary least squares regression is strictly justifiable only 
when the independent variables are error free. Daniel and Wood suggest: “As a rule of thumb, least 
squares analysis can be used safely if the variance of x is less than a ten th  of the average scatter of 
the x’s about their mean (1971:32).” Estimates of “pure error” (Draper and Smith 1981) from 
repetitions of the same syllable by the same speaker range between 53 and 152 Hz in the present data 
for all measures, while the standard deviations of F2v and F3v about their means range from 279 to 
440 Hz. All but one of the regression lines in Figure 2 exceed Daniel and Wood’s rule of thumb. The 
one exception, F3v of /d/ falls ju st short of this criterion, with a ratio of .106, or about 6% greater than 
their “safe” ratio. The reviewer suggested that principle components analysis might be preferable to 
regression. Then, presumably, the eigenvector associated with the largest eigenvalue would replace 
the regression line and a suitable distance metric would have to be applied (e.g. perpendicular 
distance to the eigenvector). We agree with the reveiwer that this is unlikely to make much difference 
in the present case. It might be more im portant in other cases where both variables showed large “pure 
error” variation compared to their ranges.

4. However, K latt found that, for velars and alveolars, more than  one regression line per consonant 
was required for accurate modeling of onset/target relationships, depending on whether the following 
vowel was back rounded, back unrounded or front. The present data do not seem to w arrant such an 
approach (but see notes 5 and 8).

5. The mean vectors (F2i,F3i,F2v,F3v) are: (1601,2442,1699,2637) for/b/; (1969,2727,1858,2648) for 
/d/; and (2029,2702,1826, 2568) for /g/. /d/ and /g/ are very close , deviating by no more than 60 Hz on 
all measures, fb/ shows more markedly lower values (about 150 to 370 Hz) on all measures except F3v.

6. Separate histograms of F2i, F2v, F3i and F3v also indicate that the assumption of simple 
multinormal distribution about the mean is suspect. Several of these histograms showed tendencies 
toward bimodality, with one peak for front vowels and another for back. More detailed modeling of
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these probability distributions in classification schemes is planned. It should be noted that more 
complex distributions could be used in classification schemes without explicit reference to categorical 
knowledge of the vowel categories in the classification phase itself.

7. This note is a response to some interesting comments from an anonymous reviewer. The regression 
classification technique would, in effect, constitute a maximum-likelihood classification procedure 
under the following conditions: 1) all errors of measurement are in the dependent variables; 2) error 
variances for F2i and F3i are equivalent for all the vowels; 3) residuals from F2 and F3 analyses are 
uncorrelated; 4) overall location of the distributions along the F2v and F3v axes are independent of 
the consonant (no systematic co-articulation effects of the consonants on the steady states). There is 
evidence that some of these conditions are at least moderately violated by this data. Condition 1 has 
been commented on in note 3. Regarding condition 2, standard errors for both F2 and F3 regressions 
for /b/ and/d/ ranged from 107 to 122 Hz. However standard errors for the /g/ regressions were 152 
Hz for F2 and 214 Hz for F3. Experimentation with a modified regression analysis that weighted 
distances (in inverse proportion to the error variances) yielded highly similar identification rates to 
the unweighted method. Regarding condition 3, correlation analysis of the residuals of F2 and F3 
analyses showed no significant relationship for /b/, but both /d/ and /g/ showed significant positive 
correlations: R=.299 for/d/and R= .156 for/g/, accounting for about 9% and 2% of the residual variance 
respectively. Regarding condition 4, see note 5. Quadratic discriminant analysis (QDA) can accommo­
date all the above violations of assumptions of a maximum likelihood regression model. The fact that 
QDA does not show improvement over the regression model may be because 1 ) the violations involved 
are relatively mild; or 2) the violations occur in “directions” that do little harm; or 3) there are 
violations of additional assumptions of QDA itself (see note 6).

8. Shammass (1985) presents evidence that slightly different regression lines may characterize 
female versus male data for the same consonants in both F2 and F3. While this raises interesting 
questions related to speaker-normalization, exploratory investigation indicated that the differences 
are relatively unimportant for this data set. In particular, classification based on separate regression 
lines for males and females leads to only modest improvement in classification scores over the pooled 
male and female data reported below. Nonetheless, we believe the issue merits further study in larger 
data sets.
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