EVALUATION OF DISABILITY AND HANDICAP IN NOISE-INDUCED HEARING LOSS

William Noble
Psychology Department
University of New England
Armidale, New South Wales
Australia

In January 1990, a conference was held under the auspices of the National Institutes of Health (National Institute on Deafness and Other Communication Disorders) in Bethesda, Maryland. The topic of the conference was "Noise and Hearing Loss". The conference was planned to be accessible to the public as well as to a professional audience. It was organized around five questions: "What is noise-related hearing loss?"; "What sounds can damage hearing?"; "What factors, including age, determine an individual's susceptibility to noise-related hearing loss?"; "What can be done to prevent noise-related hearing loss?"; "What are the directions for future research?"

The present author was asked to give a paper on the issue of "quantification of handicap" resulting from noise-related hearing loss. The press for quantification arises from the physico-biological orientation of most researchers involved in study of this occupational injury. While my own research endeavours have been affected by that orientation, the question pursued - namely, how to evaluate handicap - has always been seen as qualitative in nature. Thus, opportunity was taken by means of this conference presentation to consider the broader issue of appropriate approach to evaluating disability and handicap arising from this impairment to hearing. Following is the text of the conference paper, as amended consequent to this journal's referees' comments. I acknowledge with thanks their suggestions for amendment and clarification.

The terms "disability" and "handicap" have been used in various ways in literature addressed to the issue of effects of hearing impairment. So as to get definitional problems out of the way, I will start by explaining the usages I rely upon in discussion of such matters. These are the World Health Organization (1980) definitions and, in the context of impaired hearing, the term "disability" refers to loss or reduction in a person's capacity to perform hearing acts, such as the detection or discrimination of audible events in the everyday world; "handicap" is used to refer to the disadvantage in daily life resulting from this disability or impairment.

A question relevant to the aims of the present Conference is with respect to evidence that hearing impairment due to noise injury results in disabilities sufficient to cause handicap, to cause "disadvantage in daily life". One issue raised in this paper concerns what form of evaluation of hearing can furnish evidence of such disadvantage. Flowing from that, and given that evidence of hearing disability and handicap is accepted, then the question of significance is surely: - "What can be done to prevent noise-induced hearing loss?" I would urge this Conference to put that question at the top of its agenda.

One of the earliest systematic investigations of noise-induced hearing loss was by Thomas Barr in 1886. This classic study captures the essence of the issue about how to evaluate disability, on the one hand, and, on the other, how to evaluate handicap. Barr used the tick of his pocket watch to perform functional tests on three groups of workers exposed to distinctly different amounts of noise at work, namely, ship's boilermakers, iron-moulders, and letter-carriers. By using the watch to assess the least amount of acoustic energy detectable, Barr was measuring the comparative extent of disablement of the auditory systems of the three samples.

But Barr also inquired directly of the people studied about handicap, about the disadvantage in their daily life due to disablement of hearing. He asked them to report on their capacity to hear in a public place. Among the boilermakers, not only was there severe hearing impairment compared with the other groups, as revealed by the watch-tick test, but the majority of them reported difficulty hearing at a public meeting or church service, to the point where many said they had ceased attending such gatherings. This finding dramatizes the profoundly handicapping effect hearing disability can produce. It has become clear from subsequent investigation that interference with everyday communication, and not so much hearing at public gatherings, is the major source of handicap suffered by those with injured hearing.

The principal point emerging from mention of Barr's work is that evaluation of impairment may be appropriately carried out by the testing of some aspect of hearing...
capacity, be that by use of a ticking watch, a whispered voice, an electronic sound maker, or an elaborately devised speech discrimination procedure. But handicap, the disadvantage in everyday life resulting from disability, cannot be determined by any such test. It can only be assessed by the person who suffers the disability, because that is the one who experiences any disadvantage; and how such disadvantage occurs is a function of the life the person lives. In evaluation of handicap, the self-assessment of the person affected cannot be avoided.

Of course, impairment and disability are related and both are, in turn, related to handicap. Before going on to say more about the self-assessment approach as such, it is appropriate to say something about that relationship, as reflected in the relation between measurements of hearing impairment using various tests, and self-assessed disability scores. I'm focusing my attention on research specifically among people with noise-induced hearing loss. Research such as by Kryter and colleagues (1962), Macrae and Brigden (1973) and Suter (1978) shows hearing capacity at audio-frequencies higher than 2 kHz plays a significant role in affecting the discrimination of speech heard in noisy background conditions. These sorts of conditions, of course, typify the communicative circumstances for most people working in noisy jobs, not to speak of the noisy background conditions we all have to contend with when trying to hear in the street, in the store, at the restaurant, or whatever. So it is predictable, and borne out in results, that self-assessed hearing disability and handicap in people with noise-induced hearing loss correlates more closely with results of hearing sensitivity tests when threshold levels at frequencies higher than 2 kHz are included in the analysis (see, e.g., Parving and Ostri, 1983; Phancuf et al., 1985).

In subsequent decades following Barr's pioneering work, testing of hearing sensitivity predominated over other methods of evaluation, and the question of a role for self-appraisal in assessment of handicap was never raised. This may be because the issue of compensation in noise-induced hearing loss was not addressed on a large scale until after the second world war. In addition, rehabilitation of people with disorders of hearing also developed more strongly as a practice around that time. It is really only with the emergence of these practices that evaluation of handicap becomes an issue at all.

Over the last 25 years numerous attempts have been made to measure hearing disability and handicap using questionnaires, check-lists, and other self-assessment devices. Some of these have taken the form of devices constructed with attention to principles of psychometric measurement, such as reliability and validity. Insofar as it is considered appropriate to apply a numerical value to self-assessed handicap (or self-assessed disability), then it has made sense, in the construction of scaled questionnaires, to look to their properties as measuring instruments. It is not my purpose to give you a lecture on principles of psychometrics; I merely seek to have you appreciate that there is a difference between a questionnaire got up in half-an-hour on the back of an envelope, and one that attempts to provide stable, meaningful and valid measurement of the property or properties it claims to assess.

So far as I am aware, the first effort to devise a self-assessment questionnaire with attention to psychometric criteria was the Hearing Handicap Scale of High, Fairbanks and Glorig (1964). This device focused on hearing for speech. The second scaled questionnaire on the market, constructed with more elaborate developmental steps, was the Hearing Measurement Scale, by myself and Gordon Aherley in 1970. It covered areas of everyday hearing, such as hearing for speech, non-speech sounds, localization or sounds, speech distortion, and tinnitus. Subsequent to its emergence, I went on to express arguments in some detail (Noble, 1978) about the limitations of tests of hearing impairment for assessment of hearing disability and handicap, and about the rightful place of self-appraisal in the suite of auditory evaluative procedures.

In the last 10 to 15 years, several scaled and unscaled questionnaires have emerged, designed for different used in different target populations. Among these are, for example, The Hearing Performance Inventory, developed originally by Giolas and colleagues (1979), the hearing Handicap Inventory for the Elderly by Ventry and Weinstein (1982), and the Communication Profile for the Hearing Impaired by Demorest and Erdman (1987). By use of these and other questionnaires, the self-assessment approach to hearing disability and handicap has found a significant place in various contexts. Self-assessment has been used historically in census-taking of hearing capacity in the population at large, but the method has lately become more psychometrically refined (e.g., by Lutman et al., 1987). Self-assessment has been used for rehabilitative screening procedures (e.g., by Schow & Nerbonne, 1982), in evaluation of hearing aid benefit (e.g., by Newman & Weinstein, 1988), in counselling for, and evaluation of, rehabilitation programmes of various kinds (e.g., by Giolas, 1982), in evaluation of general problems due to hearing impairment (e.g., by Barcham & Stephens, 1980), in evaluation of specific effects such as those due to tinnitus (e.g., by Tyler & Baker, 1983), as well as in development of schemes for assessment for compensation purposes (e.g., Salomon & Parving, 1985).

It has consistently emerged from application of the self-assessment procedure that the principal disability, and source of the resulting disadvantage experienced by people who suffer impairment of hearing, is interference with
undertaken by humans in virtue of their having access to
length. All these and myriad other communicative acts are
gossip, complain, argue, discuss, praise. I could go on at
Even if we restrict the notion of communication to vocal
we misinform, we beg, command, tell secrets, tell jokes,
things of others, we answer them, we inform each other,
we notice that the basis of
human life is communication. That is the case because
human life is essentially, uniquely, and unavoidably
linguistic. I want to say more on this point, because an
communicative contact with others.

Of course, it becomes quite understandable that interference
with communication is the key handicapping effect of
hearing impairment, once it is remembered that the basis of
human life is communication. That is the case because
human life is essentially, uniquely, and unavoidably
linguistic. I want to say more on this point, because an
appreciation of it should assist in your appreciation of an
issue to be raised in the closing part of my address.

Most people, most of the time, take their communicative
ability for granted. In exactly the same way, they take their
capacity to see and hear for granted. We only really notice
these features of ourselves, in our mundane activities, when
something goes wrong. That most of us are engaged in
communicative activity almost all of our waking lives can
come as something of a surprise. Surely we do other things
besides communicate? I don't intend to get into a major
argument on this point. I do want to suggest that human
beings don't do much besides engaging in communicative
activity - but I want you to understand that by
"communicative activity" I include anything undertaken for
the purpose of showing others as well as saying things to
others.

Even if we restrict the notion of communication to vocal
interchange, the business of saying something to someone
else is only one of a host of such communicative acts. We
ask things of others, we answer them, we inform each other,
we misinform, we beg, command, tell secrets, tell jokes,
gossip, complain, argue, discuss, praise. I could go on at
length. All these and myriad other communicative acts are
undertaken by humans in virtue of their having access to
one or more natural languages. We chat to each other
routinely. And once we recognize this ordinarily taken-for-
granted feature of human life, we can see more clearly what it
means to be human. The things I listed are quite familiar
to us all, though I suspect we tend to forget we do all these
things when groups of us lock ourselves into conferences to
discuss the handicapping effects of hearing impairment.
When we break for a coffee or lunch, though, we go into
taken-for-granted chat mode with a vengeance. Bringing
these familiar, taken-for-granted features of human life to
the forefront of attention can surely assist us all in seeing
what is so fundamentally damaging about hearing
impairment. Interference with communication is
interference with the basis of human life.

A recent refinement of the self-report approach to
evaluation of the handicaps resulting from noise-induced
hearing loss is to be found in the work of Hétu and
colleagues (e.g., Hétu et al., 1988). This work tells most
strongly as regards the points I have just made. In the work
of Hétu's research group, a formal self-report scale is
replaced by semi-structured interviewing, and the content of
resulting transcripts independently examined to extract
themes and descriptors emerging from the discourse of
participants. Interviews are typically carried out among
hearing impaired workers and their spouses, and a
significant outcome has been discovery of the extent to
which other family members must adjust their behaviour in
order to compensate for the difficulties experienced by the
workers. These adjustments are, in turn, due to efforts by
workers to minimize the display of signs of disability. The
upshot is that the disadvantage suffered by the hearing
impaired worker introduces a fresh disadvantage, to their
family, in coping with the worker's disability. The problem
shifts, then, in the conceptualization of Hétu's group, from a
clinical disorder affecting individuals, to an issue of public
health, affecting the families and close friends of those
injured.

There are many plausible reasons why people with impaired
hearing are reluctant to admit they have problems. If
communication is central to human life, as I have just
stressed, anything which threatens that will be highly
unwelcome and barely acknowledged. Motivation to
 conceal a reduction in communicative ability will be
reinforced by others, who will typically take any signs of
communicative incompetence as evidence of incompetence
as a member of society. It does one's standing no good, in
the eyes of others, to be so regarded. Hétu and colleagues
(1990) have also pointed out to a phenomenon arising from
the experience of working in hazardous conditions. They
refer to the work of Dejours et al. (1985) which identifies a
drive, by those exposed, to diminish perception of the
riskiness of occupational hazards, so as to make the matter
of working in the hazardous environment tolerable. A
further pressure to conceal hearing difficulty is fear of discrimination in employment and promotion chances. Who, after all, is likely to put a hearing impaired person in a position of responsibility; in a position where they must be able to communicate effectively with others.

Despite a vast wealth of knowledge about the causes, mechanism, likelihood and incidence of noise-caused hearing impairment, this injury remains one of the most intractable occupational hazards. Risk of damage to hearing continues on an epidemic scale. One part of the reason why this is so is due to the forces I have just described. These serve to keep the pressure low, from among those exposed, as regards taking action to reduce noise levels to safe limits.

REFERENCES

The ABC's of noise control:

Aquaplas: Vibration Damping
Baryfol: Noise Barriers
Conaflex: Absorption Media

Blachford manufactures barriers, absorption and vibration damping materials in Mississauga and Montréal. Blachford also provides standard and custom-made products in liquid, sheet, roll or die-cut parts specially designed to suit your needs.

"YOUR CANADIAN SOURCE OF NOISE CONTROL MATERIALS FOR OVER 25 YEARS."

MISSISSAUGA 416-823-3200 MONTREAL 514-866-9775 VANCOUVER 604-263-1561
You asked for a lab-quality, precision, real-time analyzer which is truly portable — so we built you one.
Features of the New Type 2143 Portable include:

- Inputs: preamplifier (microphone), charge (accelerometer) and direct (voltage)
- 80 dB dynamic range, autocalibration
- 1/1, 1/3, 1/12, and 1/24 octave digital filters
- 500 spectra per second storage rate
- Internal memory capacity equivalent to 512 1/3 octave spectra
- PC/MS-DOS compatible 3½” disk-drive for back-up storage of spectra
- 100 step learn mode for pushkey autosequencing
- Non-reflecting LCD screen with backlight and 80 dB display range
- Spectra annotated in decibels or in engineering units
- IEEE-488 and RS 232C interfaces
- Weight with batteries less than 10 kg
- Battery life-time 4 hours continuous use
- Disk format compatible with Brüel & Kjaer laboratory analyzers
- User interactive menus
- On screen help pages
- Sealed, water-resistant front panel
- Upgradable to dual-channel operation (available later)
ECKEL

Noise Control Products & Systems

for the protection of personnel...
for the proper acoustic environment...
engineered to meet the requirements of Government regulations

Eckoustic® Functional Panels
Durable, attractive panels having outstanding sound absorption properties. Easy to install. Require little maintenance. EFPs reduce background noise, reverberation, and speech interference; increase efficiency, production, and comfort. Effective sound control in factories, machine shops, computer rooms, laboratories, and wherever people gather to work, play, or relax.

Eckoustic® Enclosures
Modular panels are used to meet numerous acoustic requirements. Typical uses include: machinery enclosures, in-plant offices, partial acoustic enclosures, sound laboratories, production testing areas, environmental test rooms. Eckoustic panels with solid facings on both sides are suitable for constructing reverberation rooms for testing of sound power levels.

Eckoustic® Noise Barrier
The Eckoustic Noise Barrier provides a unique, efficient method for controlling occupational noise. This Eckoustic sound absorbing-sound attenuating material combination provides excellent noise reduction. The material can be readily mounted on any fixed or movable framework of metal or wood, and used as either a stationary or mobile noise control curtain.

Multi-Purpose Rooms
Rugged, soundproof enclosures that can be conveniently moved by fork-lift to any area in an industrial or commercial facility. Factory assembled with ventilation and lighting systems. Ideal where a quiet "haven" is desired in a noisy environment; foreman and supervisory offices, Q.C. and product test area, control rooms, construction offices, guard and gate houses, etc.

Audiometric Rooms: Survey Booths & Diagnostic Rooms
Eckoustic Audiometric Survey Booths provide proper environment for on-the-spot basic hearing testing. Economical. Portable, with utilized construction.
Diagnostic Rooms offer effective noise reduction for all areas of testing. Designed to meet, within ±3 dB, the requirements of MIL Spec C-81016 (Weps). Nine standard models. Also custom designed facilities.

An-Eck-Oic® Chambers
Echo-free enclosures for acoustic testing and research. Dependable, economical, high performance operation. Both full-size rooms and portable models. Cutoff frequencies up to 300 Hz. Uses include: sound testing of mechanical and electrical machinery, communications equipment, aircraft and automotive equipment, and business machines; noise studies of small electronic equipment, etc.

For more information, contact
ECKEL INDUSTRIES OF CANADA, LTD., Allison Ave., Morrisburg, Ontario • 613-543-2967
ECKEL INDUSTRIES, INC.