
Canadian Acoustics I Acoustique Canadienne 19(3) 3-15 (1991) Research article / Article de recherche

ISOPARAM ETRIC FINITE ELEM ENT USING CUBIC  
HERM ITE POLYNOMIALS FOR ACOUSTICS IN D U C T  

C O M PO N EN T S W ITH  FLOW

D a v id  C. S tred u lin sk y

Defence Research Establishment Atlantic 

P.O Box 1012,D artm outh, Nova Scotia, Canada, B2Y 3Z7

A n th o n y  C ra g g s  

Departm ent of Mechanical Engineering, University of A lberta 

Edmonton, Alberta, Canada, T6G 2J 1

ABSTRACT

This paper describes the development of a new finite element model to analyse the propagation 
of sound through duct system components. The element model was first tested by predicting the 
acoustic resonant frequencies of hard walled cavities. It was then used to predict the acoustic 
propagation characteristics of duct bends and junctions, including higher order mode propagation 
in a ttached straight ducts, and the convective effect of low Mach number air flow.

SOMMAIRE

Cette communication porte sur la mise au point d ’un nouveau modèle à  éléments finis d ’analyse de 
la propagation du son dans des éléments d ’un réseau de conduites. Les premiers essais du modèle 
ont consisté à  prévoir les fréquences de résonance acoustique de cavités à  parois dures. Le modèle a 
ensuite servi à  prévoir les caractéristiques de propagation du son dans des coudes et des raccords de 
conduites, y compris les caractéristiques de la propagation de mode plus élevé dans des conduites 
droites raccordées, et l ’effet convectif d ’un écoulement d ’air à faible nombre de Mach.

1 IN TR O D U C TIO N

There is a need for improved m ethods for the prediction 
of noise transmission and generation in heating, ventila­
tion and air conditioning (HVAC) duct systems. While 
the propagation of sound waves along a long duct or pipe 
is quite well understood, the behavior of the sound wave 
when it is incident on a bend or a junction is not easily 
calculated w ithout using numerical procedures. At low 
frequencies (where the wavelength is large compared to 
the duct width), the sound propagates along a straight 
duct in a plane wave mode. This plane wave approxima­
tion has been used to advantage by Munjal [1] in develop­
ing transfer m atrix  m ethods for duct and muffler analysis 
and by Eversman [2] and Craggs and Stredulinsky [3, 4] 
for the study of branched duct systems.

In Reference [4], exact plane wave solutions are used in

straight ducts, and finite element models are employed in 
components such as bends, duct junctions and plenums 
where two and three-dimensional propagation effects are 
im portant. The finite element models are constrained to 
plane waves a t connecting straight duct interfaces. The 
procedure was developed on a  desktop computer with the 
aim th a t it could be used by design engineers on desktop 
systems. The resulting method was still limited in the 
size of duct system which could be handled on a “PC ” 
type computer.

As an extension of Reference [4], this paper is concerned 
with the development of a more efficient acoustical finite 
element to  allow solution of larger problems on a  desk­
top computer. The work is concentrated on propagation 
through individual duct bends and junctions with a spec­
ified incident sound wave entering the bend or junction.
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The convective effect of the flow on the sound propaga­
tion is considered, but flow generated noise within the 
duct components is not included. The predictions are 
extended to higher frequencies by considering higher or­
der mode propagation in connecting straight ducts. The 
methods developed were implemented on a desktop com­
puter with 1.5 megabytes of RAM, which limited the size 
of problems that could be solved.

2 THE NEW FINITE ELEMENT

In the earliest work on acoustic finite elements, rectan­
gular brick elements, tetrahedral elements and triangu­
lar elements were used. Refer for example to Gladwell 
[5], Craggs [6, 7], Shuku and Ishihara [8] and Young and 
Crocker [9], The edges or surfaces of these elements could 
only model straight lines or flat planes. A cuboid brick 
element with Hermite polynomial interpolation functions 
has been used by several researchers [6, 9, 10] and found 
to give accurate results and high rates of convergence [11]; 
however, this element has the disadvantage that it cannot 
be distorted to model curved boundaries or even oblique 
flat boundaries. More recently, isoparametric elements 
which can be distorted to model curved boundaries have 
been extensively used by Craggs [12], Astley and Evers- 
man [13, 14] and Cabelli [15], for example.

In the present work a new isoparametric element is de­
veloped using Hermite polynomials. This new hexahe- 
dral element, shown in Figure 1, has thirty-two degrees 
of freedom and is referred to subsequently as the ISO- 
HERM32 element. Cubic Hermite polynomials are used 
to approximate the dependent variable functions within 
the element. These interpolation functions are based on 
the corner node values of the dependent variable and first 
partial derivatives. For example, in one dimension, the 
Hermite polynomial is a cubic function based on the de­
pendent variable and slope at each end of the interval in 
which it is defined. Additional nodes along the edges of 
the element (shown in Figure lb) are used to define the 
element geometry. For details of the interpolation func­
tions and transformation between the global coordinate 
system and the local element coordinate system refer to 
Stredulinsky [16].

In many acoustic problems, typically the acoustic pres­
sure or the acoustic velocity potential is used as the de­
pendent variable. In the initial development of the new 
element the acoustic pressure was used; however, in later 
work involving flow, it was found more convenient to use 
a velocity potential for both the acoustic and flow fields. 
In the initial development, the four degrees of freedom 
at each corner of the element were the acoustic pressure 
P  and pressure gradient components d P / d x , d P / d y , and 
dP/ dz .  In the later development the velocity potential 
and velocity potential gradient components were used. 
The main motivation for using Hermite polynomials in
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Figure 1: The ISOHERM32 finite element

problems with hard walled ducts is that the gradient de­
grees of freedom, normal to the duct wall, can be con­
strained to zero. This leads to smaller global finite ele­
ment models as discussed in the following paragraph.

The closest “competitive” conventional finite element 
to the new element is the cubic hexahedral isoparamet­
ric element (HEX32), which uses cubic Serendipity in­
terpolation functions. This element also has thirty-two 
degrees of freedom, given by dependent variables at the 
eight corner nodes and the two nodes along each edge of 
the element. The main difference between this element 
and the new element is that the nodal degrees of freedom 
of the new ISOHERM32 element are concentrated at the 
corners of the element. This leads to fewer global degrees 
of freedom (and thus a smaller system of linear equations 
to be solved) for models using the new ISOHERM32 ele­
ment compared to models with the same number of con­
ventional HEX32 elements. For the case of hard walled 
ducts, with the new element further reductions in the 
overall global degrees of freedom can be achieved by con­
straining normal derivative degrees of freedom at the wall 
to zero (based on the boundary condition of zero normal 
flow velocity and a zero normal acoustic particle velocity 
at the hard surface).
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3 INITIAL TESTING

The new element was initially used to find the acoustic 
resonant modes and natural frequencies of a stationary 
compressible fluid within rigid walled cavities for which 
analytical solutions are known. This problem is governed 
by the Helmholtz equation which is reduced to a discrete 
matrix eigenvalue problem using a Galerkin finite element 
method as described in many textbooks on finite element 
methods, including Burnett [17].

3.1 A Rectangular Cavity

The solution of the acoustic eigenvalue problem for a rigid 
walled rectangular cavity is well known, and is given, for 
example, in Morse [18]. The convergence of the finite 
element models is demonstrated by considering a linear 
string composed of one to sixteen cuboid elements with 
nodal quantities constrained to solve a one-dimensional 
problem.

The resulting prediction error for the natural frequency 
of the first axial mode is shown in Figure 2. The log10 of 
the percent error is plotted as function of the global de­
grees of freedom for the models. The upper curve, labelled 
HEX8, for the conventional linear isoparametric element, 
shows significantly higher errors and a lower rate of con­
vergence than the other three curves which are for the 
cubic elements. The curve labelled HEX32 is for the con­
ventional 32 degree of freedom hexahedral element. The 
curves labelled IH32U and IH32C are for the new ISO- 
HERM32 element with the axial acoustic pressure gradi­
ent nodal quantities, respectively, left unconstrained (the 
hard wall boundary condition implicitly satisfied by the 
finite element method), and explicitly constrained to zero 
at the rigid ends of the tube. On a number of element 
bases, the HEX32 model gave slightly better results than

the new element, but on a global degree of freedom basis 
the new element gave more accurate results (typically 1/3 
the errors of the HEX32 models).

In Figure 3, the prediction errors for the natural fre­
quencies of higher order axial modes are compared for 
models with similar numbers of degrees of freedom. The 
large differences noted between the HEX8 linear ele­
ment model and the cubic elements for the first axial 
mode become progressively smaller as the mode number 
is increased. The ISOHERM32 element curve, labelled 
IH32C, shows progressively better results than the con­
ventional cubic element HEX32 curve as the mode num­
ber is increased. The notches in the graphs for the HEX32 
and IH32C curves occurred when each finite element mod­
elled exactly one half wavelength.

The elements used in the above one-dimensional tube 
problem are undistorted, maintaining the cuboid parent 
element shape. Figure 4 shows a rigid walled rectangular 
cavity modelled using two ISOHERM32 elements. The el­
ements are distorted first by rotating the common plane 
between the elements and then by twisting this plane. 
The errors in the fifteen resonant frequencies predicted 
with this model are given in Table 1 for rotation of the 
common plane and in Table 2 for twisting of this plane. 
The parameter ka used in these tables and subsequent 
tables and figures is a non-dimensional frequency param­
eter based on the wave number k and a typical dimension 
a taken in this case to be the length of the cavity in the 
x  direction The distortion has the greatest effect on the 
axial modes along the x axis and very little effect on the 
axial modes in the y and z directions. The prediction for 
the first axial mode [n x , n y, n z] =  [1,0,0] was found to 
be extremely sensitive to the twisting distortion. Addi­
tional results were obtained with the conventional HEX32 
isoparametric element. The IS0HERM32 and HEX32
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Figure 4: Element distortion within a two-element model 
of a rectangular cavity

Table 1: Prediction errors for the natural frequencies of 
a two-element rectangular cavity with the common plane 
rotated

Mode

No. n x n y n z

Percent Error in ka

Rotation angle in degrees

0 15 30 45 59

1 1 0 0 0.0130 0.0313 0.1439 0.7071 3.668
2 0 0 1 0.0646 0.0646 0.0646 0.0646 0.0646
3 1 0 1 0.0445 0.0516 0.0955 0.315S 1.4S6
4 0 1 0 0.0646 0.0639 0.0620 0.0593 0.0573
5 1 1 0 0.0509 0.2975 1.269 4.177 13.49
6 2 0 0 0.0646 0.3444 2.358 10.89 50.15
7 0 1 1 0.0646 0.0641 0.0629 0.0612 0.0599
8 1 1 1 0.0549 0.2294 0.9184 2.991 9.732
9 2 0 1 0.0646 6.2659 1.717 7.958 37.93

11 2 1 0 0.0646 1.333 5.919 17.25 43.S6
13 2 1 1 0.0649 1.096 4.847 14.23 36.72
14 3 0 0 3.008 5.305 13.75 37.12 156.4
13 3 0 1 2.578 4.546 11.83 32.29 139.8
20 3 1 0 2.322 5.654 16.16 3S.29 124.6
24 3 1 1 2.060 5.014 14.39 34.37 113.8

1H32C

IH32U

H E X 32

ROTATE

TW IST

Angle of Rotation -  degrees

Figure 5: The effect of element distortion on the error in 
natural frequencies for a two-element model of a rectan­
gular cavity

models are compared in Figure 5 where the log10 of the 
percent error is plotted as a function of the angle of ro­
tation p. Both models show similar behavior for rotation 
of the common plane; however, the conventional HEX32 
model does not exhibit the high sensitivity to twist ob­
served with the new ISOHERM32 element model for the 
first axial mode. Most of the subsequent work is limited 
to two-dimensional problems, to reduce the sizes of the 
computer models, and thus does not involve twisting of 
element planes. Certainly, further investigation is needed 
to resolve this problem if general three-dimensional mod­
els are to be used.

Table 2: Prediction errors for the natural frequencies of 
a two-element rectangular cavity with the common plane 
twisted

Mode

No. Tlx Tly n z

Percent Error in ka

Rotation angle n degrees

0 15 30 45 59

1 i 0 0 0.0130 1.405 4.859 9.572 16.35
2 0 0 1 0.0646 0.0640 0.0627 0.0615 0.0611
3 1 0 1 0.0445 0.6566 2.233 4.942 11.16
4 0 1 0 0.0646 0.0634 0.0608 0.0562 0.0577
5 1 1 0 0.0509 0.7616 2.495 4.987 9.848
6 2 0 0 0.0646 0.3193 1.851 6.685 17.36
7 0 1 1 0.0646 0.0637 0.0631 0.0569 0.0598
8 1 1 1 0.0549 0.7048 2.374 5.898 20.08
9 2 0 1 0.0646 0.1232 1.183 4.754 14.68

11 2 1 0 0.0646 0.1229 1.121 4.293 14.52
13 2 1 1 0.0649 0.8284 3.693 11.55 38.59
14 3 0 0 3.008 3.366 8.658 20.04 38.70
18 3 0 1 2.578 5.560 13.60 28.68 67.79
20 3 1 0 2.322 6.577 IS.73 33.97 94.71
24 3 1 1 2.060 4.519 13.78 41.10 122.S

3.2 A Circular D uct Cross-section

A more realistic problem, involving distortion of the ele­
ment boundaries, but which still has an analytical solu­
tion, is the prediction of natural frequencies of a cylindri­
cal cavity.

This is considered with a two-dimensional version of the 
new ISOHERM32 element, referred to as ISOHERM12, 
and the conventional two-dimensional cubic isoparamet­
ric element HEX12, using the single-element and four- 
element models shown in Figure 6. The solid circles at 
each node represent the acoustic pressure degrees of free­
dom and the short arrows represent the pressure gradient 
degrees of freedom. In the constrained models, the ar­
rows represent the effective gradient degrees of freedom 
after explicitly constraining the normal acoustic pressure 
gradient to zero at the hard surface. In the lower three 
models, one edge of each element was collapsed to a point 
at the centre of the circle.

Table 3 shows the prediction errors in natural frequen­
cies for these finite element models of a circular cross- 
section of radius a. The first number m  in the mode

-  6 -



IS0HERM12 
C o n s t r a i n e d  (8 DOF)

a)  S ing le  E l e m e n t  Models

IS0HERM12 
U n c o n s t r a i n e d  (12 DOF)

HEX 12 
(12 DOF)

IS0HERM12 
C o n s t r a i n e d  (19 DOF)

b) F o u r - e l e m e n t  m o d e ls

IS0HERM12 
U n c o n s t r a i n e d  (27 DOF)

HEX12 
(33 DOF)

IS0HERM12 
C o n s t r a i n e d  (11 DOF)

HEX 12 
(21 DOF)U n c o n s t r a i n e d  (15 DOF) 

c )  F o u r - e l e m e n t  m o d e l s  w i th  one  s ide  of e a c h  e l e m e n t  c o l la p s e d

Figure 6 : Finite element models of a circular duct cross- 
section

/

V
/

Figure 7: Model 
outlet flows

of a duct junction showing inlet and

description refers to the angular coordinate direction and 
the second number n  to the radial direction. The errors 
are much higher than obtained when modelling rectangu­
lar enclosures with undistorted elements. Of particular 
interest, the four-element model using the new element, 
with one collapsed edge and constrained degrees of free­
dom at the wall, has only 11 degrees of freedom and gives 
significantly smaller errors than the conventional isopara­
metric HEX12 single-element model which has 12 degrees 
of freedom and similar errors to the four-element HEX12 
model having 21 degrees of freedom.

4 DU C T CO M PO NENTS W ITH FLOW

Figure 7 shows a general two-dimensional model of a duct 
junction. The junction region is attached to three in­
finitely long (or anechoically terminated) straight ducts 
containing uniform flow at velocities ü j, u*2 and Ü3. The 
incident wave (which could be a combination of several 
modes) is specified in one of the ducts. The problem 
is then to determine the flow field and acoustic field in 
the junction region, and to determine the reflected acous­
tic modes in the incident wave duct and the transmitted 
modes in the other connected ducts.

4.1 Model Development with Flow

Acoustic propagation in non-uniform ducts in the pres­
ence of mid to high subsonic flows has been considered 
by Sigman et al [19], Eversman and Astley [14, 20], and 
Ling et al [21]. Cabelli [15] considered the influence of 
flow on the acoustic characteristics of a duct bend with 
inlet Mach numbers in the range of 0.25 to 0.4. Comput­
ing the mean flow field alone is a significant problem. In 
the work referenced above either approximate flow models 
applicable to specific geometries were used, or numerical 
solutions to the inviscid compressible potential flow prob­
lem were implemented.

Since flow velocities in HVAC systems are generally 
low (less than Mach 0.1), a flow model similar to that 
described by Peat [22] has been incorporated in this 
work. Acoustic wave propagation is a compressible phe­
nomenon, therefore compressible potential flow equations 
are used as in [19], with the velocity potential, </>*, as the 
dependent variable. It is acknowledged that an ideal in­
viscid flow model may not realistically represent the real 
flow in many cases but should at least give some indica­
tion of effect of flow on the acoustic propagation at low 
Mach number.

Dimensionless quantities, the velocity potential (j> = 
4>*/(Mcç,a), time t  =  t*co/a and angular frequency w = 
œ*a/co are defined based on the ambient speed of sound 
c0, the typical flow Mach number M,  typical dimension 
a, time t* and angular frequency w*. Note that the di­
mensionless angular frequency u> = ka where k is the



Table 3: Natural frequencies for a circular cross-section of a hard walled duct

Model Element DOF

Percent Error in ka
Mode [771, 71]

[1-0] [2,0] [0,1] [3,0] [4,0] [1,1]
IH12C 8 8.855 33.57 54.97 52.99

1 EL IH12U 12 3.548 24.29 154.9 51.48 52.99 196.3
ÏÏEX12 12 2.688 14.11 92.80 33.14 27.76 141.3
IH12C 19 0.2S7 2.926 .168 5.215 2.762 3.447

4 EL IH12U 27 0.200 2.815 .087 3.684 2.642 3.447
HEX12 33 0.122 2.549 .136 4.174 4.330 5.770
IH12C 11 0.475 0.500 .769 4.533 6.391 8.259

4 EL IH12U 15 0.437 0.490 .400 4.488 6.387 8.259
Collapsed HEX12 21 0.196 2.095 .006 8.071 4.971 12.21

Exact ka 1.841 3.054 3.832 4.201 5.318 5.331

wave number. The total flow velocity potential is split 
into a  steady mean flow potential <f> and a small acous­

tic harmonically fluctuating potential W ith  this, 
and the assumption th a t the Mach numbers are small, 
the compressible potential flow equations are reduced to 
the Laplace equation for an incompressible steady flow

=  0, (1)

and a second equation involving this mean flow velocity 
potential and the acoustic velocity potential if>' given by

V V  +  w V  -  2iM w V ÿ  •  V<j>' =  0 . (2)

The steady flow potential can be obtained from Equa­
tion 1 and then substituted into Equation 2 to find the 
acoustic velocity potential. Note th a t if there is no flow, 
Vcf) = 0, and Equation 2 reduces to the Helmholtz equa­
tion.

A Galerkin finite element procedure is applied with the 
new element to reduce these differential equations govern­
ing the continuous acoustic and flow fields to  a system of 
linear equations in terms of the unknown discrete nodal 
acoustic and flow velocity potential quantities.

The acoustic boundary conditions a t the interfaces of 
the finite element model of the junction and the connect­
ing straight ducts can be determined based on the an ­
alytical solution of governing equations for the case of 
uniform flow in a straight duct. Alternatively, the better 
known solutions of the convected wave equation, valid for
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uniform flow at higher Mach numbers can be adopted; 
refer for example to Munjal [1, Chapter 1] and Morfey 
[23]. The differences between the solutions is small for 
low Mach numbers and both take the form

o°

=  E  z ) { A meiu tx  +  (3)
771 —0

for a straight duct of arbitrary  cross-section, where x  is 
the dimensionless coordinate along the axis of the duct 
and y and z  are in the plane of the duct cross-section. 
The term $ rn(y ,z )  defines the m th mode shape for the 
cross-section. The terms and are a function of the 
dimensionless angular frequency w, the flow Mach number 
and the natural frequency of the m th mode. The modes 
can be evanescent or propagating depending on whether 

and are real or complex quantities.
In linking the straight ducts to the finite element mod­

els of a junction or bend, the connecting straight duct 
acoustic mode shapes and natura l frequencies are de­
termined from finite element models of the duct cross- 
section. This is illustrated for the simplest case of a rect­
angular duct cross-section modelled with one finite ele­
ment. The derivative nodal quantities a t the hard wall 
boundaries in the plane of the cross-section can be set to 
zero leaving four corner nodal velocity potential values to 
define the modes. In this case the plane wave mode [0,0], 
and the cross modes [1,0] [0,1] and [1,1] can be approxi­
m ated as shown in Figure 8. The vector of incident wave 
nodal velocity potential values can then be written as a 
modal m atrix  multiplied by a vector {a} defining the in­
cident modal mixture (the m ixture of incident plane wave 
and higher order modes) in one of the connecting ducts. 
For this simple example the interface nodal acoustic ve­
locity potentials are given by

1 1 - 1  - 1 1  - 1 - 1  1 

MODE 0 0 1 0  0 1 1 1

Figure 8: Modes for a rectangular duct cross-section mod­
elled with one element

4> i  
#2 
<f>'3 
<t>\

' 1 - 1 1 - 1  ' ai
1 1 1 1 «2
1 - 1 - 1 1 a 3
1 1 - 1 - 1 a4 _

(4)

Similarly vectors {6}, {c} and {d} etc. are defined for
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Figure 9: Two-dimensional finite element meshes for models of a straight duct segment

the the reflected modal mixture and transm itted  modal 
mixtures in the remaining ducts.

The derivation and details of the finite element equa­
tions are given in reference [16]. Since the finite element 
model contains no internal source terms, the unknown 
acoustic velocity potentials and gradient quantities a t in­
ternal nodes in the model can be eliminated from the 
resulting linear system of equations, leaving a final m a­
trix  equation which is solved for the real and imaginary 
parts of the unknown transm itted  and reflected modal 
mixtures, given a specified mixture of incident modes.

4.2 Testing the  Finite  E lem ent Model: A  
Straight D uct

The finite element model for prediction of acoustic prop­
agation with flow was initially tested for a straight 
duct of rectangular cross-section. Figure 9 shows two- 
dimensional finite element meshes for a duct segment of 
width a in the y  direction and of length a in the x  direc­
tion, with one, two and three elements across the width 
of the duct. Infinitely long connecting straight ducts are 
extended to the left and right of the model. The left 
side of the model has been assigned the incident wave 
modal m ixture and the flow taken as positive from left to 
right. The global node numbering scheme is shown with 
a group of three numbers a t  each node. The first number 
in each group represents the velocity potential degree of 
freedom <j>, and the remaining two respectively, the d<f>/dx 
and dcft/dy degrees of freedom. In this case the inlet and 
outlet duct modes are defined in terms of nodal quanti­
ties shown in square brackets a t each end of the model. 
The highest node number in each model is assigned to all 
nodal degrees of freedom explicitly constrained to zero at 
the hard walls of the duct.

Typical results are shown in Figure 10 for the case of a 
specified unit incident first cross mode velocity potential. 
The graphs show the real (RE) and imaginary (IM) parts

of the outlet first cross mode acoustic velocity potential, 
a t the lower wall of the duct, for models with one, two and 
three elements spanning the duct cross-section. The ana­
lytical solution is shown by the solid line. The left graph 
is for a flow a t Mach number M  — 0.1 in the same direc­
tion as the acoustic propagation. The right graph is for 
the case of the flow in the opposite direction. The cut-on 
frequency for this mode occurs in this case a t ka  =  0.9957T 

(when the duct width is close to half a wavelength). Below 
the cut-on frequency the mode is evanescent and decays 
between the inlet and outlet, but above this frequency 
the mode propagates unattenuated . The prediction er­
rors increase as the non-dimensional frequency parame­
ter ka  increases. The results converge closer to the exact 
solution as the mesh is refined. Also the predictions with 
flow in the opposite direction to the acoustic propagation 
show greater errors than  tha t for propagation in the same 
direction as the flow.

4.3 M odelling  a 90° B end

Figure 11 shows example finite element meshes used to 
model a duct bend with an inner corner radius equal to 
half the duct width. The predictions obtained with these 
models are given in Figure 12 and compared to results 
obtained by Cabelli [15] using a conventional isoparamet­
ric finite element model. The graph shows the velocity 
potential transmission coefficient T p  for the transm itted 
plane wave and first cross mode components and the re­
flection coefficient R^i for the reflected plane wave and 
first cross mode. Three elements were needed across the 
duct width for the predictions to converge to Cabelli’s 
result over the frequency range considered. Below the 
cut-on frequency of the first cross mode in the connecting 
ducts, only the plane wave mode is reflected and trans­
mitted. At low frequencies most of the acoustic energy 
is transm itted; however, as the cut-on frequency of the 
first cross mode is approached most of the sound energy
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Figure 10: Outlet acoustic velocity potential for the first cross mode in a straight duct segment of width a and 
length a

PLANE WAVE 1st CROSS MODE

F o u r - e l e m e n t  m o d e l  
(19 D0F)

F i v e - e l e m e n t  m ode l  
(23 D0F)

T h i r t e e n - e l e m e n t  m o d e l  
(52 D0F)

T h i r t y - o n e - e l e m e n t  m o d e l  
(113 D0F)

a 19 D0F 

x 23  D0F 

+ 52 DOF 

o 113 DOF 

------- Ref [15]

t-v . .  i , i r j  * j «il Figure 12: Acoustic velocity potential reflection andfigure 11: Finite element meshes for a duct bend with . .  _  . , r  _ . .
- ,  ir ,, . i , , . . t ransmission coefficients for a bend with inlet and out- 

an inner corner radius of half the inlet duct width , , .
let widths a

-  1 0  -



MODEL "1EL"

-4-

1

MODEL "2EL" MODEL "3EL S"

Figure 13: Finite element meshes for a 90° side branch 
with all connecting ducts of width a

is reflected as a plane wave. Above this cut-on frequency, 
some acoustic energy is transmitted and reflected both in 
the first cross mode and the plane wave modes. Cabelli 
also obtained some results with flow but at Mach num­
bers too large to be valid with the model developed in the 
present work.

4.4  M o d e l l in g  a 90° S ide B ranch  J u n c t io n

Compared to the volume of research done on duct bends, 
there appears to be relatively little research literature 
concerned with duct junctions. Some solutions with no 
flow have been obtained for a two-dimensional “T ” junc­
tion (Miles [24] and von Said [25]) where the incident 
wave entered the stem of the “T ” . A 90° side branch was 
considered by Redmore and Mulholland [26] using a mode 
coupling theory. This side branch was essentially a “T ” 
junction in which the incident wave entered one arm of 
the “T ” . Figure 13 shows element meshes used to model 
a 90° degree side branch junction which is attached to 
infinite ducts extending left, right and up from the mod­
els shown. Note that with three elements across the duct 
width, a reduced model with shortened inlet and outlet 
regions is used due to memory limitations of the com­
puter. This is acceptable for the acoustic problem, since 
the evanescent and propagating modes are included in the 
connecting duct boundary conditions, but not acceptable 
for modelling the flow since longer transition regions are 
needed for a uniform flow to develop. The duct on the

left is taken to contain the incident sound wave and the 
flow taken as positive when entering this duct and exiting 
the side branch and the continuing duct to the right.

Before presenting the results for these models, the sub­
ject of acoustic intensity and transmitted sound power 
will be discussed. Flow considerably complicates the def­
inition of acoustic intensity. The definition of acous­
tic intensity with flow, given by Morfey [23] and also 
used by Cabelli [15] has been adopted in this work, al­
though as discussed by Eversman [27], this definition 
does not give correct results with absorptive walls in the 
presence of flow. The axial acoustic intensity for each 
propagating mode is integrated over the connecting duct 
cross-section to give a transmitted sound power for each 
mode. A reflection coefficient for the reflected m th mode 
in the duct containing the incident wave can be defined 
by R m =  / W mc where is the reflected sound
power for the m th mode and VFlnc is the total sound power 
for the incident modal mixture. Similarly the modal 
transmission coefficient Z^ for the m th mode in the ith 
transmitting duct can be defined by =  W ^ / W mc 
where W.^ is the transmitted sound power for the m th 
mode in the i th transmitting duct. The concept of trans­
mission loss normally used for a single acoustic transmis­
sion line is extended to a junction to give the transmission 
loss TL'm for the m th mode in the ith transmitting duct 
as

2 U 4  =  -I0 1 o glo : c .  (5)

A similar equation is used with reflected modes, treating 
the reflected wave as another transmission path. For lack 
of a better word this can be called the reflection loss R L m 
for the m th mode given by

R L m = log10 Rm . (6)

Figure 14 shows the convergence of the finite element 
models for the 90° side branch with no flow and a plane 
incident wave. The results are given in terms of transmis­
sion loss in decibels. The upper graph shows the reflec­
tion loss, RL,  for the reflected plane wave and the first 
cross mode. The lower two graphs show the transmission 
losses, TL,  for the plane wave and the first cross mode 
in the 90° side branch and in the continuing main duct. 
Above the cut-on frequency of the first cross mode at 
ka =  7T, most of the sound energy propagates along the 
continuing straight duct as a plane wave. The results for 
the model with two elements across the duct width are 
close to those obtained for the “shortened” model with 
three elements across the duct width. This would indi­
cate that the models, with only two elements across the 
duct width, can be used for the problem with flow and 
give a reasonable approximation of the transmission char­
acteristics over the frequency range considered.

At low frequencies, where the wavelength is large com­
pared to dimensions of the duct junction region, the clas­
sical approach to plane wave propagation in pipes can
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Figure 14: Convergence of FEM models for a  90° side- 
branch with all ducts of width a and a plane incident 
wave with no flow

be used to derive the transmission characteristics of the 
junction. This prediction assumes tha t the acoustic pres­
sure is the same in each duct near the junction and re­
sults in transmission and reflection coefficients which are 
only dependent on the connecting duct cross-sectional ar­
eas. An approximate solution was developed by Miles [24] 
using an electrical circuit analogy which limited his ap­
proach to plane waves in connecting ducts and assumed 
th a t  any higher order modes generated a t the junctions 
decayed over short distances. The finite element predic­
tion of the plane wave reflection and transmission losses 
with a  plane incident wave are compared to the classical 
low frequency approximation and Miles approximation in 
Figure 15. For small values of ka  the three methods con­
verge to the same value. As the cut-on frequency of the 
first cross mode is approached one would expect Miles so­
lution to deviate from the true solution. Even above this 
cut-on frequency Miles results show similar trends to the 
finite element model results.

Figure 16 shows the change in reflection and transmis­
sion loss with flow compared to the no-flow case, for

Figure 15: Comparison with other approximate solutions 
for a 90° side branch with all ducts of width o and a plane 
incident wave with no flow

the case of equal flow out the continuing straight duct 
and side branch, and a plane incident wave. The great­
est changes tended to occur near the cross mode cut-on 
frequencies. At Mach 0.1, the flow generally produced 
changes in transmission loss of only 1 dB or less. Results 
were also obtained for the first cross mode incident wave, 
and for a side branch with one half of the width of the 
main duct. The ratio of flow out of the continuing duct 
and side branch was also varied and in all cases the effect 
of flow on the transmission losses was small. A negative 
Mach number indicates cases where the flow was taken 
to be in the opposite direction to the incident wave and 
transm itted  wave propagation.

4.5 M odelling  a 45° Side Branch Junction

Figure 17 shows a finite element mesh for a more complex 
45 degree side branch junction modelled with only one 
element across the duct width. The current method is 
limited to modelling surfaces with more than  one element 
across the connecting duct w idth only when the interface

-  12  -
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Figure 17: The finite element model of a junction with a 
45° side branch

RL In dB

TL In dB ka

Figure 16: Change in RL  and TL  with respect to the 
no-flow case for an equal flow split between the 90° side 
branch and continuing duct

surfaces are parallel to one of the global axes. When more 
than one element is used across the duct width, the cross- 
section acoustic modes are defined in terms of the nodal 
acoustic velocity potential and tangential derivative nodal 
quantities at the interface; however, the global model is 
defined in terms of the derivatives with respect to the 
global coordinate axes. The conventional isoparametric 
element does not have this limitation.

The predicted transmission characteristics of this 45 de­
gree side branch model are shown in Figure 18. Note that 
the cut-on frequency for the first cross mode is different 
for each duct since each has a diffetent width. The higher 
frequency results may be inaccurate due to the coarseness 
of the finite element mesh. The dashed curves show the 
classical plane wave low frequency approximation. This 
approximation is commonly used in HVAC acoustic mod­
els to predict the sound power split between branches at 
a junction. The finite element model predictions indicate 
that even at relatively low frequencies the classical plane 
wave approximation may not be very realistic.

TL In dB ka

ka

------LOW FREQ. APPROX.

Figure 18: Propagation characteristics of a duct junction 
with a 45° side branch for a plane wave incident and no 
flow

-  13 -



5 SUM M ARY A N D  FURTHER WORK

A cubic isoparametric finite element has been developed  

using Hermite polynomials. The element has been used 

to model the acoustic propagation characteristics o f  duct 

junctions including higher order mode propagation and 

mean flow effects. The use of this new element has al­
lowed certain problems to be solved on a desktop com­
puter which would have been difficult to solve using the 

conventional cubic isoparametric element without using a 

more powerful computer. It was found that flows typical 
of HVAC systems (Mach 0.1 or less) had only a small ef­
fect on the bend and junction transmission losses, chang­
ing the component transmission losses by generally less 

than one decibel with the exception, that near the cross 

mode cut-on frequencies, changes of  a few decibels oc­
curred. Some areas for further research include:

•  Investigation of the difference in the behavior ob­
served with the new element compared to the conven­
tional isoparametric element under certain element 

boundary distortions.

•  Confirmation of some of the model results by run­
ning larger models on a mainframe computer and 

also testing three-dimensional junction models with  
connecting ducts of rectangular and perhaps circular 

and oval cross-sections. The advantages of the new 

element over the conventional isoparametric element 
may not be as great in these cases.

•  Modify the existing method to handle duct interfaces 
at oblique angles.

•  Extension of  the method o f  Reference [4] for pre­
dictions in duct networks and branched systems to 

higher frequencies. This could be achieved by includ­
ing higher order modes in connecting straight duct 

models in a manner similar to that used in the cur­
rent work on individual components.

•  Include acoustically absorptive linings and flexible 

duct walls in the prediction method. In these cases 

the advantage of the new element to reduce the 

model size by explicitly constraining derivative nodal 
quantities could not be applied.
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