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Introduction

The finite elem ent method provides an effective means for 
m odelling acoustic propagation in HVAC system s and pipe 
networks. However, due to extensive lengths o f  ducting and the 
degree o f  m esh refinement required to m odel high frequency sound  
transmission, resulting system s o f  equations can be very large. It 
is essential to reduce their size  so  that computer memory limits are 
not exceeded and computation time is reduced.

In BAGPIPES, system  equations are generated automatically in the 
form o f duct superelem ents. During generation, the superelements 
are formed by su ccessively  enclosing layers o f  elem ents, so  that the 
com plete superelement is described by only the number o f  nodes 
needed to describe a single layer. Consequently the interior nodes, 
w hich are not required for superelem ent conductivity, do not add 
to the size  o f the system . Lim its on the m odel size arise from the 
number o f  superelem ent nodes required for connectivity.

O nce the superelements have been assem bled, nodes which are not 
required for the application o f  boundary conditions and sound 
sources, or for the solution output are condensed from the system . 
The result o f  these reductions in  savings in run time and the ability 
to m odel far larger system s than would otherwise be possible 
within the confines o f a personal computer.

The program has been used to m odel several fittings com m only 
found in H VAC system s. In addition, a network including a 
plenum chamber w as m odelled and results compared with a 
complementary experimental study o f the acoustic transmission 
through the network.

T heory

This section contains an outline o f  the finite elem ent acoustic 
theory utilized in the program. The matrix methods for 
substructuring and application o f boundary conditions are 
described.

The finite elem ent equations for m odelling an acoustic volum e 
have been derived previously and are given by Craggs [1]. At 
frequency X the nodal system  o f  equations has the form

([*] - *2[P]){p} = {<?}

where
[K] and [P] are square symmetric matrices derived from 
the kinetic and potential energy, respectively

{p} and {Q} are vectors containing the nodal pressures 
and volum e source terms, respectively.

In the follow ing the frequency dependent coefficient matrix ( (K)  - 
X2[P]) w ill be represented by the single stiffness matrix [S].

Su bstru cturing

W hen the nodal pressure and sources at interior nodes in a length 
o f  duct m ay be eliminated from the system , the duct length can be 
m odelled as a single "superelement". The advantage o f  this 
approach is that the superelem ent has only as many nodal variables 
as the number o f  nodes lying on  the end planes o f  the duct.

In addition, for prismatic ducts where the geometric changes are 
one dim ensional, the duct superelement can be generated by 
assem bling an elem ent representing a single layer o f  the duct ana 
cascading this layer sequentially n times to generate 2n layers. 
This applies to duct segm ents consisting o f  straight sections or arc 
sections. W hen the layers differ, a new layer must be formed and

cascaded with the previous assem blage each time. This applies to 
sections containing bends or where the dim ensions o f  the layers 
parallel to the duct axis is non-uniform.

The procedure is summarized as follow s. For two duct segm ents 
A and B the system  o f  nodal equations are:
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W here the subscripts 1 and 2 denote nodes on the endplanes and 
P2 is synonym ous with pj and Q * with Q®.

The system  o f  equations representing the coupled m odel is
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where D  = S j 2 + S®,

Solving for p 2 from the second row

P2 =  - D - ' s f o f  -  D - ' s f o ?

and eliminating p2 from the third row results in the condensed  
system
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If the layers are all equal the procedure is

1. Form [SA] = [SB]

2. Form [S*] n tim es, each time setting [SA] = [S*] to form 
a superelement consisting o f  2n layers.

If the layers differ the procedure is, for n-1 layers

1.
2.

Form [S*] 
Form [SB]
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3. Form [S*] and set [SA] = [S*]

4. Form [SB]

320.20 400.00

element model is shown in Figure 1. Results for the transmission 
loss at various points in the network are shown. There is very 
good agreement.

These procedures allow very large systems to be represented 
without having to generate the huge matrices which would be 
associated with the standard finite element methods.

Experimental Validation o f Program

A three dimensional duct rig was specially built in order to provide 
test data to compare with the computer model results. The right 
was modular in construction so that bends, junctions and plenum 
chambers could be tested separately. A complete network finite
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