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1. Introduction

Gauge line response to pressure pulsation at the orifice plate taps 
distorts pressure signals and affects pressure difference applied 
to the diaphragm of a differential transmitter (Fig. 1). This 
response depends on gauge line length L, volume V0 of the 
transmitter chamber, pulsation frequency f, and amplitude IP I. 
Distortion o f the pressure difference (Ap = p . - p 2) by the 
gauge line obviously affects accuracy of flow r i te  metering. In 
order to eliminate significant errors, the gauge line response was 
simulated with lumped param eter model and plane wave model. 
Connectors on the gauge line, however, constitute abrupt 
variation o f the inside diameter, affecting propagation and 
attenuation o f the disturbances. M oreover with high velocity 
amplitudes turbulent regime occurs. These factors preclude pure 
theoretical description o f the gauge line response and make some 
empirical contribution necessary. Utilizing experimental results 
damping coefficients were determined for two models with 
various gauge line length, cham ber volume, pulsation frequency, 
and amplitude. Oscillating pressure difference across the orifice 
plate was simulated and compared with the monitored one.

2. Experiment

Frequency and amplitude of pressure pulsation was controlled by 
flow velocity in the test line and by the speed of a rotating disc 
installed on the line. Oscillating pressures were monitored with 
four high frequency response transducers (Endevco). The 
measurements were taken with three gauge lines o f a different 
length L (0.166, 1.118 and 3.118 m) and in the frequency range 
5 -  180 Hz.

3. Theory

Lumped Parameter Model

In this model [1] the tube and volume are regarded as 
capacitance, momentum equation takes into account inertance 
and resistance, and boundary conditions are nonlinear. 
Differential equation o f  forced vibration was obtained

(1) d2pt /dt2 + 20|dpt /dt|dp,/dt + cô pt = œ p̂p t

where damping factor

(2) 0 = (1+ ^ / L ) ( 1  + Ç + ÀL/d)/4ypo ,

L0 =  4V0 / Jtd2 f

natural frequency of undamped oscillation 

(3) co0 =  2 7 i f = a 0 / [ L ( 1 + L 0 / L ) 1/2

Ç - coefficient o f inlet pressure loss, X - coefficient o f friction, 
y  - isentropic exponent, pQ - mean gas pressure and aQ - mean 
sound speed.

Plane Wave Model

Transfer matrix for the tube o f  L  length yields the oscillating 
pressure ratio

(4) Pp /P t = cosh(ikL) + (ikL)(L0 / L)sinh(ikL)

where according to K irchoffs derivation ik = + i(kQ + a L),
kQ = 27tf/aQ and

(5) ccl L = (k0L)1/2[(2L / d) / Rea ]1/2[1 + (y -1 )  / Pr1/2]

Rea = poaQd/|!, p - mean gas density, ji. - dynamic viscosity and 
Prandtl number Pr = Hc_/K. Omission o f damping in (4) and 
introduction of resonance condition provides natural frequency of 
oscillation

(6) (k0L )ta n (k 0L) = L/L0

4. Numerical Simulation

For simulation purpose the complex geom etry o f the system was 
simplified by substituting the gauge line with the variable cross- 
section by the uniform cross-section tube with the equivalent 
diameter.

Lumped Parameter Model

The coefficients 0 and coQ were calculated from Eq. (1) using 
pressure-time traces measured in the transducer chamber and 
pipe. The multilinear regression m ethod was applied to obtain 
coefficient values which ensure the best fit (minimum standard 
deviation) between both pressure signals. Natural frequency co0 
depended only on the system geometry, i.e. on the transducer 
chamber volume, length and equivalent diameter of the gauge 
line, what is in agreement with the theory. Attenuation 
coefficient 0 was little dependent on the frequency and amplitude 
o f pressure oscillation, as well as on the gauge line length 
(Fig. 2). Simulated and measured pressure p „ j (Fig. 3) and 
pressure difference Ap across the orifice platte agreed within 
~1%. It was found that model accuracy only slightly decreased 
with the increasing frequency and amplitude of pressure 
oscillation but it deteriorated completely for the longest gauge 
line.

Plane W ave Model

In order to take into account the turbulent damping, the laminar 
attenuation coefficient was replaced by the effective coefficient 
a  = n  • in Eq. (4), and calculated using the amplitude ratio of 
the first harmonics measured in the pipe and transducer 
chambers. For the lowest frequency and the shortest gauge line 
multiple a  values occurred for a given pressure ratio. The value 
with the best approximation o f the phase angle between the pipe 
and transducer pressures was selected for further calculations. 
As Fig. 4 shows, increasing attenuation suppressed IP(/P I and 
shifted it to lower kQL value. M aximum cx/a, increased with the 
gauge line becoming shorter (Fig. 5). Simulated and measured 
pressure differences Ap are compared in Fig. 6. The model gave 
good prediction of the pipe pressure amplitudes, but not always 
accurate estimation o f  phase angles.

5. Conclusions

Numerical simulation showed different assets and limitations of 
both models:

° Lumped Parameter Model considers the overall oscillating 
pressure level and is not restricted to a single harmonic. 
However, its range o f  application is lim ited to a short or 
medium length of gauge lines (L < 1.2 m)

° Plane W ave Model simulated only the amplitude o f the 
first pressure harmonic. Its application was not constrained 
by the length o f the gauge line. Disadvantage results from 
a low accuracy o f the phase shift prediction and omission
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of higher harmonics what affects particularly Ap 
calculation

° Accuracy of both models declines with increase in 
frequency, but was not affected by the pressure amplitude 
in the range monitored.

Generally, simulation with high accuracy of the pressure in the 
pipe using the pressure signals measured in the transducer 
chamber was feasible for some ranges of basic parameters.
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