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1. Introduction:
In solving acoustic radiation problems, different 

numerical methods can be used. The conventional finite 
element (CE) method can model the near field if proper 
boundary conditions are applied, simulating a region 
extending to infinity. The so-called Sommerfeld radiation 
condition, simulating an outgoing travelling plane wave, can 
be appropriately imposed at a large distance from the 
radiating body.

Often though, one is interested in the acoustics of the 
far field. For this, boundary element (BE), infinite element 
[1] and infinite wave envelope (WE) element formulations 
may be used. The BE method requires only a discretisation 
of the sound radiating boundary and allows one to calculate 
the acoustic variables at an arbitrary field point. A major 
disadvantage however, is that the formulation yields a full 
complex system of non-symmetric matrices as opposed to 
the banded symmetric FE matrices, resulting in higher 
computing times and data storage problems.

Both the infinite and infinite wave envelope element are 
special elements that are matched onto a conventional finite 

element mesh modelling the near field. The infinite element 
is a conventional finite element where the shape functions 
are modified by adding a wavelike variation exp(-ikr) and 
where the computational domain in the radial direction is 
mapped to infinity. However because of the exponential 
factor, special integration procedures are needed, other than 
the Gauss Legendre quadrature formula, in calculating the 
system matrices.

The infinite wave envelope element differs from the 
infinite element in the use of the complex conjugate of the 
shape function as a weighting function in a modified 
Galerkin procedure [2], Therefore the exponential factor 
vanishes, allowing the use of the Gauss Legendre 
quadrature formula in the evaluation of the appropriate 
system terms. A disadvantage is that the symmetry of the 
banded system matrices is destroyed.

In the following work, an n ,h order infinite wave 
envelope element w ill be presented. With this element, an 
arbitrary number of acoustic degrees of freedom can be 
specified. Results from both 2D and axisymmetric models 
are presented.

2. Formulation:
In Figure 1, the geometry mapping of the infinite wave 

envelope element is shown for 2D and axisymmetric 
problems. Mapping functions are defined [3] which
map the unbounded real element onto a unit parent 
element, such that the inverse mapping along each infinite 
radial edge yields:
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Where a, indicates the distance from the element to the 
source of the outgoing travelling wave.

The shape functions are chosen to be linear in the 
angular s-direction S,(s), while in the radial r-direction a 
shape function of order n can be specified. These n m order 
functions are generated in the parent element by adding 
acoustic nodes between the geometry nodes, 1-3 & 2-4, 
and forming the Lagrangian polynomials T,(t) for the 
respective nodes. Due to the geometry mapping a n ,h order 
polynomial in the parent element w ill render a function of 
the form:
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in the radial direction of the real element, which 
appropriately models the amplitude decay of an outgoing 
travelling wave in 3D. Since the amplitude decay in 2D is 
approximately M jr  , the radial portion of the shape function 
is corrected by a factor of Jr  [1],

The total /7th order shape function then becomes:

/V,(s,r) = S,(s) T,U) exp -ika(s.t) 1 +t 
1 - t

Finally by using the complex conjugate of these shape 
functions as weighting functions, the acoustic mass and 
stiffness matrices can be evaluated following the 
conventional finite element procedures.

3. Discussion and Results:
As a first example, an axisymmetric model of scattering 

of a plane acoustic wave from a rigid sphere is studied. The 
left side of Figure 2 shows a mesh using only 20 wave 
envelope elements, while on the right a fine mesh is shown 
using 6 additional layers of conventional finite elements. For 
comparison, an equivalent BE mesh is indicated by the thick 
nodes on the left hand mesh.

In Figure 3, results are presented by means of a polar 
plot of \PS\!\P,\ at a distance of r  = 5a. These are shown 
together w ith  the analytical and BE (20 linear elements) 
solution. The 2nd order WE element, used in the coarse 
mesh (i.e. w ith  no conventional acoustic elements), is able 
to model the correct general shape of the directivity 
pattern, but the magnitude is not very accurate in some 
regions. The 20 node boundary element model is slightly 
more accurate than the low order WE model, but it should 
be noted that the WE calculation time was 25 times faster
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Figure 1 Geometry mapping of the WE element.
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Figure 3: Scattering of an acoustic plane wave from a rigid 
sphere @ka = 4.

In a second example, the 2D acoustic pressure field 
generated by simple radiator is presented. The calculational 
mesh is shown in Figure 4 along w ith  the superimposed real 
velocity boundary condition on the central panel. The panel 
is of length a, and the calculational frequency was specified 
at ka = 10^/3.
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Figure 4: Simple radiator: WE mesh and velocity b.c.

The contour lines of constant pressure magnitude are 
shown in Figures 5 and 6 for the BE method and 7th order

WE element calculation respectively. Very good comparison 
is obtained between the tw o pressure patterns, but again 
the WE calculation shows great speed; almost 5 times 
faster than the BE method.

Figure 2: Axisymmetric meshes for rigid sphere.

than that for the BE solution.
Using the fine mesh, it is seen that the 5th order WE 

element solution matches the analytical solution very well, 
and was still 2.5 times faster than the BE solution.

Figure 6: Simple radiator: 7th order WE solution.

4 . Conclusions:
The infinite wave envelope formulation has been shown 

to be able to accurately model different types of acoustic 
radiation problems. The large calculation speed advantage 
over the BE method has been demonstrated. In a WE 
solution, normally both CE and low order WE elements are 
used for high accuracy solutions. Moving to higher order 
elements allows the element to better model the acoustic 
near field, and in some cases the need for CE is eliminated.
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