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The calculation of functions in digital domain from analogue acoustic 
signals involves a two-step process which includes analog to digital 
(A/D) conversion and digital calculations performed on digitized 
acoustical signal. Function V(t) will be represented digitally without 
any loss of information as long as sampling occurs m accordance 
with the Nyquist criteria [1-91. How can we determine the values of 
digitized function for points between samples when we have only N 
samples available ? The Nyquist formula requires an infinite 
number of samples to accomplish this task. In situations when 
digital samples are sufficiently dense, one can approximate many 
continuous functions with their discrete formulations. Errors 
generated in these cases will be small, since they depend on spacing 
between samples. The situation will be different, however, when 
samples are coarsely spaced.. For example, a sinusoidal tone of 
frequency f=20,000 Hz sampled at f„mnitag=44,100 Hz is represented 
by only 2.205 samples per period. Calculation of many functions 
(for example RMS values) may lead in this case to some errors. 
Finite duration sampling of continuous signal results in errors caused 
by our limited knowledge of the function for all points in time.lt 
turns out that the more samples we have around the region of interest, 
the more accurately we are able to reproduce the function there. This 
paper investigates the error caused by truncation of the Nyquist 
sampling formula with the aim of quantifying it and establishing 
ways to minimize its effect.

Nyquist Theorem

According to the Nyquist theorem Tl-9] the discrete time sequence of 
a sampled continuous function { V(t„=n- T.) } contains enough 
information to reproduce the function V=V(t) exactly provided that 
the sampling rate (f,=l/T.) is at least twice that of the highest 
frequency contained in the original signal V(t):

+<* sin [jt■ fs* (t- n- Ts) ]
V (t)= I  V[n] •-------------------------

n=-~ 7C*fs • (t- n -T s)
where:

fs = 1 /  Ts - sampling frequency 
V(t) - value ofsignal (voltage) at arbitrary 
V[n] = V(n-Ts) - value of signal at time t = n-T,

(1)
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Nyquist Theorem’s consequences

It is worth noting that information about the signal V=V(t) at any 
given moment in time t j* n • Ts is distributed among all discrete 
samples { V[n] } with appropriate weights ( see eq. (1) ). 
Realistically, we are never presented with an infinite discrete time 
sequence and are therefore forced to perform the summation over a 
finite range. This is equivalent to a loss of information about the 
function V=V(t) not only before and after our time window (which 
is understandable), but also at the time points between the sampling 
points. This can introduce errors into the process of reconstructing 
the function. Let assume that we have available to us N digital 
samples of function V=V(t) (this is illustrated in fig. 1):

V[n] = V(t=n-Ts) where: n = 0 ,l,2 .... (N-l)

time window

(2)
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Fig.l. Illustration of available values V[n] in the time window 
[0, (N-l)- Ts]

Values of the function V=V(t) for the times t e  [ 0 • Ts ; (N-l)- Ts], 
can be estimated by a truncated version of formula (1) :

N-l sin [3t fs-(t-n-Ts) ]
V(t) = I  V[n] •--------------------------

n=0 jt-fs -(t-n-Ts)
(3)

The errors resulting from truncation are e l e f t  (t) and e worn (t). 
They represent the "LEFT" and "RIGHT” portions of the sum 
(with respect to the time axis) in eq. (1) that are omitted in eq.(3), 
and can be represented mathematically by the following formulas :

-1 sin [7C-fs-(t- n -T s) ]
e left (t) — X V[n] •-------------------------

n = - ~  3t-fs-(t- n -T s)

+ ~  sin [Jt-fs- (t- n- Ts) ]
e wckt (t) = X V [n ] --------------------------

n=N j p f s - ( t - n - T s )

(4 a)

(4 b)

The sum truncation error is generated when eq.(3) is used instead of 
eq.(l)» and is given by the following formula :

£  TOTAlXt) — £  LEFT ( t )  +  e RiGurr (0 (5)

where:
E l e f t O )  -"LEFT" error ( due to truncation to the left where 

values of V[n] are unknown)
E  r i g h t (t) - "RIGHT" error ( due to truncation to the right where 

values of V[n] are unknown)

In the next section we will try to evaluate the sum truncation error for 
different cases.

Evaluation of sum truncation error

•  If a priori information is given, that V(t) = 0 for t i [0;(N-1)TS] 
then e total =0 (since e left = 0 and e right = 0 ) and we can use with 
full confidence the truncated version of the Nyquist sum ( eq. (3) ). 
Otherwise using the sum from eq. (3) is equivalent to the zero- 
extension (or zero-padding) method [3,5],

•  If a priori information is given, that function V = V(t) is periodic 
( ie. V(t) = V(t+ T) ) then this information can be used in formula 
(1). In the special case when the function period T= N 0-Ts, where 
N0^  N, one can use formula (1) directly since all values of function 
V[n] are known for n 6 (-~ ; +=). In this case one can also use the 
Discrete Fourier Transform ( DFT) on N 0 consecutive data points 
(from the available N data points V[n] where n=0,l,2.....(N-l) ) to 
calculate amplitudes A; , and phases <{> ;, of the periodic signal and 
then use the formula :

M
(6)V(t) = A 0+ £  A,-sin (2 jc fi-t + <j> 0 

i=l 
where:
A o - DC component of the periodic signal V = V(t)
A j - amplitudes calculated from DFT 
d> i - phases calculated from DFT
fi = ( l /  No)' fs - frequencies available in periodic signal V = V(t) 
M = INT ( N o / 2 ) - number of the highest possible harmonic 

(since f , < fs /  2)

•  When a priori information is not available about the function 
V=V(t) then direct use of the truncated Nyquist sum ( eq. (3) ) is 
going to lead to truncation error e t o t a l  given by eq. (4) and (5). 
Values V[n] in eq. (4 a) and (4 b) can be anv arbitrary numbers, 
since we do not have any a priori information aoout the signal. In the 
next section we will investigate this in greater detail to estimate 
values of possible errors.

Estimation of truncation error for general case

Let’s consider for simplicity the "LEFT" error given by eq. (4 a) 
(estimation of "RIGHT" error is performed in identical way). Total 
error given by eq. (4 a) is a sum of contributions from data points 
V[n] where n=-l,-2,-3.........-

Error contribution from the n-th point is given by :
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where:
e „(t) = V[n] •

t e  rO ; (N -1 )T S] 
n=-l,-2,-3

sin [7t■ fs• (t- n-Ts) ] 

7 t - fs- (t - n 'T s )
(7)

-3.............. - «  for "LEFT" errors
n= N, (N+l),........+ «  for "RIGHT" errors

The function sin (x) /x ( where x= n- fs- (t- n- Ts) ) is equal to 0 at
time points t=m -Ts ; m=0,l,2,3........(N-l) (which are the sampling
points in our time window). Therefore there is no contribution to the 
error in V(t) at sampling points due to truncation. Also the function 
sin (x) / x has local max. and min. approximately at the middle points 
between adjacent sampling points in our time window. This can be 
proved easily by taking first derivative of function sin (x) / x. The 
approximation gets better for larger values of x. Therefore from now 
on we will consider the error at the middle points between samples 
V[n] in our time window (see fig.l.) :

t = (m + 1/2) -Ts (8)

Substituting time t from eq (8) into formula (7) we get:

e„[ m + 1/2 ] = V[n] 
where:

( -D ( m - n )

(9)
jc •[( m + 1/2 ) - n ]

m=0,l,2,3.... (N-2) - indexing of middle points between adjacent
samples in the time window

n =-1,-2,-3.... - ~  - indexing of points on the left of the time
window (see fig.l)

•  An interesting question to ask Ls how large the value of index 
"m" in eq.(9) must be in order for the absolute value of error 
e_i[m+l/2] to be equal or smaller then 1/2 of the quantization step 
A , which is defined as a difference between quantization levels

1.3.8.9], This is a reasonable comparison since all samples V[n] 
îave quantization error inherent to the process of A/D conversion
1.3.8.9]. Quantization error is uniformly distributed in the range 
-A/2 ; Â/2 1, where A is a step size in the A/D converter [1,3,8,9]. 
From eq. (9) we have for n=-l and V[-l] = V max=  2 b-‘ - A (where 
V, ' *m a x  i s  the max. possible signal amplitude in the A/D converter and 

is the No. of bits in the A7D converter) :

m > 2 » / tc - 3 / 2 ( 10)

From inequality (10) we get (times are calculated for fs = 44,100 Hz):

for B = 8 bit : m > 80 
for B = 10 bit : m > 325 
for B = 12 bit : m > 1,303 
for B = 14 bit : m £ 5,214 
for B = 16 bit : m > 20,860 
for B = 18 bit : m > 83,442 
for B = 20 bit :m  >333,771

( 0.001 sec inside sound file)
( 0.007 sec inside sound file)
( 0.030 sec inside sound file)
( 0.118 sec inside sound file)
( 0.473 sec inside sound file)
( 1.892 sec inside sound file)
( 7.569 sec inside sound file)

(11)

Results in (11) show that if we have no information about the signal 
before our time window, then in order to avoid errors associated with
the unknown values of function V[-1], V[-2], V[-3]....... . one has to
be '' m" samples deep inside of the time window. We can then use the 
formula (3) for any time t as long as we stay away from the ends of 
the time window by " m " samples ( t s  [ m-Ts ; (N-l-m)-Ts ] ).

•  Another interesting question to ask is which sequence of samples 
V[-l], V[-2], V[-3]........will generate the largest error at the middle
points in our time window ? Taking the summation of eq. (9) from 
n=-1 to m=- «  we get :

( - D  ”
e left [ m + 1/2 ] = l/jt • (-1) “ • X V[n] •-------------------(12)

n=-l ( m + 1/2 ) - n

If we take the sequence of samples V[n] = Vmax • (-1 )0 then we get 
from eq (12) :

-  o c i

Cleft [m  + 1/2] =1/K- V„ax • (-1)” ‘ I  ------------------- (13)
n=-1 ( m + 1/2 ) - n

Unfortunately our choice of { V[n] } in eq. (13) was inappropriate 
because the sum of this series diverges to “ . As a matter of fact this 
happened since this particular senes corresponds to the digital 
representation of a sine wave with the Nyquist frequency f = fs /  2. 
Such a frequency can’t exist in the digital domain, since it can’t be

( -1) -

recorded via A/D conversion. A realizable choice of samples would 
be, for example, one which represents sinusoidal wave with 
frequency f < fs / 2 :

V[n] = V max -sin [ 2 - ji • f  • n ■ Ts + <t> ] (14)
where :

= n i  2 + 2-JC ■ f ■ Ts - phase angle chosen to maximize error 
for n = -1 (V[n=-1] = V MAX)

Substituting (14) in eq. (12) we get : (15)

£ l e f t  [m+1/2] =l/7t Vmax (-1 )"E  sin [2*7t* f'n*Ts+<t> ] -
n=-l (m+1/2 ) - n

Computer calculations of error were performed using formula (15) 
for m=1000 (calculations of error in middle point between 1000 and 
1001 sample in time window). Results were as follows :

( 16)
for f = 0.250-fs: S(l)=3.18E-04 V ^  ; S(10000)=1.45 E-04V„ax 
fo rf =  0.300-fs : S(l)=3.18 E-04 V m a x  ; S( 10000)= 1.45 E-04-Vmax 
for f = 0.350-fs : S(l)=3.18 E-04-Vmax ; S(10000)=1.45 E-04-VMax 
for f = 0.400-fs : S(l)=3.18 E-04 -Vmax : S(10000)=1.45 E-04 Vmax 
for f = 0.450-fs : S(l)=3.18 E-04 V ^  ; S(10000)=1.48 E-04V„ax 
for f = 0.490 -fs : S(l)=3.18 E-04 -Vmax ; S(10000)=2.24 E-04-Vmax 
for f = 0.499 • fs : S(l)=3.18 E-04 -Vmax ; S(10000)=7.23 E-03 V MAx 
where:
S(l) represents first term in eq.(15) (contribution from the V[-l ] ) 
S(IOOOO) represents summation of first 10000 terms in eq. (15)

Results (16) show, that max. error is obtained when frequency f 
approaches the Nyquist frequency f s/ 2. The value of the error from 
the first term ( V[-l] ) is larger then from the sinusoidal wave as long 
as frequency f  is smaller then about 0.490 • is ( which is 98 % of 
Nyquist frequency= fs / 2 ). This seems reasonable since the input 
antialiasing filter would usually eliminate all frequencies above 
0.46 f s (see for example data for PCM or DAT recorders). The errors 
resulting from sinusoidal waves are similar to the error contribution 
from V[-l], therefore we expect that the recommendation given in 
(11) should be valid for any arbitrary sequence V[-l],V[-2],V[-3] 
since such sequence is a linear combination of pure tones according 
to the Fourier Theorem. However, further investigation and computer 
simulations are required to substantiate this claim.

Conclusions

In this paper we investigated the errors due to finite duration 
sampling of continuous signal and determined that this error can be 
considerable at the beginning and near the end of the sampling time 
window. These errors had a tendency to get larger at higher 
frequencies as they approach the Nyquist frequency ( fs /  2) for signal 
near the inside boundaries of the time window . At this time 
however, we don’t know which physically realizable sequence of
samples V[-l], VI-2], VJ-3]..........will produce the largest error inside
of the time window. Further tests and computer simulations are
required. 
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