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A b stra c t
In  this paper we introduce the concept of two-level (global 

and local) hierarchical nonstationarity fo r  describing the com
plex, elastic, and highly dynamic nature of speech signals. A 
general class of doubly stochastic process models are developed 
to implement this concept. In  this class of models, the global 
nonstationarity is embodied through an underlying Markov chain 
(or any other scheme capable o f providing nonlinear time warp
ing mechanisms) which governs the evolution of the parame
ters in a set of output stochastic processes. The local non
stationarity is realized by assuming state-conditioned, time- 
varying first and second order statistics in the output data- 
generation process models. To provide practical algorithms for 
speech recognition which allow the model parameters to be re
liably estimated, the local nonstationarity is represented in a 
parametric form . Simulation results demonstrated close fitting  
of the model to the actual speech data. Results from speech 
recognition experiments provided evidence for the effectiveness 
of the model in comparison with the standard HMM, which is 
a degenerated case — with single-level nonstationarity  — of 
the proposed model.

I. In trodu ction
Traditional stochastic models have been developed to deal 

only with stationary sources, or a t  best, with nonstationary 
observations which can be directly transformed into station
ary observations by simple time differentiation [2], Only with 
the advent of hidden Markov models (HMMs) has it become 
possible to model nonstationary sources in a reasonably satis
factory manner.

Nonstationary behaviors are exhibited in the HMM via 
the evolution of the underlying Markov chain. This is a pow
erful mechanism for representing acoustic signals in natural 
speech since it parallels patterns of change of the phonetic con
tent contained in the acoustic signal. However, in the HMM 
setup no mechanism is provided to handle detailed variations 
in the highly dynamic speech signal given a fixed phonetic 
content. This is true of all the stochastic models for speech 
developed so far, including the best known B aum ’s and Lipo- 
race’s HMMs [1, 6] and Poritz’s hidden filter model [7], These 
models all assume the state-conditioned stationarity for the 
observation data  and they rely solely on the (hidden) Markov 
chain to fit the overall speech nonstationarity.

Acoustic signals in actual speech exhibit a clear nature of 
hierarchical nonstationarity. At the global level, nonstation
arity is exhibited when phonetic contents change over time in 
a relatively slow fashion. A Markov chain is well equipped 
to describe such changes. The local nonstationarity, on the 
other hand, manifests itself generally at the allophonic or at 
the microstructural level. The effects of such local nonsta
tionarity are especially pronounced in transitional segments 
of speech whose production involves strong articulatory dy
namics (e.g. glides, diphthongs, and CV /V C transitions) [5]. 
Both the standard HMM and the hidden filter model are a 
handicap in handling the local nonstationarity.

The purpose of this paper is to propose a general class of 
stochastic models which are capable of capturing both the 
global nonstationarity and the local nonstationarity in the 
speech signal in a parametric form.

II. T he  Hierarchical N o n s ta t io n a r y  M od el
The global nonstationarity in this class of models, as with 

the standard HMM, is implemented by a homogeneous Markov 
chain. The local or state-conditioned nonstationarity is im
plemented by an autoregressive ou tput process where both 
the first-order statistic (mean) and the second-order statis
tic (autocorrelation function) are made a function of time via 
time-varying mean function and time-varying autoregression

coefficients. We call this model the hierarchical nonstationary 
model, or HN-model for short.

The HN-model consists formally of the following parame
ter quadraples [A, 0 ,  , X]:

1. Transition probabilities, o,y,i, j  =  1 ,2 ,... ,  N  of the ho
mogeneous Markov chain with a total of N  states;

2. Parameters ©,• in the time-varying mean functions gt(® i) 
of the output data-generation process, as dependent on 
state i in the Markov chain;

3. Parameters \P,- in the time-varying autoregression coef
ficients (with a  fixed regression order p) ^t(Sfi) of the 
output data-generation process, as dependent on state 
i in the Markov chain;

4. Covariance matrices, E o f  the zero-mean, Gaussian, 
IID driving noise JR,(Ei) , which are also sta te  depen
dent.

Given the above model parameters, the observation vector 
sequences, 0 t , i  =  p +  1 ,p  +  2, . . . ,T  are generated from the 
model according to

O t =  g t ( @ i )  +  S J = i +  R t ( £ , ) ,  ( 1)

where state i at a given time t is determined by the evolution 
of the Markov chain characterized by û,y.

III. P aram eter  E s t im a t io n  for th e  H N - M o d e l
As with the standard HMM, we use the EM algorithm to 

obtain an iterative solution to maximum likelihood estimates 
for the parameters in the HN-model. Each iteration in the EM 
algorithm consists of two steps. In the E step, the auxiliary 
function Q ($ |$ o )  is obtained:

Q(<S>|$o) =  E [ lo g P { O T ,S \ * ) \O T , * o ] , (2)

where the expectation is taken over the “hidden” state se
quence S.  For the HN-model, algebraic manipulations on (2) 
lead to the simplified form of Q

N  N  T - l

Q =  p ( * i  =  i , 3 t + l  =  j \ 0 ? , $o)loga;j

;=i j =i t=i 

N  T

+ X ^ p(j< = i i° r '*o ) jv« (o .  (3)
1 =  1 t - l

where N t(i)  stands for the log likelihood

- j l o g ( 2tt )  - | l o p | E . - |  -  - 9 t ( Q i ) - X Pk = 1 M * i ) O t - k ] TT

srMo. -  g,(®i) -  *]• w

Estimates of the model parameters are obtained in the M step 
via maximization of (3). Re-estimation formulas for the tran 
sition probabilities and for the residual covariance matrices 
are very similar to those in the standard  HMM and are thus 
omitted. Re-estimation of the parameters in the time-varying 
mean functions and in the regression coefficients requires so
lution of a system of equations which is derived below.

By removing optimization-independent terms and factors 
in (3), an equivalent objective function is obtained as

N  T

< ? e ( 0 i , * O  =  X ! 7 ‘(i)[° ‘ ~  S ‘( 0 , )  ~

1=1 t=l

E - 1 [ O t -  s , ( © 0  -  £ £ = 1 * « ( * i ) 0 < - * ] .  ( 5 )

-  113 -

mailto:deng@ccng.waterloo.edu


where 7 j(i) =  P(st = i |0 ?",$o), which can be computed effi
ciently by the use of the forward-backward algorithm [1].

The re-estimation formulas are obtained by jointly solving

(6)1^=0; 1^=0, i =  
d@i ' dVi '

Using the chain rule for differentiation, (6) becomes

T

x > - *( ©. • )  -  =  0 . (7)

and 

T  p

EE 
t=l *=1

Tr e<P?T(*i) 
a i {

0 (»)

for i =  l , 2 , N .
We now let gt(©i) and take specific forms of time

function. Polynomial functions are the simplest choices, which 
convert (7) and (8) to a coupled linear system of equations for 
solving the polynomial coefficients. That is, let

«ceo=J2 *«( *0 = (9)

where B;(fc) is a D-dimensional vector and H,-(fc) is a D x D 
matrix, both associated with state i in the Markov chain and 
with polynomial order k. Then the model parameters 0  and 
$  are just two sets of the polynomial coefficients, bd(m), m  =  
0 ,1 ..., M ,  and h uv{l), Z =  0 ,1 , . . . ,  L ; d , u , v  =  1 ,2 , . . . ,  D.

Substituting (9) into (7) and (8), we obtain the linear 
vector system for the re-estimate of the polynomial coefficients

T  M  p  L

J2 7‘W[°‘ -  £  -  Ÿ2 X) ftiWt'o.-.»]** = 0.
t=l m = 0  fc =  l 2 =  0

for u — 0,1, AT, coupled with the linear matrix system

T  p M P L

be compared to appreciate the increasing level of generality 
in the model development. The standard HMM is a local 
IID model, which has a very simple statistical structure. It 
contains locally constant (degenerated) mean functions. The 
hidden filter model generalizes the standard HMM in just 
providing time-origin independent (and hence remains a lo
cally stationary model), exponentially decaying functions in 
the second-order statistics. The first-order statistics remain 
the same as those in the standard HMM. The HN-model de
veloped in this paper generalizes the above models in provid
ing locally time-varying first-order and second-order statistics, 
and hence a locally nonstationary model.

The HN-model provides a mechanism for dealing with two 
levels of nonstationarity in the signal to be modeled: the global 
nonstationarity as controlled by the Markov chain, and the lo
cal nonstationarity as accommodated by the state-conditioned 
time-varying statistics up to the second order. The first order 
statistic is important since it catches the general trend for the 
dynamic movement of speech data over time. In the standard 
HMM [3], states are intended and can only be used to rep
resent piece-wise stationary segments of speech although the 
acoustic realization of many types of speech sounds exhibits 
highly dynamical trends and varies in a truly continuous man
ner. Such trends can be much more efficiently and accurately 
described by time-varying mean functions, rather than using 
many HMM states to approximate the trends piece-wise con
stantly.

The theoretical significance of the correlation function lies 
in the fact that any random process, in a second-order theory 
with which we assume state-conditioned speech data are in 
conformity, identifies itself with this function. Intuitively, we 
argue for close relationships between the correlation function 
p(r) and speech frame (Ÿi) dependence as follows: If p(r) 
has large values at r ,  then the acoustic data in a speech frame 
would have strong influences on those in another speech frame 
which is t  frames away. For instance, suppose p ( r )  has a large 
positive value; then if Yt is greater than the mean value, Yt+r 
would tend to be forced to move above the mean value so as 
to keep p(r) positive.

In view of the close relationship between the properties 
of the actual speech signal and those provided by the HN- 
model, and of essentially the same computational complexities 
between the standard HMM and the HN-model, we predict 
strong utilities of the HN-model in speech recognition. Our 
preliminary experiments are consistent with this prediction.
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V. D iscussion
The statistical properties of the standard HMM, the hid

den filter model, and the currently developed HN-model can
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