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1. INTRODUCTION

Sound and vibration damping plays a critical role in
numerous aspects of engineering and is increasingly
addressed by legislation as well. The most commonly
used damping materials are polymetric whose viscoelastic
properties change a lot with temperature and working
frequency. Suprisingly enough, this last point, which
constitutes the main interest for chemists, has not
received enough attention from researchers and engineers
designing better damped structures. Quite often, the
mechanical characteristics of these materials are
considered to be constant. Another important problem to
be tackled is the optimal use of these materials. In fact,
numerous practical restrictions such as weight, cost and
maintenance facilities demand that the structures be
damped with partial damping coverage.The question is
how to get reasonable damping performance without
adding too much weight to the structures.

Theses two fundamental problems are tackled in
the present work on a beam structure. First, a brief review
is given to summarize the characteristics of typical
polymers. Second, a preliminary model consisting of a
partially covered beam is presented. The established
model allows the consideration of the real variations of
the characteristics of the damping materials with
temperature and frequency. An iterative procedure is
developped to calculate the damping factors of the whole
system. Third, numerical results are presented and
analyzed to show the effects of several parameters such as
temperature, thickness, position, expansion of the
covering layer and so on. Finally, some experimental
results supporting the partial findings of the present work
are illustrated. The established model presents the
advantage of being sufficiently accurate and fast, and
consequently constitutes the first step towards a complete

model in which the optimization procedure will be
included.

2. THEORY

2.1 Polymer materials

The temperature and frequency dependence of viscoelastic
polymetric materials is relatively well known in the
literatures [1]. Under some circumstances, the variation of
the characteristics of these materials is so great that
mechanical engineers have to take them into account.
Two obvious observations justifing this statement are for
example, mechanical systems such as space structures
which suffer great temperature variations and structures
driven by broad frequency excitations. Vibration damping
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in polymers is mainly dominated by the glass transition
occuring in the amorphous portions of the polymer. For a
given material, the glass transition indicates the
frequency and the temperature at which the damping peak
is a maximum. In the present work, the hard tan damping
sheet manufactured by E.A.R (SD-40PSA) is used. The
complex young's modulus comprising storage modulus

and loss modulus is supposed to be frequency and
temperature dependent. Measured data from the
manufacturer [2] are directly used.

2.2 Theoretical model and formulation

The model investigated is a beam in flexural motion
which is partially covered by an unconstrained

viscoelastic layer. The beam is supposed to have an elstic
supporting at each end. The position and the expansion
of the layer are adjustable parameters in the model (fig.l).

The problem is formulated using the variationnal
principle associated with the Rayleigh-Ritz method based
on the following assumed displacement field [3]:

u(x,z)= -(z-h(f)+ed/2)"-
dx

v(x,z)= 0

w(X,z)=w , (1)
in which u,v and w are the displacements of the beam
along x,y, and z axes respectivelly; e”is the thickness of
the beam. h(f) can be calculated as follows:

__erEi+e2E2(f)+2eie2E2(f)

2(eiEi)+e2E2(f)) (2)
In the above expression E” is the Young's modulus of the
beam , E2(f) and e2 are respectively the storage modulus
and the thickness of the viscoelastic layer. &2 is equal to
zero for the noncovered portion.

The variationnal principle is applied to the system with
the following trial function:

W =£ aic(2dL)k
K=0 . (3)
This approach leads to the following system equation:

[SKakj = {fk} 4
Two types of problem can be solved by using the
established model: the dynamic response of the beam
driven by a point-force can be obtained by solving
system(4) ; free vibrational analysis of the structure can
be done by neglecting the terms in the system (4)



corresponding to the excitation, the solution of this
eigenvalue equation yielding the natural frequencies
together with the modal damping factors.

Special attention should be paid to the treatment of the
eigenvalue problem due to the fact that the system matrix
[S] in which the modulus of the viscoelastic material is
involved is frequency dependent. For this purpose, an
iterative process is developped, the essence of which is as
follows: For each seeked mode, a starting trial frequency
(BO, which is necessary to determine the modulus of the
viscoelastic material and consequently the matrix [S], is
used. Then with the known system matrix [S], the
eigenvalue cor(1+j"n) of the corresponding mode is
calculated by using any standard procedures. The
operation repeats itself by adjusting the value of coo until
100 - cor I< Ct with C being a sufficiently small
quantity. In this case, coo is the natural frequency of the
structure and r| the corresponding loss factor. The
starting trial value used in the calculation is the natural
frequency of the corresponding undamped beam.

3. PRINCIPAL FINDINGS

1). Experiments are carried out with a free-free aluminium
beam(length 0.5m and thickness 4mm) covered by a layer
of 1mm thickness over two-third beam length.
Comparison between the measured values and the
calculated ones in terms of co and T) shows excellent
agreement.

2). The consideration of the frequency variation of the
polymers introduces a non-negligable weighting on the
modal analysis considering the material characteristics to
be constant. This is particulaly true at the vicinity of the
glass transition.

3). The modal damping factors of the system depend
sensitively on the working temperature. The temperature
affects also the stiffness of the system via the
modification of the storage modulus of the viscoelastic
layer, consequently clear shift of the resonance
frequencies is observed.

4). The layer position is shown to affect strongly the
damping factors of low-order modes for which the wave
length is long. However the high-order modes seem to be
less sensitive to the layer position.

5). With the assumption of equal mass added to the beam
by the viscoelastic layer, the expansion of the layer is
shown to play an important role in optimizing the
damping perfomance. The fully-covered beam is seldom,
if ever, the best solution for all configurations tested in
the present work. This observation justifies the necessity
of elaborating an optimization process.
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Fig.l Investigated beam structure.

Frequencies in Hz

Mode calculated measured difference in %
3 95.63 95.82 0.2
4 265.53 264.64 0.3
5 521.35 520.85 0.1
6 863.33 856.65 0.8
7 1294.78 1285.45 0.7
8 1813.06 1792.51 11
9 2416.68 2393.00 1.0
Damp 'ng factors in %
Mode calculated measured difference in %
3 0.999 1.124 125
4 1.000 0.933 6.7
5 0.988 0.954 3.4
6 1.131 1.235 9.2
7 1.117 1.123 5.4
8 1.135 1.250 10.1
9 1.170 1.27 8.5

Comparison of the measured and calculated natural
frequencies and damping factors.

Fig.3 An example of the forced response of a partially
covered beam working at different temperatures.
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