
VIBRATIONS AND SOUND RADIATION OF A CYLINDRICAL SHELL UNDER A
CIRCUMFERENTIALLY MOVING FORCE

R ay m o n d  P a n n e to n ,  A la in  B e r ry ,  F ré d é r ic  L av ille
GAUS, Mechanical Engineering 

University of Sherbrooke, Sherbrooke (Quebec) J1K 2R1

1. IN T R O D U C T IO N

Vibrations and sound radiation by finite cylindrical shells have 
been extensively studied in the past few years. Usually, the 
authors have studied the vibrations and the sound radiation by 
cylinders in the case of a non-moving harmonic driving force 
[1]. Most papers dealing with a moving force on a cylindrical 
shell (axially [2] or circumferientially [3]) were only concerned 
about the mechanical vibrations. This is a presentation of the 
work under progress to develop a model including both the 
vibrations and the sound radiation of a simply supported 
cylindrical shell excited by a circumferentially moving radial 
po in t force. The m otivation  beh ind  this w ork is the 
modélisation of the "pressure screens" used in the pulp and 
paper industry. The theoretical formulation presented in section 
2 is based on a varia tional approach. The case o f a 
homogeneous cylindrical shell in air is treated as a first step 
towards more complex structures. Numerical results in terms of 
quadratic velocity and radiated sound power are presented, and 
principal phenom ena related to the moving force rotational 
speed are discussed in section 3.

2. T H E O R E T IC A L  F O R M U L A T IO N

The studied system consists o f a baffled thin cylindrical shell 
with the simply supported boundary conditions (Fig. 1). In the 
case o f a finite cylinder, and with a variational approach, one 
can find the governing equations o f motion for the studied 
system using the Hamilton's function, which has the form:

(1)

where Tshell and E shell are respectively the shell kinetic and 
deformation energy, is the energy related to the exterior
acoustic pressure field, and Eforce is the energy of the rotational 
driving force. Using the thin shell theory and under Donnell's 
assumptions, the three first terms are expressed as in reference 
[1]. The energy term related to the radial force is

Efoi = {P(M) )* {U(M) } dV (2)

where V  is the volume of the cylinder, F(M ) is the radial force at 
a point M on the shell, and U(M ) is the displacement of point 
M . A radial point force located at xa and travelling around the 
circumference is expressed as:

P(M,t) = P(x,> >,t) = -P-S(x  
a L

xa)8( (p - Q-t) (3)

where 8  is the Dirac distribution, and Q  is the rotational speed 
of the force. Applying the Poisson's summation formula on (3) 
one can separate the space and time variables:
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Fig. 1: Schematic of the cylindrical shell excited by a 
circumferentially moving radial point force

P(M,t) = £  P(M)P(t)
N=-~

, P(M) = 1— o(x - x0)-e (4)

2 n a L

P (t) = e m <

Integrating P ( M )  in (2) and developing on the modes of a 
simply supported in vacuo circular cylindrical shell, one can 
minim ize this energy function with respect to the modal 
amplitudes and obtain the expression of the generalized force 
vector:

(5)

where

8n ,=4 2

0 n * N
0 n=N=0,a=0
2 n=N=0, a= l

-j n=N * 0 , a=0

1 n=N ï  0, a= l

Applying the same development for the three first energy terms 

of equation (1) gives finally, for an e/NOt rotational excitation, 
the following modal equation of motion:

oo J

M-nmj ( COnmj ( 1 ~j?l) ~ (N£2) ~j(N£2) ^  ^  hvnq &nqk ~ ̂ Nnmj(6)
q=l k=l

where N O  represents the N  *  harmonic of the rotational speed, n 
the circumferential order, m  and q the longitudinal orders, j  and 

k the type of mode (torsional, radial, axial), (Onmj  the eigen- 

angular frequencies, a a nmj  the modal amplitudes, 7] the structural 
damping, and Znm<? the modal radiation impedances.

For a better understanding of equation (6), let's neglect Z nmq. 

Then, one can observe that maxima for modal amplitudes will 
occur when

-  25 -



(7) n < 0.2 71 (8)

where £2C is named the critical speed. In fact, there are as many 
critical speeds as eigen-angular frequencies.

2. NUM ERICAL RESULTS

The results for a 0.003 m thick steel shell with a length of 1.2 m 
and a radius of 0.48 m are presented in Figs. 2, 3 and 4 for two 
different rotational speeds (25 Hz and 75 Hz), for the first 
longitudinal order ( /n= l), and for the type of mode (torsional, 
radial, axial) having the lowest eigen-angular frequency.

Fig. 2 represents critical speeds versus circumferential orders. 
As one can see, the first critical speed occurs at 28 Hz, for the 
fifth circumferential order and the first longitudinal order (i.e. 
mode (5,1)).

Because the 25 Hz rotational speed is very close to the first 
critical speed of 28 Hz associated with the mode (5,1), the 
quadratic velocity amplitude presents a significant single peak 
for the 25 Hz fifth harmonic (i.e. 125 Hz or the fifth '+' in 
Fig. 3). Since only frequencies around mode (5,1) (75-250 Hz) 
are very excited, a low sound power will be radiated (see Fig. 4).

If the rotational speed is increased up to 75 Hz, one can predict, 
by looking at Fig. 2, that a first peak will occur at its third 
harmonic (mode (3,1)) and a second at its sixteenth harmonic 
(mode (16,1)). The result predicted is verified in Fig. 3. The 
bandwidth excited is now very large and the final result will be 
an important increase of the radiated sound power (see Fig. 4).

For the 75 Hz rotational speed, the previous results include only 
the first longitudinal order. If the m first longitudinal orders are 
included, the quadratic velocity and the radiated sound power will 
be radically different because more than two critical speeds will 
occur.

For the 25 Hz rotational speed, including m longitudinal modes 
will not change appreciably the curves because no other critical 
frequency will occur.

Finally, as one can see, on Fig. 3 and 4, or by the mean of 
equation (6), to obtain the quadratic velocity and the radiated 
sound power at 2000 Hz, for a radial force rotating at 25 Hz, the 

circumferential order has to be equal to 80 (80^  harmonic). In 
that case, we need to ensure that thin shell theory is still 
applicable by using the following criteria:

circumferential order (n)
Fig. 2: Critical speed versus circumferential orders

3. CONCLUSION

The model developed in the case of a simply supported 
cylindrical shell has allowed us to draw some preliminary 
conclusions useful in design such as the low level of sound 
radiation when the force rotational speed is lower than the 
critical frequency associated with the first mode. The use of the 
variationnal approach will allow the integration of more 
complex parameters such as stiffeners, visco-elastic layers, 
internal pressure and heavy fluid.
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Fig. 3: Quadratic velocity (each V  corresponds to an harmonic 
of the 25 or 75 Hz rotational speed)
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Fig. 4: Radiated sound power (each V  corresponds to an 
harmonic of the 25 or 75 Hz rotational speed)
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