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Figure 1: Acoustic array configuration deployed at 35 
metres during the experiment.

1 In t ro d u c t io n

Acoustical scintillation measurements can provide a basis for 
determining the properties of ocean structure in coastal wa­
ters and can be used as a tool to remotely measure oceano­
graphic processes (e.g. current and turbulent structure) 
which differ markedly from processes in the open ocean. A 
scintillation experiment in 1989 was carried out in a coastal 
environment in British Columbia, Canada in order to relate 
acoustic characteristics to  the oceanography.

The experimental site was Saanich Inlet which is a deep 
(220 m), quiescent (maximum currents 10 cm -s - 1 ) and s tra t­
ified fjord. Our goal is to compare acoustic propagation 
through this relatively undisturbed, coastal environment with 
previous measurements in a turbulent tidal channel (Farmer 
et.al. [2]).

Figure 1 shows the  two dimensional square array configu­
ration used (2 metre spacing between darkened transducers). 
The arrays were deployed at 35 metres depth. Each trans­
ducer is directional with a beam width of 10 degrees at -3dB.

The 67 kHz acoustic signal used in the Saanich Inlet experi­
ment made use of a 127 bit phase modulated pseudo-random- 
noise (PRN) code so as to  improve the signal to noise ratio. 
The bit width of the code was chosen so that multipaths sep­
arated in arrival time by about 300/^s (20cycles) could be 
distinguished. The matched filter output of the PRN code 
produces a well known triangular peak shape.

The transm itter array cycles through all four transducers 
5 times each second. The incoming signals at the receiver 
are filtered, amplified and then separated into in-phase ( /)  
and quadrature (Q) components. Each is then correlated 
with a stored PRN tem plate  of the transmitted signal. The 
matched filter ou tpu t shows a series of peaks corresponding to 
different signal paths. T he amplitude (A — \ J I 2 + Q2) and
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Figure 2: (a) Acoustic amplitude measured as a function 
of relative arrival time and as a function of elapsed time, 
(b) Averaged sound speed profile with the corresponding 
acoustic eigenrays.

arrival time (r)  are determined using a m axim um  likelihood 

procedure. The phase <j> is then defined as a r c t a n [ ^ ^ ] .  The 
arrival time r  is used to resolve the 360° phase ambiguity.

2 M u lt ip a th  A nalysis

The acoustic observations in Saanich Inlet show multipath 
propagation conditions. Figure 2(a) shows the measured am­
plitude (in arbitrary units) as a function of relative arrival 
time (3 ms total) and as a function of elapsed time. The 
figure represents 8 hours of sub-sampled d a ta  (75 second in­
tervals). Three distinct acoustic paths are present and they 
correspond to the eigenrays shown in figure 2(b). These rays 
are obtained using a simple range independent ray tracing 
algorithm.

The first set of arrivals is refracted upwards into the near 
surface because of the shallow thermocline. T he second ar-
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rival, although appearing to have a well defined peak, is ac­
tually a superposition of several overlapping multipaths. It is 
this path tha t will be studied in closer detail. The third set of 
arrivals clearly show phase variations related to the internal 
tide tha t exists at 100 metres and beyond.

In order to separate the multipaths observed in the prelim­
inary analysis, a maximum likelihood estimation algorithm is 
developed following Ehrenberg et.al. [1], The mathematical 
model for the received signal r ( t)  is,

r(i) = ^  Ais ( t  -  n )  +  n(t) (1)

where Ai and r; are the am plitude and arrival times for the 
i th path  and n(i) is the noise. The signal s(t) is known since 
it is the matched filter ou tpu t (c.f. Menemenlis and Farmer

[3]):
9  / \  2  n

*(* - r) = X ! ( t~ r ~  ) ’

where a„ are known coefficients and rp is the half-width of 
the correlation peak (=  1 bit =  3 samples). This function is 
triangular with a rounded apex.

The maximum likelihood estimation is derived as follows: 
minimize

« = £ (3)

=  I > ( o a
J = 1 j= l k=1

(4)
with respect to Ai  and t,. Minimizing Q implies tha t the 
second term on the right of the last equation should be max­
imized. T h a t is,

maximize P  = CTA  — i A T B A  w.r.t. Ai and n ,  (5)

where C(rj) — Ŷ ,t r(t)s(t — Tj) is the cross covariance be­
tween the received and modelled signal, and f?(ry, r*) = 

is the auto covariance between the mod­
elled signals. This maximization problem is written in m atrix  
form where

B =

=  ( j4 i , Az, . . . ,  A h ),

= (C(n),C(T2), . . . ,C(rN),

B ( n , r i)  B ( n ,  r2) 
B ( t 2 , n )  5 ( r 2,r2)

B { n , T N ) 
B(r2, Tn)

_ B ( r N , n )  B(TN,T2) ... B ( t n , t n )  . 

Maximizing with respect to each of the A, yields,

A  =  B ~ 1C.

(6)
(7)

.(8 )

(9)

Substituting into equation [5] gives the following maximiza­
tion problem,

maximize [ -C T B 1C] w.r.t. Ti. ( 10 )

Figure 3: Integration of the noise for an assumed number 
of paths N . The integrated signal level is shown for 
N  — 0. Averages are shown as an * on the far right side.

Therefore, to determine the maximum likelihood estimate, 
equation [10] must first be maximized with respect to the ar­
rival time estimates. This equation is in a quadratic  form and 
is a function of N independent variables and so maximization 
occurs over an N dimensional space. Powell’s quadratically 
convergent method [4] is used for this procedure. T he result­
ing set of arrival time estimates are then used in equation [9] 
to obtain the amplitude estimates.

In deriving the maximum-likelihood estim ate it is assumed 
that the number of paths N  is known and fixed. The number 
of paths chosen is N  =  3. This is because the arrival time in­
tegration of the noise calculated for N  =  0,1, 2, 3 multipaths 
(see figure 3) gives the correct noise level for N  =  3.

3 C onclusions
Now that we have separated the overlapping multipaths, we 
are in a position to use the am plitude and phase measure­
ments in a variety of ways to contribute to our understand­
ing of acoustic propagation in this environment. For example, 
the phase difference between vertical and horizontal receivers 
can be used to detect the angle of arrival of the acoustic wave­
form. Cross correlation techniques can be implemented in 
order to determine the  current component perpendicular to 
the direction of propagation as well as give some indication 
of the coherence length scales.
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