NOISE EXPOSURE SURVEYS - 10 YEARS OF EXPERIENCE

Alberto Behar/Jim Desormeaux
Ontario Hydro, 757 McKay Road
Industrial Hygiene Services Department
Health and Safety Division
Pickering, Ontario
L1W 3C8

ABSTRACT

The procedure for the assessment of "Noise Exposed Worker" as outlined in the Ontario Hydro Corporate Noise Control and Hearing Conservation Program requires that a noise exposure survey be performed following the CSA Standard Z107.56. This paper outlines practical aspects of the survey, resulting from 10 years of experience. It describes steps to be taken starting from the planning aspects, through the actual survey, and the handling of the numerical results.

1.0 INTRODUCTION

For the last 10 years, noise exposure surveys have been conducted in Ontario Hydro. Results from these surveys are used for hearing conservation purposes and to provide data needed for Workers Compensation Board claims.

As per the Corporate Noise Control and Hearing Conservation Program, Ontario Hydro employees are classified as "Noise Exposed Workers" (NEW), when their average long term noise exposure exceeds 85 dBA. Because of the cost involved, individual noise exposures are rarely determined. Instead, the noise exposure of a trade (defined as a group of employees working in the same noise environment) is calculated using results from measurements performed on statistically significant samples of workers within the trade. The procedure used is the one in the CSA Standard Z107.56. The average noise exposure of the group is calculated at the 95% confidence level ($L_{avg,95\%}$) using the mean value of the sample’s noise exposures and their standard deviation. Members of the entire trade are declared NEW when their $L_{A,95\%}$ exceeds 85 dBA.

2.0 BASES FOR THE METHOD

2.1 Distribution of the samples

It has been shown that statistical distributions of weekly average noise exposures of workers from several trades within Ontario Hydro follow a normal distribution. This could be explained by the fact that:

(a) the theorem of the central tendency predicts normal distribution of the means, and

(b) since the quantity that is measured (sound pressure) is logarithmically related to the units used (sound pressure level,dB), then if pressures are log-normally distributed, the sound pressure levels will be normally distributed. The normal distribution simplifies the statistical treatment of the data and the required calculations. The data that have to be calculated are:

(a) the average mean noise exposure level (L_{A}), defined as the arithmetical average of the measurements, and
b) the standard deviation of the samples.

2.2 Variances Within and Between Samples

Analysis of variance was performed on several databases of noise exposure levels of workers from different trades, all collected for four consecutive days. It was found that for most of the databases the variance of noise exposure levels within workers (i.e., between noise exposures of the same worker day after day) are much smaller that variances between workers (i.e., between noise exposures collected from the workers on the same day).

The consequence of the above is that if work is performed approximately in the same way, there is no need for sampling several days in a row: one day is enough, provided that there are no changes in the noise environment.

This statement was also tested, by calculating L_{Trade} of several trades using data from 1, 2, 3 and 4 consecutive days of sampling and obtaining approximately the same result.

3.0 PREPARATION OF THE SURVEY

3.1 Planning Meeting

Line management requesting the noise exposure survey are seldom knowledgeable of how it has to be performed. On the other hand, the surveyor needs to know the operations conducted at the site, trades and subtrades involved, nature of the activities that they are performing and the number of workers in each trade/subtrade. This interchange of information is best achieved at a formal meeting involving local line management, Joint Health and Safety committee representative and local safety contacts.

Only a careful preliminary planning work can insure a successful survey.

3.2 Determination of the Trades/Subtrades

Easy as it may appear, determining the groups that have to be tested is a difficult task. Questions regarding the existence of subgroups, shifts, supervisors (if they are or are not part of the trade) have to be answered. There is no straight forward procedure that will assist in determining the groups. Consultation with line supervisors and common sense are still the most direct way.

On the other hand it may appear that there are two trades (e.g., day and night shifts). Therefore a sampling strategy will be conducted on that premise. However, at the end of the survey, a student's T-test between the resulting L_{Trade} may show that there is no statistically significant difference. The two trades are in fact one for the purpose of the noise exposure survey. In that case, results from both tests have to be pooled and L_{Trade} calculated again to get a single L_{Trade} number.

3.3 Determination of the Sample Size

Two situations may occur when deciding on the number of employees to be sampled:

i) The Standard deviation of the sample is known from previous measurements, or

ii) The Standard deviation is unknown.

In the first case, Table B2 from the Standard should be used. It shows the sample size used to determine L_{Trade} 95% for different standard deviations.

If the standard deviation is not known (in the case of a measurement done for the first time), the sample size can be determined using any of the Tables A-1 through A-4 in reference.

Table 1, reproduced from Table A-4, Ref 2, is currently used in Ontario Hydro. In most cases it provides a sample size equal to or larger than that in Table B2 from the Standard and is, therefore, a helpful starting point.
Table 1: Sample Size for Different Populations

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>7-8</th>
<th>9-11</th>
<th>12-14</th>
<th>15-18</th>
<th>19-26</th>
<th>27-43</th>
<th>44-50</th>
<th>> 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

3.4 Sampling Duration

The duration of the sampling depends on the activities performed in the workplace. As mentioned in 2.2, one-day sampling should provide sufficient data.

However, a two-day survey allows the surveyor to ensure the reliability of the test results. For the same reason, surveys done for the first time should not be performed less than two, and preferably three days.

4.0 PERFORMING THE SURVEY

4.1 Data Required

Before starting the survey, the following data should be collected:

a) Names of the trades to be surveyed

b) Number of workers in each trade (population size)

c) Number of workers in each trade to be tested (sample size)

d) Names of the workers to be tested. They should be volunteers, selected on a random basis.

4.2 Presurvey Meeting

Before starting the survey, workers from the sample should be assembled for an informal meeting. Detailed explanation of the objectives of the survey should then be provided. The workers should also be shown the dosimeters and explained how they operate to avoid misunderstandings and suspicions that the device is a tape recorder to spy on them.

At the same meeting, the details of the survey are explained, and the forms that they have to filled are shown.

4.3 The Survey

The daily routine starts with the calibration and the checking of the dosimeters' batteries, performed by the technician in charge.

Then, the portion of the Noise Exposure Survey form (Figure 1) regarding time "on", # of the dosimeter and the name of the worker are filled in. Dosimeters are then given to each worker, with the microphone, pointing up, attached to the collar, and the cables secured to avoid any safety hazard.

Workers are instructed that the dosimeter should be worn all the time, including the lunch time. They are then sent off to their duties.

During the day, the technician in charge of the survey, follows the workers taking notes of the tasks performed by the workers and of the ambient noise levels.

4.4 At the End of the Day

At the end of the day/measuring period workers return with their dosimeters. They are required to fill out the Activity form, that contains details of the tasks they were performing during the day.

Dosimeters are checked for changes in the calibration and for the state of their batteries, prior to taking the reading of the L_{eq}.

The ambient noise level measurements and the activity information is used to validate the noise exposure results (the individuals' L_{eq}): this is the only way of ensuring that there was no foul play with the dosimeters.

5.0 DATA MANIPULATION

The CSA Z107.56 Standard provides all the formulas needed for the calculation of $L_{Trade} (95\%)$.

- 17 -
As per the Standard, the first step is to calculate the mean noise exposure and the standard deviation of the sample.

Then, the sample size has to be validated using the data from Table B.2 from the Standard. If the number of data gathered are sufficient, then the next step is to calculate $L_{\text{trade}}(95\%)$.

The resulting average noise exposure of the trade at the 95% confidence level is the one to be used for the classification of the trade as "noise exposed" and also to provide the noise exposure level requested by the Workers Compensation Board (WCB).

FIGURE 1

DAILY ACTIVITY SHEET
(thank you for your cooperation)

<table>
<thead>
<tr>
<th>NAME: _____________________________</th>
<th>DOSIMETER NO.: _____________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADE: _____________________________</td>
<td>DATE: _____________________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Location/Elevation</th>
<th>Work Activity (e.g., grinding, walking, steam leaks, noisy sources)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-Shift Start--Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-Coffee--Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-Lunch--Coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-Coffee--Shift End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Rion's new NA-29 provides unusual capabilities for a pocket-size acoustical analyzer weighing only 2.2 lbs. It's displays include:

- Lmax, Ln, Lavg, Leq.
- Sound level in large digits.
- Real-time octave analysis centered 31.5 Hz. through 8000 Hz.
- Level vs. time, each frequency band.
- 1500 stored levels or spectra.
- Spectrum comparisons.

It also features external triggering, AC/DC outputs, and RS-232C I/O port. A preset processor adds additional versatility for room acoustics and HVAC applications. To minimize external note taking, users can input pertinent comments for each data address. Specify the NA-29E for Type 1 performance or the NA-29 for Type 2.

Our combined distribution of Norwegian Electronics and Rion Company enables us to serve you with the broadest line of microphones, sound and vibration meters, RTAs, FFTs, graphic recorders, sound sources, spectrum shapers, multiplexers, and room acoustics analyzers, plus specialized software for architectural, industrial and environmental acoustics. You'll also receive full service, warranty and application engineering support. Prepare for the '90s.

Call today. (301) 495-7738

Norwegian Electronics • Rion
916 Gist Avenue • Silver Spring, MD 20910
NO MATTER WHAT ANALYZER YOU HAVE

BE UPGRADED

The 2140 family of instruments capable of the most advanced analysis is not only highly portable and at the cutting edge of technology, each one can be easily adapted for specific uses.

OUR FAMILY MEMBERS:

- The Type 2146 real time sound level meter, which with a little effort can change itself into
- The Type 2143 single-channel real time analyzer which can easily be upgraded to
- The Type 2144 dual-channel real time analyzer which can easily be adapted to become
- The Type 2145 vehicle analyzer with tracking included.
NATURALLY WE HAVE FFT CAPABILITY AS WELL.

- The Type 2147 single channel FFT analyzer, which given a little boost becomes
- the Type 2148 dual channel FFT analyzer

Of course we supply whatever software and additional equipment required and of course we supply the above industrial rack-mounted equivalents.

After all, that is why we set the standards in our field.

Contact your local BRUEL & KJAER representative for more information.
Noise Control Products & Systems

for the protection of personnel...
for the proper acoustic environment...
engineered to meet the requirements of Government regulations

Eckoustic® Functional Panels
Durable, attractive panels having outstanding sound absorption properties. Easy to install. Require little maintenance. EFPs reduce background noise, reverberation, and speech interference; increase efficiency, production, and comfort. Effective sound control in factories, machine shops, computer rooms, laboratories, and wherever people gather to work, play, or relax.

Eckoustic® Enclosures
Modular panels are used to meet numerous acoustic requirements. Typical uses include: machinery enclosures, in-plant offices, partial acoustic enclosures, sound laboratories, production testing areas, environmental test rooms. Eckoustic panels with solid facings on both sides are suitable for constructing reverberation rooms for testing of sound power levels.

Eckoustic® Noise Barrier
The Eckoustic Noise Barrier provides a unique, efficient method for controlling occupational noise. This Eckoustic sound absorbing-sound attenuating material combination provides excellent noise reduction. The material can be readily mounted on any fixed or movable framework of metal or wood, and used as either a stationary or mobile noise control curtain.

Multi-Purpose Rooms
Rugged, soundproof enclosures that can be conveniently moved by fork-lift to any area in an industrial or commercial facility. Factory assembled with ventilation and lighting systems. Ideal where a quiet “haven” is desired in a noisy environment: foreman and supervisory offices, Q.C. and product test area, control rooms, construction offices, guard and gate houses, etc.

Audiometric Rooms:
Eckoustic Audiometric Survey Booths provide proper environment for on-the-spot basic hearing testing. Economical. Portable, with utilized construction.

Survey Booths & Diagnostic Rooms
Diagnostic Rooms offer effective noise reduction for all areas of testing. Designed to meet, within ±3 dB, the requirements of MIL Spec C-81016 (Weps). Nine standard models. Also custom designed facilities.

An-Eck-Oic® Chambers
Echo free enclosures for acoustic testing and research. Dependable, economical, high performance operation. Both full-size rooms and portable models. Cutoff frequencies up to 300 Hz. Uses include: sound testing of mechanical and electrical machinery, communications equipment, aircraft and automotive equipment, and business machines; noise studies of small electronic equipment, etc.

For more information, contact
ECKEL INDUSTRIES OF CANADA, LTD., Allison Ave., Morrisburg, Ontario • 613-543-2967
ECKEL INDUSTRIES, INC.