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Psychoacoustics deals with the biological response to an 
auditory stimulus. This biological response, however, depends on 
the characteristics of this physical stimulus in a complex manner. 
For example, it would be an oversimplification to state that 
loudness of a pure tone depends solely on the amplitude of a 
sound pressure wave, and that pitch depends solely on the 
frequency. The physical quantities sound intensity, sound 
duration and frequency combine in a subtle manner to produce the 
psychoacoustic quantities loudness and pitch. In an attempt to 
isolate the effects of each physical variable, experiments have 
been conducted in the past to determine the relationship between:

a) loudness and intensity, with frequency held constant;
b) pitch and frequency, with intensity held constant.

The relationship between loudness/pitch and 
intensity/frequency has also been investigated using experiments 
on auditory discrimination. Discrimination experiments involve 
determining how much change in intensity (or frequency) is 
required to elicit a change in biological response. For example, a 
tone of 100 Hz can probably not be distinguished from a tone of 
101 Hz at all relevant sound intensities, as long as the intensity is 
held constant between the two tones. Commonly one calculates 
the Weber Fraction, which is the change in intensity/frequency 
divided by the reference intensity/frequency, required to produce 
a change in sensation. The Weber fraction is calculated over a 
range of intensities (or frequencies). There are two types of 
Weber Fraction with which we shall be concerned, corresponding 
to Experiments a) and b) above:

c) fractional changes in intensity, with frequency held constant;
d) fractional changes in frequency, with intensity held constant.

We shall return to these experiments after giving a little 
theoretical background.

We have been developing, over a number of years, an 
entropie or informational approach towards quantifying human 
sensation. A sequence of papers have been published detailing 
our advances of this method [1,2], A single, master equation of 
three parameters has been derived relating the variables 
biological response, constant sensory stimulus intensity, and time 
since onset of the sensory stimulus. This equation accounts 
quantitatively for nearly all experimental results relating the three 
sensory variables. The published form of this equation deals only 
with steady sensory inputs (constant intensity over time), but the 
equation functions over almost all sensory modalities. In 
particular, we are now interested in its predictive abilities in 
auditory psychophysics.

The entropy equation, in its simplest form, may be written as 
follows:

F  = yÆ ln(l+p/” / î), (1)

where F  is biological response, I  is auditory stimulus intensity, 
and t, the time since onset of stimulus, must be < t . The
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exponent, n, to which I  is raised, can be identified with the 
Steven's exponent appearing in the power law of sensation. For 
audition, this exponent has a mean value of about 0.3 if I  is 
measured in units of sound intensity. The response F, may be 
either impulse firing rates in auditory ganglion cells or loudness, 
with appropriate change in time scale. The derivation of this 
equation is given in [1,2,3], Notice that the time variable divides 
into the intensity variable in the numerator. For constant I, this 
has the effect of decreasing the "effective intensity" over time and, 
consequently, decreasing the response F, as seen by Equation (1). 
A monotonie decreasing F  with time corresponds to adaptation to 
a stimulus of constant intensity. In audition, F  would represent 
either loudness decreasing over time, or the decrease of the firing 
rate in the primary sensory afferent neurons attached to the hair 
cells. This equation has been applied to the experiment of Yates 
et al. on the guinea pig auditory ganglion cells. The parameters k, 
[3 and n were obtained from curve fitting the data of Yates et al. 
[4]; the analysis can be found in reference [3].

For magnitude estimation experiments, the sound stimulus is 
applied for a constant duration of time, say t'. Equation (1) then 
takes on the following form:

F = \k \ n ( \  + $In If ) .  (2)

By setting y = (3 / 1', we obtain

F = ±k]n(l + y ln). (3)

Notice that, for small values of yP, we can expand the right hand 
side of Equation (3) in a Taylor series of the form ln(l + x) « x  to 
get

F = ( \ k y ) I n. (4)

This equation is recognized as the power law of sensation. One 
can now appreciate why the parameter n in Equation (1) can be 
identified with the Steven's exponent in the power law of 
sensation. If we now let yP  become large, we can approximate 
Equation (3) with the form ln(l + jc) » ln(x) to obtain

F = (^fm)\n(I)  +  const. (5)

which is the logarithmic law of sensation. Although it has been 
observed that, for most of the physiological range of I, both the 
power and the logarithmic laws hold to a high degree of 
approximation, both laws systematically deviate from the data at,
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respectively, larger and smaller intensities. Equation (3) is a 
more general law of sensation embracing both the power and the 
logarithmic laws. Equation (3) describes all published data of the 
loudness-intensity type whether or not they conform to a straight 
line when plotted in a semilog or full log plot. To wit, consider 
the magnitude estimate data of Luce and Mo [5], which do not 
conform to a straight line with either type of graph, but are fitted 
well by Equation (3). The analysis of the data can be found in 
reference [3],

Returning to Equation (3), taking the derivative of F  with 
respect to I  and replacing the differentials with finite differences, 
one can arrive at an expression for the Weber Fraction describing 
discrimination experiments. Reference [3] provides the 
derivation of the equation, which has the following form,

A/  

I

2 A F / k  _i „ 
(1 + y I  ). (6)

n

Equation (6) can be applied to analyze the experiments of Riesz
[6], who performed auditory intensity discrimination experiments 
(Experiment c) on human subjects. In fact, the equation he used 
to describe the data matches Equation (6) term for term. 
Although Riesz did not derive the equation he used, offering the 
equation only as an empirical fit for the data, we have now been 
able to derive the equation theoretically. There are various other 
auditory experiments involving intensity embraced by the seminal 
Equation (1), including the SDLB effect and some of Békésy's 
results.

We now wish to incorporate a frequency variable into 
Equation (1) in order to account for frequency effects in the 
sensation of sounds. Notice that, if we were to utilize Equation
(1) to describe pitch sensation, the time variable becomes 
"extraneous", in the sense that one does not adapt to the frequency 
of sound. In other words, the time variable, in pitch sensation, is 
used for something other than adaptation. We can associate the 
inverse of time with frequency. For a pure tone, inverse time will 
simply be the frequency of the tone. For a more complex tone, 
Schouten's theory of hearing postulates that a non-linear filter in 
the ear allows the ear to pick up the fundamental frequency of 
oscillation of a complex tone (what Schouten calls a residue) [7]. 
The modified equation would now have the following form, where 
/ i s  the relevant frequency:

F = 4 * l n ( l  +  P / " / ) . (7)

The work of Linsay and Norman [8] provides an excellent of 
test of Equation (7). At a fixed sound intensity, they determined 
experimentally how pitch changes with frequency (Experiment b). 
Furthermore, the empirical equation they used to fit their data is 
identical to Equation (7),

F  = 2410.1n(l + 1.6 x 10 / ) , (8)

providing some confirmation of the validity of our inverse time 
equation.

An additional equation can be derived to account for 
frequency discrimination experiments (Experiment d). The

derivation is mathematically identical to the derivation of 
Equation (6) and the Weber Fraction function for frequency takes 
on a similar form to it:

^=2^[i+(pr /y ' i  
f  k

(9)

This equation provides good prediction of the data of Shower 
and Biddulph [9], who did experiments to determine the Weber 
Fractions of frequency as a function of frequency for constant 
sound intensity. The equation also predicts that Af / f will 
diminish for increasing I  as shown by Shower and Biddulph.

In summary, while experiments a) through d) have been 
analyzed by the experimenters themselves, their method of 
analysis is often empirical or applicable only to their own 
experiments. We now offer a unified approach to the study of 
auditory psychophysics by proposing that a single equation can 
account for experiments a) to d). To do so, we have reinterpreted 
a variable in our original equation so that it can now account for 
frequency effects in the sound stimulus.
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