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1. I N T R O D U C T I O N

A new computational model of the auditory periphery has 
been recently reported by the first two authors [1, 2]. The 
model is particularly attractive for hearing research in that 
it enables practical simulation of auditory nonlinearities and 
feedback mechanisms, and the study of the deterioration of 
these processes in the hearing impaired.

In this article, we present the results of an exploratory 
study designed to simulate the perceptual consequences as­
sociated with cochlear hearing loss. For this purpose, we 
combine the auditory model to a state-of-the-art recurrent 
neural network classifier [5] to form an auditory-based auto­
matic speech recognition system. Preliminary speech recog­
nition results for normal and impaired operations of the au­
ditory model are then compared.

The ultimate goal of this work would be to guide the de­
velopment of signal processing strategies for hearing aids. 
The idea is to find new ways of processing input speech so 
that, when passed through a model of impaired cochlea, the 
observed auditory nerve firing patterns and/or speech recog­
nition scores would be as close as possible to those observed 
for unprocessed speech passed through a normal cochlea.

2. T H E  A U D I T O R Y  M O D E L

The structure of the model closely follows the general archi­
tecture of the peripheral ear as shown in Fig. 1.

The different stages of the ascending path can be equiva­
lently represented as lumped-element analog circuits or as 
wave digital filters (WDFs) [2]. The input P(t)  is digi­
tized speech or other incident acoustic wave. This signal is 
processed by a WDF module representing the sound trans­
formation through the outer ear, middle ear and cochlea. 
The middle ear stage includes a time-variant capacitive el­
ement Cst(t) modelling the variable acoustic compliance of 
the stapes suspension in response to stapedial muscle con­
tractions. The cochlear stage is based on the classical 1-D 
transmission line model of basilar membrane (BM) motion, 
extended to account for the mechanical effects of the outer 
hair cells (OHCs). By injecting energy in phase with BM 
velocity at low levels, the OHC circuit leads to auditory fil­
ters with level-dependent, frequency selectivity and sensitiv­
ity. At low input levels, the BM is sharply tuned and highly 
sensitive. At high input levels, the BM is broadly tuned and 
the characteristic frequency shifts by about half an octave 
to a lower frequency. Over the full input range, the BM 
shows 31 dB of dynamic compression near the characteris­
tic frequency. These properties are in broad agreement with 
physiological observations [3].

The ascending path is completed by the inner hair cell 
(IHC) transduction model of Meddis [4], implemented as a 
wave digital filter. There are N WDF inner hair cell modules, 
one per BM segment, using the parameters of a medium-rate 
fibre. The input sn (t) to the IHC indexed n is assumed to 
be proportional to the velocity in (t ) of the BM segment n 
to which it is paired (Fig. 1). The fluid-cilia coupling gain

P(t)

Figure 1. Block diagram of the auditory model.

pn(t) is made time and space variant as discussed below. The 
model output F„(t) is the instantaneous firing rate of the N 
tonotopically-arrayed IHC afferent fibres.

The model also includes a simple feedback unit simulating 
the dynamics of the descending paths to the peripheral ear. 
The acoustic reflex is assumed to be a regulation system 
whose goal is to maintain the average firing rate to a constant 
target rate of F ar. The control function is a slow modulation 
of Cst(t), leading to a decrease in middle-ear transmission 
by up to 15 dB below 1000 Hz. The OHC efferent system 
is also assumed to be a firing rate regulation system. The 
control function is taken as a slow modulation of the coupling 
gain Pn( t ) .  The N fibres at the output of the IHC stage are 
grouped into J contiguous bands, and regulation is applied 
independently in each band with a target rate of F ê  . The 
gain control command n_, (i) is then spatially interpolated 
to yield pn (t) , leading to an inhibition of cochlear output 
equivalent to a reduction in input level by up to 24 dB.

The auditory model was applied to the analysis of speech 
data by computing auditory nerve cochleograms [1]. The 
OHC circuit provides level compression and spectral sharp­
ening in the low energy portions of an utterance. This results 
in a better resolution of the formant structure for weak vow­
els and nasals, and an enhancement of fricative noise. The 
descending paths lead to further dynamic compression.

3. T H E  R E C U R R E N T  N E U R A L  N E T W O R K

The structure of the recurrent neural network is shown in 
Fig. 2 and described in detail in [5]. The input and output
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Figure 2. Block diagram of the recurrent neural network.

vectors are divided into external and internal portions. The 
external input vector u(t) is a sequence of frames (16 ms 
duration) of parameterized speech of 48 dimensions from the 
auditory model. The components of u(t)  are as follows:

( C'st(t) for i =  0 
Uj(t.) =  < n,(i) for 1 <  i <  J

F i- j ( t )  for J +  l < i < J  +  N

where J= 3  and N=44. Thus, both  the tonotopic distribu­
tion of firing activity in the ascending path  and the control 
commands from the descending paths are fed to the recog­
nition stage. The external output vector y(t) has 61 dimen­
sions, one per symbol of the phone set of the T IM IT speech 
database [7]. The internal output forms a s tate vector x(t)  of 
160 dimensions and is fed back to the input in the next time 
frame. These recurrent, connections allow contextual infor­
mation to be accumulated over time in the state vector. The 
recognition process can then use this information to make a 
more accurate classification.

The training data  consists of 8 utterances (the si and sx 
sentences) from each of the 420 different speakers of the 
training portion of the T1M1T database. Training proceeds 
by unfolding the network in time over several frames of 
speech, comparing the external outputs to the target hand- 
labelled phone symbols, and adjusting the weights of the 
network so as to maximize a log-likelyhood cost function.

The test data  consists of 8 utterances from each of the 210 
different speakers of the test, portion of the T IM IT database. 
The external outputs y ( t) are interpreted as phone proba­
bilities for the specified speech frame. The most likely se­
quence of phone symbols is then computed from the frame 
by frame phone probabilities using dynamic programming. 
Final phone recognition results are obtained by comparing 
these machine-labelled symbols to the target hand-labelled 
symbols.

4. R E C O G N I T I O N  R E S U L T S

Recognition results based on two modes of operation of the 
auditory model, normal and impaired, are reported in Ta­
ble 1. The first number is the percentage of hand-labelled 
phone symbols correctly detected. The last number is the 
recognition accuracy, defined as 100% minus the percentage 
of insertion, substitution and deletion errors, and is the most 
important performance measure in this table.

When the auditory model is operated in its normal mode, 
the recognition accuracy is 61.8%. Over 2/3 of all errors

mode correct insert. subst. delet. accur.

normal
impaired

66.1%
58.7%

4.2%
4.9%

26.5%
32.4%

7.4%
8.9%

61.8%
53.8%

Table 1. Recognition results

are substitution errors. Inspection of the confusion matrix 
revealed tha t the most common substitution errors are be­
tween phones from the same broad class (e.g. / z /  vs /s / ,  
/m /  vs / n / )  and often involves nearby vowels on the vowel 
triangle (e.g. / ih /  vs / ix / ,  / a x /  vs / ix /) .  There are relatively 
few errors across broad classes.

The impaired mode of operation of the auditory model 
consisted of disconnecting the OHC circuit, in effect simu­
lating a total loss of OHCs. There is a loss of sensitivity and 
frequency resolution a t low levels. The descending paths 
have also been cut off in this mode, although the control 
commands have been calculated and fed to the recognition 
stage for a fairer comparison with the normal mode. The 
neural network has been re-trained and re-tested with this 
new data. The recognition accuracy has dropped to 53.8%, a 
decrease of 8.0% in absolute terms with respect to the normal 
mode. All major types of errors have increased, but particu­
larly substitution errors. Inspection of the confusion matrix 
revealed tha t recognition performance has decreased for all 
classes of phones. Nasals and non-sibilant fricatives are the 
most affected. Vowels, affricates and sibilant fricatives are 
the least affected. Amongst vowels, there is a tendency for 
the confusions to occur between vowels having their first for­
mant in similar frequency regions, and this is also observed 
in hearing-impaired listeners [6].

5. F U T U R E  W O R K

There remains many aspects to consider before we can 
achieve the ultimate goal of guiding the development of 
signal-processing hearing aids. In the short-term, recognition 
results will have to be repeated for more selective cochlear le­
sions than used here, both in quiet and in noise. In the longer 
term, further validation of the auditory model is needed by 
comparing the model output to physiological data  for normal 
and impaired ears. The recognition stage will also have to 
be reviewed to ensure tha t the observed decrement in scores 
in the impaired mode closely follows the pattern  seen in 
hearing-impaired listeners in psvchoacoustical experiments.
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