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ABSTRACT

There have been many attempts in the past to systematically attribute the subjective properties of speech 
to objective and physical characteristics. The aim of this study was to look in more detail at how objective 
properties interact to contribute to the shape of intelligibility versus presentation level functions for 
individual words. The interaction of such features as speech level, familiarity and spectral consistency were 
found to be complex and enlightening. Spectral consistency was measured using the variance of spectral 
flatness a  and the length of words. These two measures were a novel addition to the standard measures. 
Although the results shown by no means explain all the variation of speech intelligibility they do provide 
some insight into the play of factors for the fairly simple case of mono-syllabic words.

SOMMAIRE

Jusqu'à ce jour, de nombreux efforts ont été déployés afin d'attribuer de façon systématique les propriétés 
subjectives de la parole à des caractéristiques objectives et physiques. Le but de cette étude était de scruter 
plus en détails comment les propriétés objectives contribuent à la forme d'intélligibilité versus les fonctions 
du niveau de présentation pour les mots isolés. L'interaction de ces caractéristiques telles que le niveau de 
la parole, la familiarité et l'uniformité spectrale s'est avérée complexe et révélatrice. L'uniformité spectrale 
a été mesurée en utilisant la variance de l'égalité spectrale a  et la longueur des mots. Ces deux mesures 
représentent un ajout innovateur aux mesures classiques. Même si les résultats présentés ne permettent pas 
d'expliquer toutes les variations de l'intélligibilité de la parole, ils fournissent quelques indices sur le rôle 
des facteurs pour le cas relativement simple des mots mono-syllabiques.

1. INTRODUCTION

In this paper we seek to assess the relative importance of 
objective speech measurements in predicting subjective word 
thresholds and word intelligibility. We use the twelve 
Boothroyd (1968a and 1968b) lists of words specified by 
Markides (1978) as our material. Some of the measurements 
described in this paper were obtained in other studies, the 
specific sources are described in the text. Here we seek to 
see how the difficulty of perception of an individual word 
versus level of presentation is related to properties such as 
familiarity, energy (speech level) and frequency 
characteristics.

The analysis in this paper takes the form of correlation of 
subjective or behavioral data with objective properties. The 
subjective data was collected in a previous study aimed to 
identify a subset of words from the Boothroyd lists to be 
used in an adaptive test (James, 1992b). Some details of the 
nature of these data are presented herein. The choice and 
treatment of the objective measurements is based on 
previous reports in the literature and some further intuitive 
reasoning by the author. In this case the objective 
measurements are treated as indicators of the amount of 
information given to the listener for correct identification of 
the target word. There are two basic aims of this work: The 
first is to assess the relative importance of physical
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measurements and linguistic measurement and how best to 
treat these properties. The second is to find good objective 
predictors of the intelligibility characteristics of new speech 
material.

2. SPEECH MEASUREMENTS

Before embarking on any exploratory statistical analysis, it 
is useful to discuss the relative importance of the various 
objective factors in determining the subjective results. We 
can divide the objective measurements described below into 
three distinct types: those which describe level, spectral 
characteristics and linguistic usage. We might expect any 
measure of a certain type to be interrelated with other 
measures of the same type and independent of measures of 
a different type. However, it may be deduced that some data 
of apparently different types may be interrelated, for example 
speech level and mean spectral flatness (see below) are 
likely to be related measures.

In this study we are relating thresholds of stimulus words 
(the level at which a word is on average 50% intelligible) 
and the intelligibility of words at given presentation levels. 
The relative importance of objective types in predicting these 
subjective characteristics may be inferred by considering the 
effect of presentation level: It is fairly obvious that small 
differences in speech signal level will be of little importance 
at supra-threshold levels. Alternatively, small differences 
such as these may increase or decrease the level of 
thresholds, perhaps by the actual difference in speech level. 
(It is noted here that the manner in which the recording 
levels were set on the source tape will contribute to 
measured levels of the words, however these levels were 
preserved in the subjective study and in the measurements 
presented here.)

From previous studies (for example, James et al., 1992a), we 
know that certain Boothroyd words are more robust to 
degradation than others. This would seem to indicate that 
certain frequency characteristics are more robust than others. 
For example, fricative consonants of low intensity will be 
less audible compared to say the liquids that occur in 
diphthongs (such as "veil" and "fail."). In these words there 
are characteristic shifts in the vowel which forms the part of 
the speech spectrum with the highest energy. There might 
also be other clusters/structures which prove more robust, or 
alternatively more fragile to changes in presentation level. 
We can also state that the degree of consistency of any 
particular feature will lend to its perception. Here we might 
expect some interaction of steady state spectral 
characteristics with their duration and in a limited sense with

the word’s total duration. It is also true that shorter words 
will, in general, be of lower total energy.

Finally, we speculate about the importance of familiarity in 
the perception of speech. This has a history of study, for 
example Broadbent (1967) and Morton (1969), showing that 
more frequently used words are of higher intelligibility. 
Wayland et al. (1989) in addition show the effect of limiting 
the amount of information available to subjects by gating the 
test words. We may conclude a similar result for speech 
level: The further above threshold we get the more acoustic 
information is available. At higher levels, the effects of 
familiarity are reduced because the cohort of confusable 
words is reduced.

2.1. Speech Material

The speech material used in this study was the selection of 
twelve Boothroyd (1968a and 1968b) lists of ten mono
syllabic words, recordings made by ISVR, Southampton. For 
the purposes of analysis, the words were digitally transcribed 
and stored in a 12-bit digital format on a Masscomp 5450 
computer. The speech data was in a form which enabled use 
of Audlab signal analysis software and enabled speech to be 
replayed via a reconstruction filter (Kemo vbf/22) into any 
external measurement device such as a measuring amplifier 
or Sound Level Meter (SLM). In this study the relative 
signal levels to the calibration tone on the original test tape 
are preserved both for subjective presentation level 
calibration and for speech level measurements..

2.2. Speech Level

Speech level measurements were obtained in two ways: By 
calculation from the digitised word samples stored on the 
Masscomp computer, and by replaying the words via a 
reconstruction filter set at 8000 Hz cutoff frequency into a 
Brüel and Kjær SLM (2204), via an in line pre-amplifier 
(Briiel and Kjær UA0196). Using calculation and an SLM 
various measures of speech level for a given sample were 
obtained:

The root mean square power (by calculation) Prms.

f  \  

E Pn

n
V y

Where Pn are calculated from the square of the voltage of 
the speech signal.
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The mean square power level (by calculation) LPrms.

L Prms = l0 S (P r J

The total energy of the speech sample (by calculation) P,ot.

p,t = Y ptot /  n 
n

The total energy level (by calculation) LPtot.

L Ptnt = l° ë ( P J

The "A" weighted "Impulse" level (SLM) LAimp.

The "A" weighted "Fast" level (SLM) LAfast.

2.3. Spectral Analysis

Spectral analysis was in the form of the calculation of 
normalised Spectral Flatness from the digitised speech 
samples. More detailed information on the characteristics of 
particular sections of speech may be obtained using spectral 
analysis, particularly obtained via the FFT. The spectrum of 
speech obtained from fourier transform gives us the power- 
frequency distribution of the signal averaged over a frame of 
time. Some work has been done on the relation of spectral 
shape to perception previously by Dubno and Levitt (1981) 
and more recently by Lee and Dermody (1992) for segments 
of speech. However these have studied the properties of the 
discriminability of speech sounds, and the results are not 
easily translated into the complete word context. Thus here 
we aim to measure how the signal changes along its duration 
(see Figure 1). Much of the acoustic information in speech 
originates from changes in the spectrum and thus it is an 
important thing to measure. The time-amplitude variation of 
the various frequency components in speech signals is 
invariably complicated. We could, perhaps, go into great 
detail on these variations, however there will be great 
differences between the frequency characteristics of different 
articulations o f the same word on a microscopic scale, both 
between speakers and by the same speaker. It is therefore 
useful to look at the general shape and variation of speech 
spectrum.

One measure which lends itself to calculation is called 
Spectral Flatness a  (Jayant and Noll, 1984), this gives us a 
single measure of the spectral shape of the signal. G is 
obtained from a single spectrum and in this case is 
normalised, a value of 1 would indicate a flat or white noise 
spectrum and a value of 0 a completely random spectrum.

Spectral Flatness, c , is defined as the uniformity of the 
frequency distribution of the signal thus:

exp($2 [ln(P„)]/n)

n

Where Pn is the mean power over the frequency interval n, 
in the duration t-t0.

With this measure we could use the whole duration of the 
speech sample or use spectral flatness as indicator of change 
of spectrum by looking at the flatness between successive 
frames. The latter is more useful if we wish to look at the 
variation or consistency of the spectrum of the signal.

An example of spectral flatness analysis is given in Figure 1. 
The top graph shows the time-amplitude variation for the 
word "cheese", the lower graph shows the corresponding 
spectral flatness plotted against time frame. We can see the 
three distinct regions representing "ch", "ee" and "zz", the 
first consonant, vowel and final consonant. The most 
dominant feature is the low spectral flatness over the 
duration of the vowel, this is due to the strong harmonic 
structure of the vowel sound. The regions representing the 
consonants produce much smaller dips in the flatness curve, 
these are due to the shaped noise characteristics of "ch" and 
"zz". It is interesting to note that vowel sounds are of low 
spectral flatness and high energy.

The normalised spectral flatness was calculated for frames 
of 12.8 ms at 3.2 ms intervals using a version of the Audlab 
"fft" program (sfm) modified by the author. Thus, between 
about 160 and 200 data points of spectral flatness were 
obtained for each word. The mean and variance of these data 
were then calculated to give the parameters o mem and c mr 
for each word. With this approach it was possible to get a 
measure of both the average shape, and consistency of the 
shape of the spectrum of individual words. No 
transformation was applied to a  in the calculations since 
a mean and a mr were largely independent (Howell, 1982).

2.4. Duration

The duration tf  for each word was obtained in terms of the 
number of frames used for each sample in the Spectral 
Flatness analysis (above).
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FIG. 1. Spectral flatness a  versus frame for the word "cheese" (lower plot). The upper plot is the corresponding 
time-domain waveform. Frame length 12.8 ms, frame shift 3.2 ms.
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2.5= Familiarity/Frequency of Usage 2.6. Word Intelligibility

In most studies of the relationship of word frequency to 
intelligibility, word counts have been collected from written 
sources (for example, Rosenzweig and Postman. 1957, 
Broadbent, 1967, Lyregaard, 1976, and Hood and 
Pool, 1980) such as those produced by Thorndike and Lorge 
(1944) and more recently by Francis and Kucera (1982). In 
this study frequency of usage data was obtained from 
teletext subtitles (James, 1991), this was data was used 
because it represents spoken English. Data were collected on 
the usage of not only the target words, words in the 
Boothroyd lists, but also for words which were confusable 
with the target words. Morton’s (1969) logogen model 
supports the idea of "competing" responses, and so some 
indication of relative familiarity of the target word to other 
candidates would be useful. The word usage data used here 
were treated in several ways:

Absolute count of word usage U.

The logarithm of absolute count of word usage LogU, as 
applied by Broadbent, and Lyregaard.

The ratio Vcl+c2, where:

V  = ___ ]L______

e/+c2 Y,U + H U
c l c2

i.e. the ratio of the usage of the target word to the sum of 
usage of the words in the cohort. In this case the response 
set was defined by all those words which either front rhyme 
(c2 confusion, as in cat and cap) or end rhyme 
(icl confusion, as in they and lay).

The logarithm of the ratio VcI+c2, LogVcl+c2.

The ratio Vclc2, where:

clc2

Seventeen subjects with no history of hearing impairment 
and between the ages of twenty one and twenty six, were 
chosen from the local University population. A 6 dB 
decrement/increment two-by-two paradigm was used to 
adaptively control the presentation level of 120 Boothroyd 
words (James, 1992b): The presentation level for the next 
two words is based on the results from the previous two 
such that two errors produce a step up in presentation level, 
one error no change, and no errors a step down. The order 
of presentation of words was randomised for each 
subject. The presentation rate was unpaced, a new word 
only being initiated after the subject’s response to the 
previous one had been recorded. The presentation of each 
word was cued by a tone followed by a short gap. The 
subjects were asked to repeat each word as they heard it and 
told that the words would vary in loudness. Even if they 
heard only part of a word, or a word that did not make 
sense, or even a single sound, they were asked to re-iterate 
it. The response u for each word was recorded as correct 
(1) or incorrect (-1) by the experimenter. Thus the 
presentation levels of words are scattered around some 
overall threshold for each subject.

The data from this subjective experiment are expressed here 
in terms of Robustness Indices for each word, for several 
reasons:

"Intelligibility" versus presentation level functions are to 
be generated for individual words as opposed to some 
fractional scoring of a list of items. One can only score 
a response as correct or as an error for a given item.

The above being the case it seems appropriate to include 
some measure of the uncertainty of the result (variance) 
in the expression of the intelligibility function (see 
below definition of RL).

Data points u obtained for a word at a given level L are 
used in obtaining Robustness at other levels. This 
deviates from the conventional way in which 
"intelligibility" is obtained. However, this makes more 
efficient use of the available raw data provided that 
conditions for the results u are met as specified below.

here the response set clc2  is defined by any words which 
have a common vowel to the target word (Taken from the 
dictionary as specified in James 1991).

The logarithm of VcIc2, LogVcIc2,



Robustness Indices RL were calculated for each word as 
below for a range of presentation levels L:

È  us k)
R .  = _____ — ___________

L  n

1 2 ( u L(k)-NML)

The denominator in is rounded up to 0.01 for all values less 
than 0.01 for the purposes of computation. The "normalised 
mean" NML is defined:

è w# )  
n m l = — _____  

n

and uL are defined for subject-word results u:

I f  u(k) = - 1 and L<L(k) => uL{k) = -1 
else if u(k) = 1 and L>L(k) => uL(k) = 1.

Note: If neither of the conditions in above is satisfied then 
the data point is not used (and is not included in n).

Thus

«  R l <  +°o 

For example, in future trials

R l > 0  =>p (Ul ) = 1,

Rl < 0 => p(u^) = 0,

and

rl = o = > p (0  = L.

indeterminate), and a large and negative RL low 
intelligibility.

The Robustness Index R versus presentation level L 
function for each word was described in a variety of ways. 
A threshold is obtained at the level at which the Robustness 
Index is zero, that is where future outcomes have zero 
predictability. Due to the nature of the functions, graph 
modelling is applied to the data to obtain measures such as 
threshold and slope of the graph. Two methods were 
employed: A straight line fit with intercept and gradient and 
a Fermi distribution fit with two parameters, midpoint and 
width. The former and latter correspond in each case to 
threshold and rate of change of Robustness with level. Two 
parameters which similarly correspond are average and 
difference, these are discussed in more detail in James 
(1992b), but are also defined below. In addition we look at 
the Robustness Index for a set of fixed L :

Intercept of linear regression for Robustness versus 
presentation Level, Rjnl.

Slope of linear regression for Robustness versus presentation 
Level Rgrad.

The mid point of the Robustness curve versus level as 
calculated from a Fermi distribution fit, Rmid.

The width of the Robustness curve versus level as calculated 
from Fermi fit, Rwidlh.

The average value Lav, where:

j  _  -^m ax -^min 

av n

where Lmax is the maximum level at which the word was 
perceived incorrectly across all subjective trials, and Lm,„+ the 
minimum level at which the word was perceived correctly 
across all trials.

The difference Ldiff:

L = IL~ - 1 * Id if f  I ■‘ “ 'max J^m in  I

Where p(uL+) is the probability of a positive outcome for a The Robustness R of the word at a particular level L, RL. 
subsequent trial with presentation level L. We can plot the 
"Robustness" RL versus presentation level L function for 
each word.

Thus, the more positive the value of RL the more intelligible 
the word at level L. A  zero value of RL indicates 50% 
intelligibility (i.e. either outcome, right or wrong, is
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3. DATA ANALYSIS

The data were organised into files containing lists of values 
for each measured parameter. These were ordered according 
to the original order of the lists and words. This allowed use 
of various analysis programs to ascertain the degree of 
interrelation between the different measures. Comparisons, 
within and between types, between measures were made 
using Linear Regression (Hays, 1963) implemented in the 
"Unixstat" suite of programs running on a Masscomp 5450 
minicomputer. These calculations were also confirmed using 
the "Minitab" functions "regress" (least squares) and 
"rregress" (ranked regression) running on a Hewlett Packard 
9000s/800 computer. The final regression analysis for 
prediction of subjective parameters was also performed using 
the "Unixstat" programs. All these programs provided 
correlation matrices for any combination of the parameters.

4. RESULTS

4.1. Objective measurements

Summary statistics for a selection of ten objective measures 
were calculated, these are divided into four types; level, 
spectrum, duration and word usage. There is little to 
compare about the level and spectrum parameters except to 
say that the average impulse level LAimp (indicating peaks) is 
higher than that obtained with the SLM set on "Fast" (LAfrm). 
The variance in the total power LPtot is proportionally less 
than that for LPrms . The longest word "wide" is over twice 
as long as the shortest word "jot". The highest energy word 
was "goes" using LPrms, LPto, and LMmp, and "dodge" using 
LAfast. "hutch" was the lowest energy word using both 
calculated measures and "cheek", "keys" and "shoot" were of 
lowest level using both SLM settings.

The word with the highest average spectral flatness Gmean 
was "fish", and with the lowest "veil". Words with highest 
and lowest variability Ovar in spectral shape were "vice" and 
"hip".

The lowest word count LogU of -0.693 corresponds to a 
value of U = 0.5, that is a zero count word (to the precision 
of counting). This rounding was also used in calculating the 
other usage parameters such as LogVcI+c2 and LogVcIc2. This 
rounding will introduce errors into these values which may 
have effects in the regressions. (Also of note is that the 
minimum for LogVcIc2 is -11.51, unfortunately the lower 
limit on the precision of the ratio calculation (Minimum VcIc2 
< 0.00001). The zero count words were "haze", "hoof", 
"thatch", "hutch", "thieve" and "rove", the highest count was 
for "have" .

Within the types level and word usage there was a large 
degree of correlation (r > 0.5). This is expected with the 
level parameters, which have only subtle differences in the 
treatments of the measurements. The smallest correlations 
were between LAtot and LAimp within the level type (r = 0.545). 
It is of interest that the mean spectral flatness amean exhibited 
a degree of correlation to the level parameters (r > 0.4, 
except for LAimp). <5var and tframc appeared, to a large degree, 
to be unrelated to any other type, and omean and o var were 
independent (r < 0.185).

We had hoped by use of the word usage measures LogU, 
LogVcI+c2 and LogVc,c2, to isolate the effects of overall word 
count from those due to cohorts of the target words. 
However for these cases LogU, LogVcI+c2 and LogVcIc2 are 
highly correlated (r > .75), thus it is hard to justify the 
inclusion of VcI+c2 and VcIc2. above absolute word usage U..

4.2. Subjective Parameters

Rml, Rmid and Lav are thresholds related in terms of 
experimental presentation level, and RwjJlh and Ldiff, express 
the widths or slopes of the word intelligibility curves. The 
value Rgwd may roughly be equated to the width of the 
intelligibility function in decibels (the limen) if multiplied by 
2000 (Robustness range -1000 to 1000).

The word "laze" was measured as having the highest 
threshold using Rmid (57.1 dB) and Lav (98.0 dB), and 
"thighs" the highest using Rint (58.6 dB). "Fog" was shown 
to have the lowest threshold by Rim, 16.1 dB, and second 
lowest by Lav. In this case the word with the lowest was 
"man", 18.0 dB. Using Rmid, "bone" had the lowest threshold 
at 29.0 dB. The words with the flattest intelligibility curves 
was "poach" by Rgrai and R„idth, and "laze" (an old favourite) 
by Ldiff. The words with most rapidly increasing intelligibility 
were "thieve" by Rgrad, and "will" by Rwidlh. Numerous words 
had Ldiff equal to zero.

Within the threshold predicting type there was high 
correlation (r > 0.7), Rgrad and Rwidlh were well correlated 
(r > 0.5). This was not the case within the slope predicting 
type. This is to be expected as the straight line approximates 
the Fermi fit in this situation. There were various relations 
between the two types and of note is the degree of 
relatedness between Rwidlh and Rint (r = 0.513). This may be 
due to some artifact in the two methods of describing the 
shape of the intelligibility curves.
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Table 1. Summary statistics for the subjective data expressed in terms of Robustness Index RL at various presentation 
levels L.

Variable R35 R40 R45 R50 R 55 Rfio

Minimum -800 -500 -500 -200 -100 -50 0

M aximum 50 350 750 750 850 850 850

M ean -344 -93 30 182 351 401 420

Std. Dev. 230 197 237 242 249 231 227

Table 2. Correlation o f a selection o f subjective parameters versus objective predictors, and total regression taking 

all selected predictors into account. The stars (*) indicate the degree o f significance; * p < 0.05, ’* p < 0.01, *" p < 

0.001. For the individual objective predictors, a significant result implies that: taking into account all the other 

predictors, the predictor in question significantly contributes to the overall regression (Hays, 1963).

Variable Total Afast ^m e a n LogU \frames

R in, *"0.518 -0.212 0.295 *0.219 "*0.352 0.160

Rm irl *"0.517 *-0.252 0.271 *0.200 ***0.353 0.148

Lav "0 .417 -0.213 0.222 0.113 **-0.314 0.094

grad 0.256 -0.135 0.109 0.077 -0.119 -0.034

Ryiid lh 0.207 -0.028 0.179 0.112 -0.164 0.051

L 'W
0.220 0.218 -0.115 0.120 0.055 0.097

Table 3. Correlation o f  Rmirl versus various combinations o f a selection o f objective predictors, and the total regression taking 

all selected predictors into account. The stars (*) indicate the degree o f significance; * p < 0.05, ** p < 0.01, *** p <  0.001 (see 
text). Note that the removal of certain predictors from the regression not only affects the total regression, but also the 

importance (significance) o f other predictors.

Total L  Ai nip L a/ osi ^m e a n LogU ^frames

*"0.517 *-0.252 0.271 *0.200 "*-0.353 0.148

*"0.511 *"-0.252 "0 .200 ***-0.353 0.148

***0.494 *-0.252 0.271 **0.200 ***-0.353

***0.504 *-0.199 *0.271 *0.200 ***-0.353 0.148

***0.472 **-0.199 **0.200 ***-0.353 0.148

***0.483 *-0.199 0.271 *0.200 **’-0.353

"*0.477 "0.271 0.200 *"-0.353 0.148
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4.3. Summary statistics of R versus L data

Table 1 gives summary statistics for Robustness Index RL (as 
specified above) over a range of presentation levels L. The 
greater the value of RL the more intelligible the word at level 
L, where a zero value of R, indicates 50% intelligibility (i.e. 
either outcome, right or wrong, is indeterminate), and a large 
and negative RL low intelligibility. From the means of the 
data we can deduce that the mean threshold across all words 
is in the region o f 35 to 40 dB. Of note is the comparatively 
large standard deviation of RLs to their ranges and means.

4.4. Regression of subjective versus objective

In this section we list the end results of this study, that is the 
prediction o f subjective parameters by objective 
measurements. Table 2 shows the correlation between a 
selection of subjective parameters and a selection of 
objective predictors. The contributions of objective predictors 
are combined to give a total prediction for each subjective 
parameter, the correlation between the combined regression 
against the subjective parameter is then obtained. The 
significance of the contribution from each objective predictor 
is also shown, the hypothesis is: The predictor does not 
contribute to the overall regression taking into account all 
other predictors. The stars indicate the degree of significance 
of the correlations. Thus a significance level of p < 0.05 
implies that there is only a 5% probability that the predictor 
in question does not contribute to the overall regression 
taking all other predictors into account. We can see that 
LogU  has the greatest and a unique contribution to the 
prediction of the subjective parameters indicating threshold, 
followed by LAfast and a vor.

4.5. Contributions and combinations of 
objective predictors

Table 3 allows comparison between regressions of Rmid using 
seven different combinations of objective predictors. We can 
see the overlaps in contributions made to the total regression 
by different predictors, i.e. LAfast and o mean do not uniquely 
contribute to the overall regression when used together. The 
correlation coefficients are repeated for each combination so 
one can see how the individual contributions from predictors 
make up the total regression.

4.6. Rl s versus objective predictors

The correlation of RLs calculated from subjective data versus 
a selection of predictors is shown in Table 4. These 
comparisons indicate the relative importance of predictors at

different levels. The stars (*) denote significant contributions 
from individual predictors and the final regression. We can 
see that in all cases the predictor tframes never makes 
significant contributions in the presence of the other 
predictors. LAfasl, Ora, and LogU  are significant predictors at 
all levels except L  = 45 dB, most noticeably ovar is not 
significant (and indicates very little predictive capability) at 
L = 35 and 40 dB. The least significant (0.01 > p > 0.001) 
total regression was obtained with L = 45 dB, where neither 
LAfast or a var are significant predictors (p’s > 0.05). Stepping 
only 5 dB up from this level gave the highest regression 
coefficient with the three predictors, LAfast> Gvar, and LogU, 
all making very highly significant contributions to the 
multiple regression (p < 0.001).

5. DISCUSSION

The object of this study has been to investigate the relative 
importance or significance of particular objective measures 
in the prediction of subjective thresholds, and word 
intelligibility characteristics. Many of the objective measures 
described in earlier sections of this paper were not used in 
the final selection used in the results presented above. The 
criterion for selection as a useful predictor was that the 
parameter must be either uncorrelated with other parameters, 
or that a group of correlated parameters produced the most 
significant prediction. Certain parameters were merely 
mathematically "treated" versions of others (i.e. LPrms, and 
Prms etc.) and these were compared within types with 
parameters with similar units (i.e. LPrms with LAfasr).

The following discussion is divided into sections by 
parameter type, with a penultimate section bringing all these 
together. In the final section we look at the multiple 
regression model obtained with a "good" set of predictors 
and discuss the properties of particular words which stray 
from this model.

5.1. Speech level and Gmean

Much attention in the past few decades has been given to the 
effective measurement of speech levels, and the equalisation 
of speech levels between words and between sentences used 
in speech audiometry. Most of the conclusions of these kinds 
of studies (Fuller and Whittle, 1982, Steeneken and 
Houtgast, 1979, and Tschopp, 1991a and 1991b) have been 
that subjective measures are not simply related to speech 
levels, but that reasonable accuracy may be obtained using 
measures such as LAfasr

Here we will consider the relative merits of LAfast and LAlmp 
in the prediction of speech thresholds. We can also bring 
into the discussion the parameter o mean which was well
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correlated with measures of speech level: Gmean was well 
correlated with LAfm, but not so much with LM We can 
therefore conclude that when G mcan and LAfas, are both 
included in the multiple regression versus Rmid (a subjective 
threshold) that the significance of their individual 
contributions will be reduced. In fact the apparent 
overlapping of contributions from LAfas, and Gmnm is such that 
the inclusion of Gmean has very little effect on the total 
regression (Table 3), this is true to a lesser degree when 
using LMmp without G mean. Removing both direct measures of 
level still leaves a good total regression. LAfast gives the most 
significant prediction of threshold measures (Tables 2 and 3) 
in all situations.

In the treatment of Robustness R at level L, we have used 
only LAfllsl as a predictor of the level type. The mean 
threshold of the words used here were judged to be in the 
region of 40 dB, with a standard deviation of order 5 dB. 
Table 4 shows the significance of LAfas, in predicting mean 
performance (i.e. RL) in the range 30 to 60 dB.

Below 40 dB LAfasl is not significantly useful in the 
prediction of performance, for example R30 (the value of R 
at L -  30 dB), this is expected since the standard deviation 
of LAfasl is only 2.6 dB and the range approximately ± 6 dB. 
The information imparted to the listening individual at this 
level is going to be severely affected in all cases. Moving up 
in level, to R35 and R40 speech level becomes highly 
significant. This we should expect in the critical region 
around threshold, since the effects of any factor which 
marginally affects the amount of information made available 
will be amplified by the action of lexical contexts (James et 
al., 1992a).

At L = 45 dB, the speech level again becomes unimportant 
as all the differences in information giving due to speech 
level are largely equalised at this listening level. At 50 dB 
and above the speech level is again significant. This might 
be due to the perception of those words with little contextual 
information (perhaps we could term them fragile) as being 
more wholly dependent on the energy of speech features and 
having low intrinsic context. This idea can be confirmed if 
the words with high familiarity are separated from those 
with low familiarity. We will treat this as a probabilistic 
division and use the simple word count of data as the 
criterion of division of our sample. That is we will divide 
the sample into two sets, those with the highest counts and 
those with the lowest. The words were divided into two sets, 
the first (a) words with LogU  > 3.478, and the second (b) 
LogU  < 3.478, where the mean of LogU  for the whole 
sample was 3.478. We now calculate the regression of LAfast, 
Gmr, LogVcI+c2 and tframes for the two sets (a) and (b) against 
R40, R45 and Rso, the results are shown in Tables 5.

The results for regression against R40 for both sets, show that 
for the high familiarity set (a), LogVcI+c2 is the more 
significant predictor, whereas for the low familiarity set (b), 
LAfas, is more useful. At 45 dB, the correlation LAfast versus R 
is very low for set (a) but significant for (b). For Rso, the 
importance of speech level is greater for the low context set 
(b) than for the high context set (a). This confirms the 
hypothesis that speech energy is much more important for 
the recognition of low predictability items (b) than for high 
predictability items (a).

Table 4. Correlation of subjective Rt ’s versus objective predictors, and total regression taking all selected predictors 
into account. The stars (*) indicate the degree of significance; * p < 0.05, ** p < 0.01, *** p < 0.001 of individual 
predictors and for the total regression.

Variable Total LAfast ^ var LogU f̂rames

R 30 ’” 0.477 **0.227 ” -0.203 "*0.325 -0.134

R 35 *"0.417 **0.243 ■ -0.065 **0.294 -0.152

R40 ***0.394 ***0.271 -0.063 "0.253 -0.101

R 45 ” 0.340 0.135 -0.123 **0.272 -0.084

R 50 ” *0.521 *” 0.230 ***-0.263 *” 0.330 -0.155

R SS ***0.494 **0.187 *"-0.248 ’"0.338 -0.156

R 60 ***0.497 ” 0.218 **-0.213 ***0.351 -0.171
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Tables 5. Correlation of subjective RLs around threshold versus objective predictors, and total regression taking all 
selected predictors into account, for (a) words with LogU > 3.478, 64 words (top), and (b) words with L ogU < 3.478, 
56 words (bottom). The stars (*) indicate the degree of significance; p < 0.05, p < 0.01, *** p < 0.001 of 
individual predictors and for the total regression.

(a) High usage (LogU  > 3.478)

Variable Total ^A fast ^ v a r LogVcUc2 ^frames

R40 *0.443 *0.175 -0.093 **0.286 -0.151

R45 0.353 -0.016 *-0.250 0.200 -0.081

R50 **0.492 *0.090 ***-0.372 0.088 *-0.203

(b) Low usage (LogU  < 3.478)

Variable Total LAfnx t ^ v a r L ogV cUc2 ^frames

R40 *0.421 “ 0.393 - 0.011 0.175 -0.052

R45 0.361 *0.350 -0.062 0.141 -0.105

R50 ’*0.502 **0.406 *-0.131 0.242 -0.127

5.2. The significance of cvar

The variance o f spectral flatness a var has been described 
above as a measure of the dynamics of the spectrum, and for 
this sample is uncorrelated with the mean spectral flatness 
<3mean. As a predictor of threshold, o var is a significant 
predictor of subjective threshold (Tables 2 and 3), in that the 
lower the variation of spectral shape the lower the threshold. 
We also surmise that the transmission of finely detailed 
structure, indicated by high a mr, would more greatly be 
affected by reduced listening levels, and the correct 
perception of the word would require the reception of this 
fine detail.

The correlation of o var versus RLs, indicates that o var 
generally works above threshold (L = 50 dB). However, at 
low levels (i.e. L = 30 dB), the variance of spectrum may 
provide necessary clues for the perception of high 
predictability words. In fact for set (a), a mr is a highly 
significant (correlation coefficient = -0.327 ,p < 0.001) 
predictor of R30 this is not true for set (b) (correlation 
coefficient = -0.055, p = 0.337). Unlike speech level, c var is 
a significant predictor o f performance R just above threshold 
(L = 45 dB) for high frequency words, becoming very 
significant at L = 50 dB.

5.3. Word familiarity and word intelligibility

It is clear from Tables 2 to 5 that word usage, represented 
here by LogU  is a very significant predictor of word 
intelligibility. It is obviously unrelated to any of the other 
objective parameter types since it is in essence not a 
"physical" parameter of speech. It is interesting to note the 
differences in word intelligibility characteristics between the 
sets of words (a) and (b) (as defined in Section 5.1) are due 
to the effect of probabilistic biases which we might predict 
from the word counts. In Section 5.1 we used LogU  as the 
criterion measure because it simply indicates a probability of 
response where information from auditory cues is severely 
limited. It was seen that for low usage words at low levels 
(L = 40 dB), speech energy (LAfast) had the greatest effect on 
identification. However, for high usage words the cohort size 
measured by LogVcl+c2 was significant and speech level only 
to a lesser degree.

5.4. Word duration tframes

Throughout the regression analysis tframes has been 
incorporated because we found this parameter largely 
uncorrelated with every other (except for LPtot, which we did 
not use in any of the regressions above). In most examples 
the duration seems to be a useful predictor but fails to be 
actually significant in the presence of other "good" predictors 
in all but one example (Table 5a).
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The trend of intelligibility RL at level L  tends to go: Longer 
word, then lower intelligibility. Since the trend predicted by 
tframe' s relatively weak, it is difficult to justify any particular 
reasons for the trend. We can take a similar approach to that 
in Section 5.1, by separating the sample data into two groups 
on the basis of one parameter. We can now define two new 
groups; (c) where tframes > 272, and (d) tfmmes < 272, where 
the mean of tfmmes for the whole sample is 272.

Some summary statistics for the two groups of words (c) and 
(d) are given in Tables 6.

Tables 6 show us that (c) and (d) have similar distributions 
of characteristics, thus when comparing the two groups 
further we can rule out effects other than due to the dividing 
parameter, duration tframes.

Tables 6. Summary statistics for some parameters of (c) words with tfmmrs > 272, 62 words, and (d) words with tframes 
< 272, 58 words. Note that there is little difference between the two sets (c) and (d) in terms of the distributions of 

^ m id » ^Afasl, ®var Slid LogU .

(C) ^frames >  272

Variable ^ m id ^Afasl ^ v a r LogU ^frames

Mean 42.14 121.6 0.026 3.23 296

Std. Dev. 8.01 2.8 0.008 2.18 17.31

(d) tframes < 272

Variable R m id ^A fasl ° v a r LogU ^frames

Mean 40.26 121.3 0.024 3.74 242

Std. Dev. 5 2.5 0.009 2.17 19.58

Table 7. Correlation of Rmjd versus objective predictors, and total regression taking all selected predictors into 
account, for (c) words with tframes > 272, 62 words, and (d) words with tfiames < 272, 58 words . The stars (*) indicate 
the degree of significance; * p < 0.05, ** p < 0.01, *** p < 0.001 of individual predictors and for the total regression.

Variable Total Afast ®var LogU ^frames

K i d  (c) ***0.536 *-0.271 0.122 **-0.404 *0.173

K i d  (d) **0.500 *-0.246 **0.276 *-0.266 0.033

In Tables 7 we show the results of linear regressions of Rmii 
versus a set of "good" parameters as previously described. 
The most striking difference between the two regressions is 
the relative importance of Ovar and tframes. For the longer 
words (c), tfmmes gives a significant trend whereas Ovar is not 
such a good predictor. The reverse is true for the short 
words (d). Though weak, this result suggests that shorter 
words require greater uniformity in their frequency 
characteristics (i.e. smaller Omr) than longer words to 
achieve lower thresholds. It is therefore important to 
maintain a reasonable information rate whatever the total 
duration for low thresholds or good intelligibility, or 
"squashing too much information in too short a time gives 
higher thresholds".
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5.5. The combination of predictors

In the discussion Sections 5.1 to 5.4 we examined the 
relationship between objective and subjective parameters. 
Using a "good" combination of predictors, LAfasl a mr, LogU  
and tframes for example, we can calculate a linear regression 
equation for Rmid, where Rmid is the estimated value of Rmid. 
From this equation we can see that a change in speech level

Rmid -  -  0.841 L * 229 amr -  1.09U gU  + 0.033 W  + 132

LAjmt gives an almost one for one change in word threshold 
Rmid. Given that the range of LAfasl was 13 dB, we obtain a 
predicted range of 11 dB in the subjective threshold Rmii. 
Similarly we can approximate ranges of 9 dB due to Gvar, 
11 dB due to LogU  and 7 dB due to tframes in Rmid. This gives 
us an indication of the magnitude of effects due to 
contributions from individual predictors.

Figure 2 shows a scatter plot of Rmid versus Rmd. The line 
Rmid -  Rmii is marked giving the line of "perfect" correlation. 
Points corresponding to particular words are also indicated. 
Of great interest are those words which deviate most from 
the line of perfect regression, such as "thumb" and "ways". 
These are words which conform least to the objective 
prediction of intelligibility given here. The word "ways" has 
a much greater subjective threshold Rmid than estimated 
threshold Rmid. It is hard to explain this phenomenon in terms 
of the quantities we have measured, instead we have to look 
more closely at the structure of the word. In this case the 
author was able to look back at the responses recorded in the 
study described in James (1992a) which looked at word list 
intelligibility under certain conditions. It was possible to 
consider the response set for the three plurals included in the 
sample set of "Boothroyd" words; keys, thighs and ways. 
Subjects tended to lose the perception of the "zz" in "keys", 
making "key" and there were also two non-word responses 
of "keeve". The word "thighs" was commonly confused with 
"five" or just "thigh". Looking at confusions for "ways", the 
author found many occurrences of the word "wave", in fact 
19 out of a total number of 36 presentations! It is likely 
under the conditions imposed in that study (and at low 
presentation levels) that sound of the plural "zz" was lost or 
masked leaving the subject with an elongated version of 
"way" (try saying "way" and then "ways", and compare the 
length!), as this speech sound is too long to "fit" into "way", 
then it is only natural to attempt an alternative, in this case 
"wave" seems a reasonable (and popular) alternative.

R
mid

FIG. 2. Scatter plot of Rmid versus Rmid, where Rmid is 
the estimation of Rmjd from regression analysis.

At the other extreme lies the word "thumb" which has a 
much lower subjective threshold than predicted. To some 
extent the word "thumb" could be likened to a diphthong 
(for example "veil"); it has two voiced parts with different 
tones, the vowel "uh" and the nasal "mm", these features 
may make it robust. However, if the "um" combination is a 
"robust" feature, why should "thumb" not still be confused 
with words within its response cohort (e.g cl+c2), such as 
rhyming words "sum" and "dumb"?

For the two exceptions above we have looked in more detail 
at the perception of speech features. In the first case we 
were able to call on experience and use previous results to 
provide some clues for the deviation of subjective thresholds 
from those predicted. It must be remembered that from the 
selection of physical measures we have chosen in this study, 
there are not likely to be a "best" set of predictors which can 
explain all the variances of subjective data in all cases. At 
this point we can apply previously obtained results to the 
behaviour of the entire test set: we can simply calculate the 
correlation between the number of incorrect responses for 
each word from the previous study (James et al., 1992a) and 
the subjective threshold Rmid. Not surprisingly this gives us 
a very high correlation (coefficient = 0.808), much higher 
than that obtained from the best multiple regressions listed 
above. This result gives us insight into the consistency of 
results between experiments and reliability of the word 
recognition task. Perhaps the "membership" of response 
cohorts will be similar in all but a few cases, and those few 
cases could be assessed by further experiment. Explaining 
the properties of words which fall furthest from the 
predictions is not the least difficulty in this kind of study. 
One could explain, perhaps, the behaviour of all words 
compared to the "ideal" ones (those on the line of perfect
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regression), implying that the presence of any particular 
word used in audiometric material should be justified; i.e. 
not too unfamiliar, not too familiar, not a plural, not a verb 
etc. Under these restrictions the compilation of test material 
such as used in phonemically balanced designs becomes 
more difficult. At this point we can look back at work done 
by Hood and Poole (1980) which gives us useful information 
about the consistency of word intelligibility between 
speakers and in relation to familiarity as indicated by 
frequency of occurrence. They state that the effect of the 
speaker outweighs consideration of familiarity, this is 
something which we were unable to account for in this 
study. But they do offer us an olive branch in that 
measurements with one speaker were generally fairly 
consistent for many of the words. Inconsistent words are 
attributed to intra-subject and perhaps subject-speaker-word 
interaction. Perhaps the time and frequency analysis used 
here would encompass these causes of variance. Hood and 
Poole also stated that they and others (e.g. Tobias, 1964) 
regard such measures as phonetic balance to be unnecessary 
in the design of speech perception tests, this is now largely 
accepted.

Thus an alternative to theoretically structured designs then 
is to use the implicit properties of individual words: if the 
response set for a given word under given conditions is well 
defined, then we can define word intelligibility in terms of 
the size and properties of this response set. Thus we can 
define speech hearing impairment in terms of "mistakes". 
This might have some use in the selection and tuning of 
hearing aids. According to the kind of mistake we can 
predict the "conditions” imposed by impairment by 
comparison with response sets from experiments utilising a 
range of enforced conditions. This is an opened ended 
approach, unlike forced-choice methods, and by its nature it 
takes into account all effects of word usage, word confusion, 
speech spectrum and level.

6. CONCLUSIONS

The trends indicated by the analysis used in this study 
should apply to mono-syllables outside the sample used here. 
It is a useful result that word usage LogU  plays an important 
part in the prediction of thresholds (i.e. Rmid), and therefore 
it may be used as a guide to selecting test sets in the future, 
before making recordings of material. Other measurements, 
for example LAfasl, o var and tframes, may only be made on 
specific material. It would be interesting to study the general 
trends for these quantities for a number of different speakers 
and examples from the same speakers (assuming that they 
are all trying to make recordings to audiological standards). 
For example, is the property "speech level" characteristic for 
a given word or does it only measure level for a given 
example (as would be expected). Similar arguments could be

applied to the other measures used here: One could predict 
that the speech spectrum and duration would be more 
characteristic for a given word.

The results presented here pose questions about the most 
rational method of selecting material for the measurement of 
speech hearing. Certainly the use of known response sets in 
the analysis of response errors would be useful. There is also 
scope for the use of smaller sets of test material with 
particular properties, as obtained by experiment, aimed at 
making specific measurements of hearing acuity.

This study has shown that the intelligibility characteristics of 
individual words can be predicted to a fair degree by 
objective measurements. Some interaction is apparent 
between the sources of information, namely physical and 
linguistic (or contextual). The measure a var seems to be a 
useful complement to the other parameters and indicates the 
importance of information rate or feature rate in speech 
perception.
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