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INTRODUCTION

There are a number of situations in industry in which one may wish 
to measure the acoustic pressures in a piping system, but for which 
standard microphone methods are expensive or difficult to 
implement. These include cases o f high fluid temperature, 
pressure or velocity, and material handling systems in which there 
are particulates or debris in  the flow.

As an alternative, some researchers have investigated the 
possibility of using structural sensors attached to the piping, which 
is coupled to the interior acoustic field, to estimate the pressure 
[1,2]. This method has shown reasonable promise for 
axisymmetric waves well below the ring frequency of the piping.

This study describes the theory of the method, and the results of 
some experimentation performed at the University o f Toronto using 
piezofilm ring sensors attached to a rubber tube, with air as the 
contained fluid. Some approximations which can be made for low 
frequencies are described, and some practical limitations of the 
method presented.

THEORY

The dispersion characteristics of free waves in infinitely long thin 
walled cylinders o f finite shell impedance, including the effect of 
contained fluid, has been investigated by Fuller and Fahy [3], 
among others. The in vacuo shell dynamics are described by 
appropriate coupled equations o f motion, and the pressure field in 
the pipe is assumed to take on the form of an acoustic wave 
equation in cylindrical coordinates. The wave dynamics of the 
shell and the fluid are then coupled through the boundary condition 
which ensures that the radial velocity of the shell and fluid at the 
pipe wall are equal.

Assuming travelling shell and pressure waves only, we may write:

w = y, w.
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where u, w are the axial and radial displacements of the pipe wall 
(torsional motion is uncoupled for axisymmetric waves and can be 
neglected), p  is the acoustic pressure, and k ‘, k '  are the axial and 
radial wavenumbers, respectively, related to the free wavenumber, 
k, through the Helmholtz equation by k'= ^k2-(k^ f.

Substitution of these forms into the equations of motion and 
coupling p, w  through the boundary condition yields the 
characteristic equation of propagation, from which the axial 
wavenumber can be solved:
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The terms in L  represent, in sequence, the pipe mass, membrane 
stiffness and bending stiffness (entire term in square brackets), the 
fluid loading term, and longitudinal effects coupled through 
Poisson’s ratio. As the fluid loading term is non-linear, it may be 
expanded in a power series to linearize the equation to any desired 
degree of accuracy. At low frequencies, the solutions for k ‘ may 
be shown to include two real roots, one with energy predominantly 
in the fluid and characterized by relatively large radial motion, the 
other primarily a longitudinal shell mode. There are also two 
complex conjugate roots, representing solutions for a bending near 
field on the pipe wall, and an infinite number o f imaginary roots 
representing evanescent acoustic modes.

Once the type of propagating mode is determined (i.e. an acoustic 
wave in the fluid will primarily excite the first mode while a 
structural excitation will excite the longitudinal shell mode, and 
shell discontinuities will excite the complex near field bending 
modes in that vicinity), the boundary condition can be used to solve 
for the pressure corresponding to a given radial displacement:
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Here the radial wavenumber corresponds to the propagating axial 
wavenumber, or a series can be used if  more than one type of 
propagating wave exists at the cross section where w  is measured.

EXPERIMENTS

Experiments have been performed to test the method, using a 
rubber tube down which acoustic energy is introduced via a 150W 
loudspeaker, coupled by a lined contraction to minimize the 
loading effect back on the woofer as the excitation frequency is 
varied. Piezofilm strips are bonded around the circumference to 
measure the axisymmetric ring strain, which is proportional to the 
radial displacement, w. These sensors also serve to filter out higher 
order circumferential motions. The corresponding acoustic 
pressure p  calculated from the above equations are compared to the 
pressure measured inside the tube wall using a microphone probe. 
Figure 1 illustrates the experimental apparatus.

The experiments and theory are slightly different than described 
above, in that sensor pairs are used, and the average pressure 
between them calculated, while the actual pressure between the two 
is measured. This has the added advantage that the propagating 
part o f the pressure can be separated out in a manner similar to an 
intensity measurement, but the theory is somewhat more complex, 
and is described elsewhere [1].
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The experimental results indicate reasonably good agreement with 
theory for practical engineering purposes. At a number of 
frequencies below the ring frequency of the tube, the predicted 
pressure was on average within 6 dB of the measured pressure, and 
these differences remained highly constant through a range of 
signal amplitudes. Figure 2 illustrates the relative accuracy of the 
predicted pressure (re the measured pressure) at these frequencies, 
both unadjusted and corrected for the mean difference, which is 
approximately -3 dB, to account for such effects as imperfect 
bonding and imperfect shear transfer through the tube thickness. 
With the predicted accuracy so adjusted, the differences are within 
3 dB, except at one frequency which corresponds to a full 
wavelength in the tube. That is, once a calculated or arbitrary 
figure for bonding losses is included, the sensors will provide a 
reasonably accurate estimate of the propagating pressure, provided 
that there are no significant standing waves at the frequency of 
interest, for which the above theory does not account.

SIMPLIFICATIONS

For fluid borne excitation, if the forcing frequency is much smaller 
than the pipe ring frequency, then motion of the pipe wall is 
essentially controlled by its membrane stiffness. Provided that the 
sensor has negligible material properties in comparison with the 
pipe (which is not the case for the experiments described above, 
but will be the case in many industrial situations involving steel or 
hard plastic piping), then the pressure may be related to the 
displacement at the sensor location through the static membrane 
stiffness of the pipe [2]:

Although this equation is useful only under the assumptions 
described above, it is much simpler to implement than the 
boundary condition equation described earlier. Also, for hard 
walled pipes, bonding losses are likely to be negligible when a stiff 
bonding adhesive such as epoxy or cyanoacrilate is used.

CONCLUSIONS

A method for estimating the internal acoustic pressure in piping 
systems using ring sensors attached to the pipe has been described. 
For arbitrary axisymmetric fluid borne waves, the internal pressure 
estimate is a function of the excitation frequency and wavenumber, 
which depends on mass and bending stiffness effects as well as the 
membrane stiffness. At frequencies well below the pipe ring 
frequency, the internal pressure estimate is a simple function of the 
membrane stiffness. Experimental results show that this method 
can be used to obtain reasonably good estimates when standing 
waves are not present, although imperfect bonding and shear 
transfer to the sensors should be considered. For long, hard walled 
pipes in particular, this method makes a simple and powerful 
alternative to in-pipe pressure transducers for acoustical 
measurements.
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