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1- INTRODUCTION

It is well known, in the aerospace industry, that the acoustic 
pressure levels generated by the rocket launchers are extremely 
high. This strong acoustic pressure specificaly excites the payload 
in which a satelitte is located. Then, the satellites manufacturers 
have to submit their structural components to standardized tests in 
a reverberant chamber. We are then left with a situation where a 
panel is hung in a large reverberant room and immerged in a so- 
called diffuse field.. The excitation spectrum and levels are 
specified and measurements of acceleration levels induced in the 
structure are done. It leads to a vibroacoustical problem that 
presents many interesting challenges: (i) the panel is non-baffled 
(ii) the panel is excited on both sides by the acoustic field (iii) the 
coupling between the panel and the fluid has to be treated 
rigourously in order to obtain the pressure jump function across 
the panel (iv) the proposed formulation must take care of an 
extremely high modal density in the cavity, even at low 
frequencies.
In this paper, we are first presenting a new semi-analytical 
formulation to predict the behaviour of a non-baffled flexible plate 
in a rigid-walled rectangular cavity excited by an acoustical source. 
The second part of the paper presents some numerical results and 
discussions about the contribution of physical effects.

2- SEMI-ANALYTICAL FORMULATION

one, a great feature for computer calculations. Such an expasion is 
written in the following form

(2)

where g t u ( z ,Z Q )  is a discontinous function at z = z q . The basis 
functions y  are just cosines along x and y and satisfy Neumann 
boundary conditions on the walls of the cavity.

B: Sound pressure jump
To compute the contribution of the plate to the pressure, we first 
expand the sound pressure jump function over the same basis 
functions used for the Green's function. One then write

p ( x >y) =  X
rs

where P  are unknown coefficients.

(3)

C: Fluid-structure coupling
The fluid-structure coupling is being taken into account in two 
parts. We first introduce the classical boundary condition at the 
interface Sp which states that the velocity of the fluid must be 
equal to the velocity of the plate on Sp in order to write

Consider a rigid-walled rectangular room (fig.l) of dimensions Lx, 

Ly, Lz, which contains a plate of surface Sp=Lx,xLy and enclosing 
a fluid of volume V. It is well known, using integral equation 
method, that the sound pressure P at any point point in V can be 
written

p {r0) =  JJs dS G ( r , r ) V ?P(r)  

“ I l s  d S P ( f ) ^ TG{r,r0)-np
(l)

where S§ denotes the surface of the of the piston and Sp the 

surface of the panel. The quantity P represents the sound

pressure jump across the surface Sp while G [ r , r0 ) is the Green's

function for the empty room. The first term of (1) represents the 
contribution of the source while the second term is the contribution 
of the plate to the sound pressure. By coupling the equation for the 
motion of the plate and the boundary condition between the fluid 
and the plate at the interface Sp with equation (1), the problem is 
completely and rigourously defined.

A: Green's function
Instead of expanding the Green's function over modes of cavity as 
it is usualy done, the function is expanded over a set of two- 
dimensionnal functions. It reduces the number of summations by

i  a  p

j(£) P d z
=  - j ( O w ( x , y ) on S' (4)

where w(x,y) is the deflection of the plate.
Since we have an acoustic excitation, we have a to consider the 
strong coupling limit in order to include completly the motion of 
the plate in the fluid. This motion is related to the sound pressure 
function, which is in fact the excitation force on the plate, by the 
following relation

P( x , y )  = Z{w{x,y) )  V (x,y)  e  Sp (5)

where Z is an operator that represents the mechanical behaviour of 
the plate. If we expand the deflection of the plate over in-vacuo 
modes of the panel, introducing a set of unknowns b ^ ,

w(*>y) = I X *  9™. (*’30 •
mn

we can compute the operator Z and obtain

(6)

co2 Af
'  mnpq ^ m n p q  '

The matrices M and K are respectively the mass and the stiffness 
matrices of the panel.
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D: Linear system of equations
Inserting equations (1),(2),(3) and (6) in equations (4) and (5) and 
integrating over appropriate domains, we obtain a linear system of 
equations solvable with standard algorithm

SY S ‘Z - CO2 I b = -S W (8)

where S is a change of basis matrix, Y a vector that contains the 
acoustic information of the problem and where W  is the source 
vector.

2- N U M E R IC A L  R ESU LTS

To ensure convergence of our method,we have established a 
simple geometrical criterion : the smallest wavelength o f  the

acoustic basis functions , must be less or equal to the

smallest wavelength o f  the in-vacuo modes, . Figure 2 shows

the case of A,“ n <  (sub-critical) and A,“ n > (critical

and super-critical).
Results for the sound pressure jump and velocity of the plate are 

shown in fig.3 for a 0.7x0.5 m^ panel in a 2.6x2.0x3.0 n r  cavity. 
It shows a stronger response of the plate at empty room modes 
frequencies comparatively to the response at in-vacuo 
eigenfrequencies.
The influence of the mechanical properties of the plate on the 
sound pressure jump is shown on fig 4. One can see the sound 
pressure jum p remains unchanged for some values of the mass per 
unit area and flexural rigidity. It suggests the fact that the panel 
acts primarily as a if it is rigid so that the governing phenomena is 
the diffraction.

3- C O N C L U SIO N

We have developed a novel semi-analytical approach that is able to 
to take care o f many interesting features (i) acoustic excitation (ii) 
complete fluid-structure coupling (iii) non-baffled panel (iv) light 
and fast computer code. Preliminary results show good agreements 
with expected results and show the possibility to simulate 
aerospace applications such as the dynamic response of a 
composite panel with attached electronic equipments.

4- A C K N O W L E D G M E N T S

-O

x (meter)

fig.2 : Sound pressure jum p as a function of x (y being fixed) for 

three cases of Xacrmin.

Frequency (Hz)

fig.3: Mean-squared sound pressure and velocity levels as a 

function of the frequency for a 0.7x0.5 m - panel, (ijk) denotes 
empty cavity modes and (mn) denotes in-vacuo modes
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fig 4: Sound pressure jum p level at 90 Hz as a function o f log(ps) 

and log(D) where p s is the mass per unit area and D is the flexural 

rigidity. # l-#2  : 5 mm. and 1 cm. of aluminium, #3-#4 : 5 mm. 

and 1 cm. of steel, #5 : typical sandwich panel.
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