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INTRODUCTION

Propagation of noise in the atmosphere is governed by a number
of interacting physical mechanisms including geometrical
spreading, molecular absorption, reflection from a porous ground,
curved ray paths due to refraction, diffraction by ground
topography and scattering by turbulence. Accurate predictions of
noise levels from a distant source must somehow account for all of
these phenomena simultaneously. Although this goal is still
beyond current capabilities, developments in computational tools
for predicting sound propagation through the atmosphere have
increased dramatically during recent years. The computational
techniques now include analytical solutions for selected
atmospheric profiles, ray tracing techniques which include
interaction with the ground and meteorological conditions, and
more sophisticated numerical solutions to the full wave equation;
the fast field program (FFP) and the parabolic equation (PE).
With modern computers, it is now becoming practical to
incorporate some of these new computational tools into predictions
schemes with advantages such as calculated noise contours based
on observed meteorological patterns.

All noise prediction models include the attenuation due to
geometrical spreading and, if required, molecular absorption.
Where the empirical based models differ from computational
models is in the incorporation of the other attenuation mechanisms.
The empirical models tend to rely on general tendencies found in
experimental databases. They often work well as long the specific
situation of interest falls within the bounds of the databases.
Computational models on the other hand rely on our mathematical
ability to describe real-life situations. Recently the status of the
computational methods was reviewed [1] and Benchmark cases to
checlc performance and accuracy have been defined [2], The
purpose of this paper is to review the new computational models.
The paper summarizes their limitations, their advantages, and
shows a benchmark comparison of predictions. A complete and
detailed description of each model, including comparison with
experimental data, can be found in the cited references.

THEORETICAL BACKGROUND

The computational models assume simple harmonic time

dependence exp(-iojt) and begin with the Helmholtz equation

[V2 + k2p(r,z) = -4ird(r, z - 29 (1)

where the wavenumber k(z) = w/c(z), r is the horizontal range and
z is the height above the ground. Reflection from a porous ground
is described by the boundary condition

[dp/3z + ik/3p]z=0= 0 )

at the ground surface where /3 is the normalized complex surface

Fig. 1 Sound rays in the atmosphere
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admittance. In general, the speed of sound varies with height
resulting in curved ray paths due to refraction as shown in Fig 1.
During nighttime or downwind propagation, ray paths are curved
downward leading to multiple rays and favourable propagation
conditions. During daytime or upwind propagation, ray paths are
curved upward leading to an acoustic shadow with increased
attenuation.  The atmosphere is also turbulent, requiring the
wavenumber to be separated into deterministic and stochastic parts,
k(z) = k@nd + ft), where ndis the refractive index and n a small
perturbation. Turbulence scatters sound energy into shadows
produced by barriers or refraction, limiting the amount of
attenuation. Finally, terrain, such as berms or barriers, can be
incorporated through boundary conditions or range dependence.

DESCRIPTION OF THE MODELS

The computational models describe below differ in their
mathematical origin and in the way some of the physical
mechanisms are incorporated. For example, some of the models
are limited to a specific functional form for the sound speed
profile. Some of the models do not include turbulence. All the
models incorporate the boundary condition Eq. (2) in some way.
The different approaches are presented following Ref. [2].

Analytical wave solutions

The Helmholtz equation (1) can be solved with a zero-order
Hankel transform

p(rz) = - 1 ©)

Residue series solutions to Eq. (2) can be found when the sound
speed is assumed to vary linearly with height. The residue
solutions do not incorporate turbulence (i.e., n 0). The
downward refraction solution is called Normal Mooes [3] while the
upward refraction solution is described in terms of Creeping
Waves [4]. The solutions usually converge rapidly. An example
of how noise levels of a few hundred Hz are predicted to decrease
with distance (Transmission Loss, TL) according to the Normal
Mode solution is shown for a benchmark case [2] in Fig. 2(c).

HO(Kr) P(K,z) K dK

In the case where the sound speed is constant with height above
the ground, ray paths are straight and the solution Eq. (3) reduces
to the more familiar sum of direct and ground reflected waves [5]

@

where rdand r. are the path length of the direct and reflected path,
respectively, Q is the reflection coefficient and 4>is the angle of
incidence/In reality though, ray path are rarely straight and Eq.
(4) is usually not valid at distances beyond a few hundred meters.

p(r) = Adexp(ikrd/rd + Q(/3,2 Arexp(ikrr)/rr

Ray tracing solutions

The effects of curved ray paths can be described from general
principles. The curved ray modifies the angle of incidence and
Eq. (4) can be used along with basic ray theory to construct
heuristic physical solutions. Ray tracing solutions are
computationally efficient. We note, however, that ray theory will
not work beyond the shadow boundary in the case of upward
refraction. The TL predicted from such a heuristic solution [6] for
the downward refraction benchmark case is shown in Fig. 2(a).
The heuristic model assumes the sound speed to vary linearly with
height and can incorporate turbulence. The restriction of a linear
sound speed profile can be removed if the ray solution is restricted
to only one ground reflected ray. However this limits the validity
to shorter distances [2].

The Gaussian beam approach [7] is another variation of ray tracing
solutions. The basic concept of the theory is to launch a fan of
ray-centered beams from the source and to trace the propagation
ofthese beams through the medium. The wave equation is solved



Ray Model

Fig. 2 Benchmark cases for downward refraction

in the immediate vicinity of each ray and the acoustic pressure at
the receiver is obtained by summing the contribution of each of the
individual beams. The Gaussian beam model can assume an
arbitrary sound speed profile but the current implementation does
not incorporate turbulence. The TL predicted by the Gaussian
beam model for the benchmark case is shown in Fig. 2(b). We
note that this model is effective in predicting the loss of
Berformance of barriers where rays curve over the top of the
arrier edge due to refraction [7],

FFP models

Fast Field Programs (FFP) performs a direct numerical integration
on Eq. (4). They allow the prediction of noise levels in a
horizontally stratified atmosphere where the sound speed is an
arbitrary function of height. Current implementations are
restricted to a flat ground with range-independent properties that
assume a non-turbulent atmosphere. Four adaptations of the FFP
are called CERL-FFP [8], SAFARI [9). CFFP [10], and FFLAGS
[11]. The CERL-FFP and CFFP treat the ground surface as a
locally reacting impedance boundary while FFLAGS permits
ground layering and elasticity in addition to porosity. The
SAFARI FFP only allows layering and elasticity.

The three FFPs that assume porous ground predict the curve in
Fig. 3(c) for the benchmark case. SAFARI predicts less
Transmission Loss because of the assumption of a non-porous
ground. The FFPs generally provide accurate prediction out are
computationally time consuming. Further, the assumption of a
non-turbulent atmosphere seriously restricts the use of the FFPs in
the case of upward refraction.

PE models

The_Parabolic Equation (PE) employs an assumption that wave
motion for a particular problem is always directed away from the
source or that there is very little backscattering. Writing U =
pr'7, the Helmhotz equation in cylindrical coordinates is factored
into propagation of incoming and outgoing waves. Considering

only the outgoing wave leads to the one-way wave equation
d\J/dr = ivq U (5)

where q = d2dz2 + kJ. Most implementations of the PE can be
traced back to Eq. (5). The approach for advancing the field in
range is the point of departure for the PE methods. Two popular
software implementations are called FINITE-PE [12] and FAST-
PE [13]. The FINITE-PE method numerically integrates Eq. (5)
using a Crank-Nicolson approach. The boundary condition Eq. (2)
must be satisfied at each step requiring several integration steps
per wavelength to model the large variations of the field close to
the boundary and results in computation times comparable to the
FFPs. The FAST-PE uses a Green’s function approach and a
split-step operation that factors vq into an operator for a
homogeneous medium and another operator for propagation
through the inhomegeneous perturbation. In addition, there are
explicit terms for the field reflected from the ground allowing
range st(fs of several wavelengths which results in dramatically
decreased computation time.

The PEs allow the prediction of noise levels in a turbulent
atmosphere [15] where the sound speed is an arbitrary function of
height. Current developments are aimed at incorporating terrain
[16,17]. In the case of the downward refraction benchmark case
the PEs vyield the curve in Fig. 2(c). In the case of upward
refraction, models that neglect atmospheric turbulence predict large
attenuations at longer ranges that are not supported by
experimental data [18]. In the case of an upward refracting
turbulent atmosphere the curves in Fig. 3 are typical levels [14]
predicted for three values of the parameter /x. In essence, the
relative sound pressure levels (SPL) in Fig. 3 represent the
attenuation in excess of the transmission loss shown in Fig. 2 due
to upward refraction.

SUMMARY

When experimental data is sufficiently documented to allow
comparison with the computational models, good agreement is
obtained for a wide variety of situations and conditions [8,18,19],
The speed of modern computers, the increase accuracy and
reliability are making the use of computational models cost
effective alternatives for noise prediction schemes. We are
beginning to see effort directed at predicting the hourly, daily, or
seasonal variations in noise levels due to changes in environmental
conditions by incorporating local weather into predictions schemes
using computational models.
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Fig. 3 Typical predictions in the case of upward refraction
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