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INTRODUCTION

Propagation o f noise in the atmosphere is governed by a number 
o f interacting physical mechanisms including geometrical 
spreading, molecular absorption, reflection from a porous ground, 
curved ray paths due to refraction, diffraction by ground 
topography and scattering by turbulence. Accurate predictions of 
noise levels from a distant source must somehow account for all of 
these phenomena simultaneously. Although this goal is still 
beyond current capabilities, developments in computational tools 
for predicting sound propagation through the atmosphere have 
increased dramatically during recent years. The computational 
techniques now include analytical solutions for selected 
atmospheric profiles, ray tracing techniques which include 
interaction with the ground and meteorological conditions, and 
more sophisticated numerical solutions to the full wave equation; 
the fast field program  (FFP) and the parabolic equation (PE). 
With modern computers, it is now becoming practical to 
incorporate some of these new computational tools into predictions 
schemes with advantages such as calculated noise contours based 
on observed meteorological patterns.

All noise prediction models include the attenuation due to 
geometrical spreading and, if required, molecular absorption. 
Where the empirical based models differ from computational 
models is in the incorporation of the other attenuation mechanisms. 
The empirical models tend to rely on general tendencies found in 
experimental databases. They often work well as long the specific 
situation of interest falls within the bounds of the databases. 
Computational models on the other hand rely on our mathematical 
ability to describe real-life situations. Recently the status o f the 
computational methods was reviewed [1] and Benchmark cases to 
checlc performance and accuracy have been defined [2], The 
purpose of this paper is to review the new computational models. 
The paper summarizes their limitations, their advantages, and 
shows a benchmark comparison of predictions. A  complete and 
detailed description of each model, including comparison with 
experimental data, can be found in the cited references.

THEORETICAL BACKGROUND

The computational models assume simple harmonic time 
dependence exp(-iojt) and begin with the Helmholtz equation

[V2 +  k2]p(r,z) =  -4irô(r, z - zs) (1)

where the wavenumber k(z) =  w/c(z), r  is the horizontal range and 
z is the height above the ground. Reflection from a porous ground 
is described by the boundary condition

[dp/3z +  ik/3p]z = o =  0 (2)

at the ground surface where /3 is the normalized complex surface

Fig. 1 Sound rays in the atmosphere

admittance. In general, the speed of sound varies with height 
resulting in curved ray paths due to refraction as shown in Fig 1. 
During nighttime or downwind propagation, ray paths are curved 
downward leading to multiple rays and favourable propagation 
conditions. During daytime or upwind propagation, ray paths are 
curved upward leading to an acoustic shadow with increased 
attenuation. The atmosphere is also turbulent, requiring the 
wavenumber to be separated into deterministic and stochastic parts, 
k(z) =  kQ(nd +  f t ) ,  where nd is the refractive index and n a small 
perturbation. Turbulence scatters sound energy into shadows 
produced by barriers or refraction, limiting the amount of 
attenuation. Finally, terrain, such as berms or barriers, can be 
incorporated through boundary conditions or range dependence.

DESCRIPTION OF THE MODELS

The computational models describe below differ in their 
mathematical origin and in the way some o f the physical 
mechanisms are incorporated. For example, some of the models 
are limited to a specific functional form for the sound speed 
profile. Some of the models do not include turbulence. All the 
models incorporate the boundary condition Eq. (2) in some way. 
The different approaches are presented following Ref. [2].

Analytical wave solutions

The Helmholtz equation (1) can be solved with a zero-order 
Hankel transform

p(r,z) =  - î H0'(Kr) P(K,z) K dK (3)

Residue series solutions to Eq. (2) can be found when the sound 
speed is assumed to vary linearly with height. The residue 
solutions do not incorporate turbulence (i.e., n =  0). The 
downward refraction solution is called Normal Mooes [3] while the 
upward refraction solution is described in terms of Creeping 
Waves [4]. The solutions usually converge rapidly. An example 
of how noise levels o f a few hundred Hz are predicted to decrease 
with distance (Transmission Loss, TL) according to the Normal 
Mode solution is shown for a benchmark case [2] in Fig. 2(c).

In the case where the sound speed is constant with height above 
the ground, ray paths are straight and the solution Eq. (3) reduces 
to the more familiar sum of direct and ground reflected waves [5]

p(r) =  Ad exp(îkrd)/rd +  Q(/3 ,<*>) Ar exp(ikrr)/rr (4)

where rd and r. are the path length of the direct and reflected path, 
respectively, Q is the reflection coefficient and 4> is the angle of 
inc id en ce /In  reality though, ray path are rarely straight and Eq. 
(4) is usually not valid at distances beyond a few hundred meters.

Ray tracing solutions

The effects o f curved ray paths can be described from general 
principles. The curved ray modifies the angle o f incidence and 
Eq. (4) can be used along with basic ray theory to construct 
heuristic physical solutions. Ray tracing solutions are 
computationally efficient. We note, however, that ray theory will 
not work beyond the shadow boundary in the case of upward 
refraction. The TL predicted from such a heuristic solution [6] for 
the downward refraction benchmark case is shown in Fig. 2(a). 
The heuristic model assumes the sound speed to vary linearly with 
height and can incorporate turbulence. The restriction of a linear 
sound speed profile can be removed if the ray solution is restricted 
to only one ground reflected ray. However this limits the validity 
to shorter distances [2].

The Gaussian beam approach [7] is another variation o f ray tracing 
solutions. The basic concept o f the theory is to launch a fan of 
ray-centered beams from the source and to trace the propagation 
o f  these beams through the medium. The wave equation is solved
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Fig. 2 Benchmark cases for downward refraction

in the immediate vicinity of each ray and the acoustic pressure at 
the receiver is obtained by summing the contribution of each of the 
individual beams. The Gaussian beam model can assume an 
arbitrary sound speed profile but the current implementation does 
not incorporate turbulence. The TL predicted by the Gaussian 
beam model for the benchmark case is shown in Fig. 2(b). We 
note that this model is effective in predicting the loss of 
performance of barriers where rays curve over the top of the 
barrier edge due to refraction [7],

FFP models

Fast Field Programs (FFP) performs a direct numerical integration 
on Eq. (4). They allow the prediction of noise levels in a 
horizontally stratified atmosphere where the sound speed is an 
arbitrary function of height. Current implementations are 
restricted to a flat ground with range-independent properties that 
assume a non-turbulent atmosphere. Four adaptations of the FFP 
are called CERL-FFP [8], SAFARI [9J. CFFP [10], and FFLAGS 
[11]. The CERL-FFP and CFFP treat the ground surface as a 
locally reacting impedance boundary while FFLAGS permits 
ground layering and elasticity in addition to porosity. The 
SAFARI FFP only allows layering and elasticity.

The three FFPs that assume porous ground predict the curve in 
Fig. 3(c) for the benchmark case. SAFARI predicts less 
Transmission Loss because of the assumption of a non-porous 
ground. The FFPs generally provide accurate prediction out are 
computationally time consuming. Further, the assumption of a 
non-turbulent atmosphere seriously restricts the use of the FFPs in 
the case of upward refraction.

PE models

The Parabolic Equation (PE) employs an assumption that wave 
motion for a particular problem is always directed away from the 
source or that there is very little backscattering. Writing U = 
pr'7', the Helmhotz equation in cylindrical coordinates is factored 
into propagation of incoming and outgoing waves. Considering

only the outgoing wave leads to the one-way wave equation

d\J/dr = iVq U (5)

where q =  d2/dz2 +  kJ. Most implementations of the PE can be 
traced back to Eq. (5). The approach for advancing the field in 
range is the point of departure for the PE methods. Two popular 
software implementations are called FINITE-PE [12] and FAST- 
PE [13]. The FINITE-PE method numerically integrates Eq. (5) 
using a Crank-Nicolson approach. The boundary condition Eq. (2) 
must be satisfied at each step requiring several integration steps 
per wavelength to model the large variations of the field close to 
the boundary and results in computation times comparable to the 
FFPs. The FAST-PE uses a Green’s function approach and a 
split-step operation that factors v q  into an operator for a 
homogeneous medium and another operator for propagation 
through the inhomegeneous perturbation. In addition, there are 
explicit terms for the field reflected from the ground allowing 
range steps of several wavelengths which results in dramatically 
decreased computation time.

The PEs allow the prediction of noise levels in a turbulent 
atmosphere [15] where the sound speed is an arbitrary function of 
height. Current developments are aimed at incorporating terrain 
[16,17]. In the case of the downward refraction benchmark case 
the PEs yield the curve in Fig. 2(c). In the case of upward 
refraction, models that neglect atmospheric turbulence predict large 
attenuations at longer ranges that are not supported by 
experimental data [18]. In the case of an upward refracting 
turbulent atmosphere the curves in Fig. 3 are typical levels [14] 
predicted for three values of the parameter /x. In essence, the 
relative sound pressure levels (SPL) in Fig. 3 represent the 
attenuation in excess of the transmission loss shown in Fig. 2 due 
to upward refraction.

SUMMARY

When experimental data is sufficiently documented to allow 
comparison with the computational models, good agreement is 
obtained for a wide variety of situations and conditions [8,18,19], 
The speed of modern computers, the increase accuracy and 
reliability are making the use of computational models cost 
effective alternatives for noise prediction schemes. We are 
beginning to see effort directed at predicting the hourly, daily, or 
seasonal variations in noise levels due to changes in environmental 
conditions by incorporating local weather into predictions schemes 
using computational models.
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Fig. 3 Typical predictions in the case of upward refraction
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