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1. Introduction

Predicting the across-wind response of overhead conductors to 
alternating forces caused by vortex shedding mechanism (aeolian 
vibrations) requires knowledge of conductor self-damping 
characteristics. Conductor self-damping represents the capacity of 
the conductor to dissipate energy internally during motion. 
Energy dissipation is mainly related to frictional damping due to 
small relative movements between adjacent wires.

Methods of measurement of conductor self-damping have been 
described in a IEEE Guide [1], Conductor self-damping is usually 
determined by means of a laboratory test span by measuring the 
energy dissipated by the conductor vibrating in a principal mode. 
However, such event involving a pure sinusoidal vibration is 
rarely observed on a test span excited by natural wind action [2]. 
Most recordings indicate a combination of two or more 
frequencies.

Conductor self-damping is a non-linear phenomenon since loss 
factor depends on the conductor vibration amplitude. 
Consequently, the energy dissipated is not so readily determined 
as the superposition principle cannot be used when several modes 
are excited in the conductor. This paper presents a model to 
evaluate the energy dissipated by the conductor undergoing 
sinusoidal as well as multi-modal vibrations.

2. Theoretical approach

The variation of conductor curvature plays a dominant role in the 
dissipation mechanism. It is proposed here to develop a model 
based on the conductor curvature and its time-wise variations.

Usually, the mean power dissipated by the conductor undergoing 
sinusoidal vibrations is expressed as a function of antinodal 
amplitude, frequency and mechanical tension, but not directly in 
terms of curvature. The present model assumes that the 
instantaneous power dP dissipated by any infinitesimal element 
dx of the conductor is related to its curvature y '(x , t) , the time 

rate of change of curvature y"(x ,t) and the static longitudinal 

stress (Ta| in the outer layer of the conductor according to the 

following equation:

dP = C |y"(x,t)|“ |ÿ"(x ,t)|P a i  dx (1)

where C is a proportionality factor. Quantities a , (3 and y are 
exponents to be determined experimentally. Absolute values of 

y '(x ,t) and y"(x ,t) are used to make sure the instantaneous

power dP is always positive. For sinusoidal vibrations, the energy 
dW dissipated per cycle in the element dx is given by:

dW = JdP  (2)
0

where T is the period of vibrations. Hence, the total energy W 
dissipated per cycle in a span of length L (neglecting end effects) 
is:

L

W = jd W  (3)
0

Introducing equations (1) and (2) in (3), one finds:

L T

W = C ffT, J  J  |y"(x,t)|“ |y "(x ,t)f dt dx (4)

0 0

Equation (4) has been calibrated to the similarity laws of Noiseux 
[3] recently modified by Hardy and Leblond [4] to be applicable to 
sinusoidal vibrations of multi-layer electrical stranded conductors. 
On this basis, equation (1) can be expressed as:

dP = K -f ^ -  |y"(x ,t)|‘69 |ÿ"(x ,t)|°75 c t^ 32 dx (5) 
Pal

where K is a proportionality factor, El is flexural rigidity of the

cable (= in NmJ, pal is aluminum density in kg/m3, is

expressed in Pa and, y '(x ,t)  and y"(x ,t) are expressed in m '1 

and m '1 s '1 respectively.

Figure 1 shows instantaneous power dP as a function of spatial 
coordinate x and time t  for sinusoidal vibration of a half­

wavelength of the conductor. Positions x = 0 and x = %  

correspond to nodes of vibration. Times t = 0 and t = %  

correspond to zero and maximum displacements of the conductor 

respectively. One can see that dP is maximum at x = %  which is 

the position of the antinode, somewhere between t = 0 and 

t = The value of t corresponding to this maximum is solution 

of the following equation:

'2 n t ' 0.75 . 2 '2 jc t '

{ T J = ------sin
1.69 I T J

which leads to t = 0.156 T. The total volume included between 

surface dP and the x-t plane represents the energy dissipated in a 
half-wavelength of the conductor in a quarter cycle of vibration, as 
stated by the double integration in equation (4). At time t, the 
instantaneous power dP is zero at a vibration node. It is also zero 
at t  =  0, corresponding to zero curvature of the conductor and at
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t = % ,  which corresponds to zero time rate of change of 

conductor curvature.

Finally, if  the displacement y(x,t) of the conductor is known (one 

or more frequencies), it is possible to calculate the total energy W 
dissipated in the span between times 0 and t:

w = K ~ t ü  °*'32 J J ^"(^O l0 75 dt dx (7)

3. Results

model could be integrated in any computer program performing 
aeolian vibration calculations.
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Figure 1 : Instantaneous power dP dissipated in a half-wavelength of the conductor as a function of coordinate x and time t.

-  32  -


