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1) Introduction

Mechanical coupling of structures along continuous bound­
aries induces serious difficulties for vibrational analysis. An­
alytical, numerical or experimental methods alone are not 
efficient enough to tackle the problem.

There are a vast amount of methods that use theoretical 
or experimental methods to predict the vibrational behav­
ior of coupled systems. Statistical methods (e.g. SEA) are 
often used to calculate power flows between coupled struc­
tural elements and the vibration levels of each element of the 
system when the modal density is high [1], Deterministic the­
oretical solutions have also been presented for different com­
binations of academic structures such as beams, plates and 
shells. The majority of these methods are based on a sub­
structure synthesis approach which divide the whole struc­
ture into different substructures and try to obtain a general 
solution of the whole structure using solutions of all sub­
structures [2]. The classical modal analysis CMA [3] and 
mobility power flow [4] are other proposed methods in the 
literature. CMA is based on the modal analysis of the global 
structure and no assumption is made about either the nature 
of the coupling or the excitation type. The main objective of 
the mobility power flow method is to develop the appropriate 
expressions for the vibrational power flow through coupled 
substructures by means of structural mobility functions. Fi­
nite element method is a general method which can be used 
for all types of complex structures. The method is however 
too expensive when applied to three dimensional problems 
and/or high frequency domains.

This paper presents a hybrid method that combines an­
alytical, numerical and experimental methods to derive the 
dynamic response of a complex structure. A complex coupled 
structure is divided into two categories: a master structure 
and auxiliary substructures. In general, one is interested in 
the behavior of the master structure while the influence of 
each auxiliary structure is introduced by the compliance func­
tions at the junction. This approach allows one to change the 
characteristics of one or more elements of the system or to 
add or eliminate elements, without discarding measurements 
or calculations which have been done for other elements of 
the system.

2) Line coupling

In a general three dimensional problem, after dividing the 
whole structure into main and auxiliary structures, there ex­
ist six components of load for each contact point. The sub­
structure compliance matrix at contact point defines the re­
lations between each component of the deformation vector 
to each component of the load vector. The problem is more 
complicated in the case of a line or surface contact between 
two or more structures. As shown in figure 1, a linear junc­
tion can however be presented as a combination of separate 
coupling points. Therefore each component of the substruc­
ture compliance matrix is a square matrix with dimension 
N p, and each component of the load or deformation vector is 
a vector of dimension N p, where N p is the number of contact 
points.
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ionalwhere i , j  =  1, Np and N=6 for a general three dimension 
problem. The compliance matrix (3 can be defined as:
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where F f  is the excitation at point 
”k” and D™ is the measured deformation at point ”j” in the 
direction ”m”.

along a common edge.

In reality, there are many problems that can be treated 
more easily. As an example, let’s analyze the force vibration 
of an L-shape plate with simply supported edges. After di­
viding the L-shape plate into main and auxiliary structures, 
one is able to study the auxiliary structure by applying a 
distributed moment M x at its junction. It is the only cou­
pling load because of the pinned joint between two plates 
that avoids the in-plane wave transmission. By applying a 
moment M x at point ”i” and measuring or calculating the 
rotations 9X of all points along the junction, one can write 

= 6 j /Mi.  Hence

to (3)

A variational formulation of a rectangular thin plate us­
ing Rayleigh-Ritz approach has been performed to study the 
main structure. A polynomial decomposition for lateral dis­
placement of the plate is considered and artificial springs 
connected at the edges allow one to define different types 
of boundary conditions. The potential and kinetic energies 
as well as the potential energy due to boundaries are derived 
and the energy terms due to work done by external forces and
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moments are included. The only new term  to be considered, 
is the effect of the auxiliary structure. This energy term  can 
be defined as

E c -L -A; /x 0  x d x

where
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with ”b” is half the width of the plate along the x axis, and 
”h” is half the length along the y axis. The line of junction 
is x=[-b,b]. Replacing the moment distribution by rotational 
deformations in equation 4 and using the second equation in 
3 , E Cp is easily obtained. Experimentally , it is easier to 
measure the /? m atrix and E cp can be derived by inverting /?. 
This however leads to two problems: Firstly, by increasing 
the number of contact points, /? matrix approaches singu­
larity; secondly, the nature of the r) m atrix  is such th a t the 
regression analysis is not perm itted. I t is simply due to the 
fact th a t the value of the compliance a t a single point will 
change with the number of contact points chosen. Figure
2 shows the variations of the central line of /J and rj m atri­
ces. For the /? matrix, it means tha t the rotational moment 
is applied at point x = 0  and the responses are measured at 
different contact points along the junction. The dashed and 
solid lines are used for 5 and 9 contact points respectively. It 
is clear th a t by increasing the number of contact points, the 
inversion process complexifies and the regression analysis on 
ti m atrix leads to incorrect estimation of 77 a t other points. 
To avoid (3 matrix inversion, a polynomial decomposition is 
considered for the moment distribution along the junction:

-EXXDW («)

where yo indicates the y coordinate of the junction which, for 
simplicity, is taken parallel to the x axis. The m atrix /9 can 
be transformed to a two dimensional function /3(x, Ç) using a 
polynomial regression technique

(7)

where x and C indicate the excitation and the observation 
points respectively. Using equations 3 ,5 ,6 ,7 and some m ath ­
ematical operations, one obtains a m atrix relation between 
coefficients a,_, and 6, ,.  The dynamic energy due to the aux­
iliary structure can then be computed by equation 4 . The 
other kinetic and potential energy term s are all related to the 
main structure and can be simply derived.

3) R esu lts

As a practical application, the force vibrations of a sys­
tem composed of two coupled perpendicular thin plates has 
been studied. Both plates have same dimensions and m ate­
rial properties. The excitation is a unit lateral load. Figure
3 indicates the variation of lateral displacement amplitude vs 
frequency. The substructure compliance matrix has been ob­
tained by the same variational procedure as the main struc­
ture using 9 contact points. For more complex structures, 
the compliance matrix can either be calculated by numerical 
methods or measured experimentally. The results are com­
pared by a finite element solution using the IDEAS package 
with 12 and 24 vibrational modes. It is clear tha t a t higher 
frequencies, higher number of modes must be used to obtain 
valuable results. A sensibility analysis has been performed 
regarding possible errors in measuring or calculating compli­
ance components of the substructures. It is however out of
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Figure 2: Compliance variation and its inverse along the junc­
tion with 5 and 9 contact points

the scope of this brief report. Also, an analysis has been 
conducted to investigate the role of the number of measure­
ment points and the suitable degree of regression in different 
frequency ranges. It will help to minimize the measurement 
and calculation time and cost to obtain a desired precision.
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Figure 3: Lateral vibration of two coupled perpendicular 

plates a) Hybrid method b) Finite element using first 12 
modes c) Finite element using first 24 modes.
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