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In trod u ction - A model for the backscattered signal consists 
of a convolution of components representing the contributions 
of a measuring system impulse response, the input signal and 
the medium or structure to be classified [3]. In order to per­
form such a classification, the impulse response of the medium 
needs to be extracted. Techniques such as homomorphic pro­
cessing [4], fourier deconvolution [2], have been used to perform 
this task. Homomorphic processing is computationally expen­
sive, it involves two fourier transforms and a filtering operation. 
The fourier deconvolution technique is unstable when zero’s are 
present, in the system transfer function. Whereas the result 
of the maximum likelihood deconvoLution method (MLD) is an 
efficient estimator of the tissue impulse response ill the Cramer- 
Rao sens. The purpose of this work was to develop a robust and 
efficient estimator of the insonified tissue structure in order to 
achieve a good classification in the presence of noise. The clas­
sification problem was to identify the tissue type based on the 
observation da ta  ri , r >,..., r,v where N  is the number of samples 
in one insonification experiment. We have assumed stationar- 
ity of the backscattered signal. It was also assumed tha t under 
hypothesis H, the observation sample was the sum of the true 
underlying nonrandom sample value and a noise term. Thus, all 
observations were corrupted with an additive zero-mean white 
(! aussi an noise with variance The noise samples a t various 
instants were independent random variables and were indepen­
dent. of the source output.

D eco n v o lu t io n  M etliod -T he return echo from a target 
medium can be represented as a convolution of the impulse re­
sponse lif[n] of the measuring system, the input, signal t[n] and 
the impulse response A/,[re] due to the structure of the medium 
as shown in equation (1). The contributions of the impulse 
response of the measuring system as well as tha t of the input 
signal were fixed throughout the experiment.

ÿt [re] =  ?'[re] * A , [re] * M,[n] — s[re] * A/, [re] (1)

r t [re] =  !ji[n] +  reoise[re] (2)

where ? represents the tissue under investigation and re repre­
sents the time index of the window used as the analysis frame 
for each insonification experiment. In order to perform the de­
convolution, the received waveform r  was passed through a filter 
matched to the system response s to give a set of numbers a[k]. 
The measuring system autocorrelation coefficients b[k] and the 
noise at. the matched filter output ns[k] were computed:

N

a[fc] =  ^  ~ r[n]s[re — fc] k =  (3)
n =  1 

N

6[fc] =  'y  ̂s [re]s [re — k] k =  l , 2 . . .N  (4)

71=1

N

re.s[fc] =  ^  ' noise[w.]s[w — k] k =  1, 2 .. ./V’ (5)
71=  1

The a[fc]’s form a set. of sufficient, statistics in the estimation of 
the A/,'s. Values of .s[n — k] outside the window of analysis were 
padded with zero's. The problem was reduced to an estimation 
of the A/t [fc]‘s given a set of relations:

N

a[fc] =  ^  Af,[/]6[fc - . j ]  +  ns[k] k =  1, 2 . ..N  (6)

n =  1

Using suitable notation, the solution of the above equation 
can be written in matrix form as:

a  =  B x M j +  n s  (7)

where B is a symmetric non singular NxN matrix  formed by 
the autocorrelation coefficients 6[fc]’s.

C lassification Met.hod-The classification method was treated 
as a M-hvpotlieses testing problem. We hypothesized that dif­
ferent structures will generate different trends in the signal and 
consequently similar media or structures will influence the sig­
nal the same way. For each tissue class, a vector formed by the 
MLD estimate for each insonification position was computed. 
The power spectrum pou\ of this MLD vector M j was then 
computed. This was repeated for different insonification po­
sitions for each class of tissue. Within any given tissue class, 
there is a degree of variability. This variability was modelled 
as an additive white Gaussian noise. Therefore the computed 
power spectrum was composed of the true underlying power 
spectrum representing a given class and an additive zero-mean 
white Gaussian noise term with variance a2n . A general Gaus­
sian problem formulation is then used together with the Bayes 
criterion with cost Cx] =  0 if i = j and CtJ ^  0 otherwise to 
perform the classification [5], The test reduces to choosing H, 
for:

P , P { R \ H , ) > P j P ( R \ H j ) V j  ( 8 )
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where R is a random vector computed in the same way as pow, 
from an unknown tissue to be identified and H, is an hypothesis 
representing a given tissue type. The equivalent test, was to 
compute P, P (R \ l l , )  for all H, and choose the largest. Since log 
is a monotonicallv increasing function of its argument, taking 
the log of each likelihood and eliminating the constant term 
yields the sufficient statistic:

/,(/?) =  logP, — l/2/oÿ|A',|  — 1/'2{RT — m ? )K ,  1 ( R — ntf.) ) 

A', =  E[(R -  m,){ R T -  m j  )\H,)] (10)

where in, is the expected value of the random variable powj and 
l\, is the covariance matrix. E is the expectation operator. In 
order to simplify equation 9, we represent R in a new coordinate 
system in which the components are statistically independent 
random variables. The new coordinate system is computed by 
the ( Jram-Schmidt ort.hogonalizat.ion method using the set. of 
power spectrum vectors formed from each class of tissue as the 
initial coordinate system [1]. It was assumed tha t all the hy­
potheses have equal a priori probabilities and that the sta tis­
tics of the observations were only due to the statistics of the 
additive white Gaussian noise. Thus we have A’,- — cr^I in the 
new coordinate system. After eliminating constant terms, the 
sufficient, statistic reduces to :

l',(R) = { - l / 2 a 2n )[RlT -  m ? ) l R ' - m ' , )  = ( -1 /2 * *  )(l2 (11)

The largest of l',(R) corresponds to the minimum of distance 
<1. Therefore, the processor of the classification is a minimum- 
distance decision rule.

Computer generated da ta  simulating the backscattered ultra­
sonic signal were used to test, the reliability of the MLD and 
the classification algorithms. The probability of correct deci­
sion was found to be influenced bv the following factors: the 
data  size and the noise variance. As the number of sample 
points was increased so was the correct, decision percentage. It. 
was also possible to increase arbitrarily the level of the noise 
variance. Such increases caused the performance of the classi­
fier to degrade to the point where it was unable to extract any 
information from the data.

Iu-Vit.ru E x p er im en ts  and R esu lts  w ith  B iological
Tissues-The classification technique was used to identify 3 tis­
sues types: liver, kidney and pancreas. The experiments were 
conduc ted using a Panametrics broadband transducer with 5 
Mllz center frequency and a 3-dB bandwidth of 2.75 MHz. A 
Mat ec puiser and receiver were also used to excite the trans­
ducer and receive the backscattered echo signal. A Tektronix 
digital oscilloscope was used to digitize the echo signal with a 
sampling rate of 25 MHz.

The maximum likelihood estimate vector of the underlying 
signature of a tissue at. a given position was computed from 60 
A-scans ( lata. Th e power spectrum of the MLD vector was then 
computed. A set of 20 power spectrum vectors was computed 
for a given t issue at. different positions. Half of the set. was used 
to construct the minimum distance processor and the remaining 
10 vectors wore used for the classification test. Figure 1 shows

Figure L: Power spectrum  samples of  the 3 tissue  

types: (a) liver, (b) kidney, (b) pancreas.

power spectrum vectors for each class of tissue. The result of 
the classification yielded a percentage of correct, decision of 90%.

C onclu sion-We implemented a backscattered echo signal clas­
sifier using a minimum distance processor. The decision was 
based of the nearest, neighbor rule. Results obtained from both 
computer simulation and in-vitro biological tissue resulted in 
a probability of correct, classification of about 00%. Further 
improvement can be achieved by applying this technique at dif­
ferent. scales and combining the results of all the scales into one 
probability of correct, decision.
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