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Introduction
Active control systems are used to reduce transmitted energy at the 
end of ducts. When high order modes propagate, the sound field 
becomes very complex and effective attenuation is more difficult to 
obtain. The first step in developing an active control system model 
is to accurately define the interior pressure field of the duct.
This paper presents a model able to predict the interior pressure 
field of a finite length circular duct when high order modes can no 
longer be neglected. The studied duct is close at one end and open 
at the other. As a  first step, theoretical and experimental maps of 
the sound field in the circular duct are presented for zero modal 
impedance coefficients.

I. The model

A- Hypothesis. The sound pressure is calculated for a circular 
duct with a finite length (L), and an infinite flange at the open 
extremity. A  velocity point source o f strength Q0 is located at 

(ro,0o,zo).

The pressure outside the duct (z >  0) is given by the Helmoltz 
integral :
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P (r ,0 ,z )  = jcop- J  j G ( r , 0 , z ; r ' , 9  ,z) • V +( r , 0  ,z ) ■ r dr d9 W
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V + ( r , 0  ,z )  is the axial velocity at the open end of the duct and

G is the Green function o f  the semi-infinite space :
_ jkh 2

e with h = r  + r 2 - 2 r r 'c o s ( 0 - 0 ) + z 2G ( r ,e ,z ; r ' ,e ' ,z )  =
2 n h

The pressure inside the duct (z <  0) is given by the following 

modal decomposition before and after the point source ( ro, 0 o,Zo) :

P (r ,9 ,z )=  f V 1”0 ■ £  [Amejk“  +  Bme~jk'z ] • vFnm (km r) (2)
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P+(r,9 ,z )=  [ A ^ + B l e - ^ ^ J k ^ r )  (3)
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P + and P are the generalized solutions o f the Helmoltz 
equation (4) respecting the boundary condition (5) on the duct 
walls :

(A +  k 2)P = 0 (4)
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where kmn are determined using the boundary condition (5). The 
radial modes are orthogonal so it is convenient to choose a 
normalizing factor N  such that :
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The dispersion relation gives : k “ =  k  — k mn (9 )

The continuity o f the pressure and the velocity inside the duct are: 

p  + ( r , e , z o) =  p - ( r , 0 , z o) (10)

V +(r ,0 ,z o) - V - ( r , 0 , z o) = Q o - S ( r - r o) - 8 ( 0 - 0 o) (11)

B- Impedances-Pressure field. The acoustic pressure and the 
velocity at the open end of the duct can be expressed as :
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A new expression of the pressure is found by subsituting equation 
(13) in equation (1) and by eliminating the function G as it is 
described in [1],
Equations (12) and (13) introduce a relation between the modal 
pressure amplitudes , the modal velocity amplitudes and the modal 
impedance coefficients :

P + = Z  V + •(— ) (14)mn mn mn V /
pco

The coupling impedances are neglected.
Then, the generalized modal impedance becomes :

Vi “
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Now, the interior problem has to be solved to find the modal 
amplitudes. The equations (10) and (11) have to be used to find the 
pressure before and after the source.
Finally, the pressure inside the duct is given by :
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with the modal reflection coefficient :
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C- Theoretical results. This paragraph presents the preliminary 
results obtained by using zero modal impedance coefficients. It 
means that the exterior pressure was taken to be zero. The figure 1 
shows the theoretical sound field map in a section of the duct.
The duct used for predictions is 3,30 meters long and has a radius 
of 0,147 m. The theoretical cut-on frequencies of this duct are 
given by the boundary condition (5) (table 1). For all tests, the 
source is located at 120 degrees, at 0.147 m on the radius and at 
0.42 m of the closed extremity

. M ode s  . Ont-on freauencies
00 0
10 671
20 1112
01 1396
30 1541

Table 1 : Cut-on frequencies o f  the duct used fo r  measurements.

Fig 1 : Theoretical maps o f  the sound field  at 1000 Hz and 1200 
Hz at 2,95 m o f  the noise source in the duct.

The modes propagate according to the table 1. Hence, the first 
graphic is a superposition of modes (0,0) and (1,0) while for the 
second one the (2,0) mode is also present.

II. Pressure field measurements

A- Experimental setup. This second paragraph describes the 
measurements of the sound field in the same circular duct as used 
previously. The duct is placed in a semi-anechoïc room. To 
measure the sound pressure, five microphones are placed on a 
radius. This set of microphones can rotate around the axis of the 
duct by 10 degre steps. On a given section, this represents 210 
measurement points.
The duct used for measurements is the identical to the duct used 
for the predictions. The source is also similarly located.

Lp en dB 

90 

87 

85 

82 

79 

76 

74 

71 

68 

65 

63 

60

I f  en dB 

90 

87 

85 

82 

79 

76 

74 

71 

68 

65 

63 

60

Fig 2 : Experimental maps o f the sound fie ld  fo r  1000 Hz and 
1100 Hz at 2,95 m o f the noise source.

B- Experimental results. The fig 2 shows experimental maps of 
sound field for 1000 Hz and 1200 Hz. The modes propagate 
according to the table 1. In practice, the cut-on frequencies of 
modes do not really exist. We can say that the mode influence 
increase as the frequency is approaching its cut-on frequency.

III. Comparaison between theoretical and experimental results

It is important to note that when high modes propagate the sound 
field is the result of modes superposition as the equations (2) and 
(3) suppose it. Thus it is difficult to identify each mode 
independantly.
If we compare theoretical map (fig 1) and experimental map (fig 
2), we can see two important differences :

i) the nodal lines are not exactly at the same place,
ii) the maximum and the minimum levels do not have the 
same repartition.

The zero modal impedance coefficients may be the cause of these 
differences. Further studies using non zero impedance coefficients 
with theory shown here will soon be conducted.

Conclusion
A model of the interior pressure field of finite length circular duct 
when high order modes propagate has been presented. The studied 
duct is closed at one end and baffled at its other open end. 
Theoritical and experimental results have shown important 
différencies for a zero modal impedance coefficient hypothesis. 
Theoretical cases with non zero modal impedance coefficients, 
calculated with the theory presented will now be computed.
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