
A robust, low-computational, near optimal convergence speed,
multi-channel Filtered-X LMS algorithm

Martin Bouchard, Mechanical Engineering
Bruno Paillard, Electrical Engineering

University of Sherbrooke
2500 Boul. Université, Sherbrooke

J1K 2R1

1.0 Introduction
A widely used algorithm for real-time implementations of multi
channel active control systems is the multi-channel Filtered-X
LMS, and a normalisation of the algorithm has been published [1]
: the NLMS. The drawback of these algorithms is their slow
broadband convergence speed for strongly correlated reference
signals. In this paper, a normalised fast convergence algorithm
that has nearly the same low computational load than the Filtered-
X LMS will be presented.

2.0 A new fast convergence algorithm
To describe the algorithms, here are some definitions for the
different elements of a feedforward FIR adaptive control system :

Nx : number of reference sensors
Ny : number of output actuators
Ne : number of error sensors
W(ij,iter):adaptive filter between i* input sensor and j* output

actuator, after « iter » optimisation iterations
AW(i j,iter):modification to the adaptive filter between ift input

sensor and j* output actuator, after « iter » optimisation
iterations

H(j,m) : filter modeling the path between the j**1 output actuator
and the m* error sensor

Lw : length of the adaptive filters W (ij,iter)
Lh : length of the filters H(j ,m)
X(i,k) : vector of the Lh last samples at time k from the i* input

sensor
residual error associated to the m error sensor, at time
k
sample from the m* error sensor, at time k

V(ij,m,k): vector of the Lw last samples of the filtered reference
signal, calculated by filtering X(i,k) with H(j,m)

X(i,k) I = [x(i,k-Lh+l)... x(i,k)]
h(j,m,Lh)... h(j,m,l)J
w (ij,iter,Lw)... w(ij,iter,l)]
Aw(ij,iter,Lw)... Aw(ij,iter,l)]
v(ij,m ,k-Lw+l)... v(ij,m,k)].

e(m,k) :

d(m,k) :

H(j»m) =
W (ij,iter) =
AW(ij,iter)T =
V(ij,m,k) =

In practice, a Filtered-X LMS algorithm is often divided into two
parts : the control part (real-time part) and the optimisation part.
As shown in Figure 1, instead of optimizing directly the adaptive
filters W (ij,iter) with the signals from the error sensors, variation
filters AW(ij,iter) are optimized with the residual errors, i.e. the
signals that have not been cancelled by both the W (ij,iter) and
AW(ij,iter) filters. The real-time control task of the W(ij,iter)
filters is executed at every sample, but the optimisation of the
AW(ij,iter) filters is calculated during idle processor time
(whenever the processor is not executing a real-time control task).
After some number of optimisation iterations, the values of
AW(ij,iter) are added to W (ij,iter) and then cleared to start a
new optimisation cycle.

The basic equations of a Filtered-X LMS are then («*» denotes a
scalar product):

v(ij,m,k) = X(i,k)T * H(j,m) (eq. 1)
e(m,k) = XZ V (ij,m,k)T * AW(ij,iter) + d(m,k) (eq. 2)

i J
AW(ij,iter+l) = AW(ij,iter) - u XV (ij,m,k)e(m,k) (eq. 3).

Now to describe the NLMS, an interlaced notation that will make
the global correlation matrix of the filtered reference signals
appear « block Toeplitz » will be introduced. We shall make use
of that block Toeplitz property later.

If the following matrices are defined :

V(k)=

v (l,l ,l ,k —Lw + 1)

v(Nx,Ny,r,'k - Lw +1)

v(U'Xk) '

v(Nx,Ny,l,k)

v (l,l,N e ,k -L w + l)

v(Nx,Ny,Në,k - Lw +1)

v(l,l,N e,k)

v(Nx,Ny,Ne,k)

AW(iter) =

w (l,l,ite r,L w -l)

w(Nx,Ny,iter,Lw -1)

w (l,l,iter,l)

w(Nx,Ny,iter,l)

e(l,k) ' d(l,k) '
E(k) = e(Ne,k) D(k) = d(Në,k)

then equations 2 and 3 for the Filtered-X LMS algorithm can now
be re-written in a compact way:

E(k) = V(k) AW(iter) + D(k)

AW(iter+l) = AW(iter) - uV(k)E(k)

(eq. 4)

(eq. 5).

The NLMS algorithm recurrence equation can easily be written
with that same notation (equations 1 and 4 are still valid for the
NLMS):

AW(iter+l) = AW(iter) - uV(k)(V(k)TV(k))‘1E(k) (eq. 6).

Introducing the inverse of the NexNe matrix V(k)TV(k) in the
recurrence equation 6 sets the range of u for which the algorithm
is to converge (that range is independent of the filtered reference
signals statistics) : 0 < u < 2. At the opposite, the valid range of
step sizes for equations 3 or 5 for the Filtered-X LMS depends on
the filtered reference signals statistics and is the following (for u
« l/(any eigenvalue of E[V(k)V(k)T]) [4]) :

0 < u < 2/Trace(E[V(k)V(k)T])

E[V(k)V(k)T] is the NxNyLw x NxNyLw global correlation matrix
of all the filtered reference signals (not to be confused with the
instantaneous V(k)TV(k) of dimension Ne x Ne in equation 6).
For now on, the former will be called Rw.This correlation matrix
is block Toeplitz because of the interlaced notation chosen for
V(k) and AW(iter).

The main drawback of the Filtered-X LMS is its low broadband
convergence speed when the filtered reference signals are strongly
correlated. To achieve optimal convergence speed, the Filtered-X
Newton-LMS algorithm can be used [2], The Filtered-X Newton-
LMS algorithm recurrence equation is (again equations 1 and 4
are valid for the Filtered-X Newton-LMS) :

- 109 -

AW(iter+l) = AW(iter) - u R w '‘V(k) E(k) (eq. 7).

The matrix product with Rvv"1 Requiring a lot of computational
power, makes this algorithm unpractical for real-time systems
with a large number of coefficients (Lw). Still, this algorithm
achieves the optimal convergence speed and is the fastest of all
stochastic gradient algorithms. The valid range of u for which the
algorithm converges is (for u « 1): 0 < u < 2/NxNyLw.

It is a well known fact in digital signal processing that the discrete
cosine transform (DCT) can almost orthogonalize a strongly
correlated signal. In [3], a fast convergence mono-channel
Filtered-X LMS algorithm based on a transform domain
optimisation (DCT transform) was presented. Orthogonalizing
many filtered reference signals between each other is the same as
diagonalizing the global correlation matrix Rvv. Let the new
filtered reference matrix C(k) be defined as:

C(ij,m ,k)T = [c(ij,m ,L w)... c(i,j,m,l)]
= discrete cosine transform (v(i,j;m ,k-Lw +l)... v(ij,m,k))
= discrete cosine transform (V(ij,m ,k)) (eq.8)

and C (k):

The discrete cosine transform on the different filtered reference
signals can make Rcc (=E[C(k)C(k)T]) approximately block
diagonal, which means that the autocorrelation of the different
filtered reference signals has been almost eliminated by the
discrete cosine transform, and that the intercorrelation between
the different filtered reference signals has also been almost
eliminated except between components at the same frequency.

The matrix that has nul elements outside of the main block
diagonal and that has the elements of Rcc in the main block
diagonal is called RDcc (RDcc « Rcc). The filtered reference
matrix Cn(k) is then introduced:

c(l,l,l,L w) c(l,l,N e,Lw)

c(Nx,Nÿ,l,Lw) c(Nx,Ny','Ne,Lw)

c (l ,U ,l) " c (l,l,N e ,l) '

c(N x,N y,l,l) c(Nx,Ny,Ne,l)

Cn(k)=RDcc‘1/2TC(k)

and the new global correlation matrix will be:

Rcncn = E[Cn(k) Cn(k)T]
= E[RDcc Rcc RD cc'172]
« E[RDcc'm 1 RDcc RDcc _1?2]
= 1

(eq.9)

(eq.10).

So the filtered reference signals are now almost uncorrelated and
the convergence behavior is almost optimal. Note that RDcc'1/2T 'm
eq.9 requires only the product of the main block diagonal unlike
Rvv4 in eq.7 for the Newton-LMS (much less computations for a
large Lw). The equations for the COS-NLMS algorithm are (
equation 1 remains valid, AQ(iter) is the transform domain
equivalent of the time domain AW(iter)) :

E(k) = Cn(k)T AQ(iter) + D(k) (eq. 11)

AQ (iter+1) = AQ(iter) - uCn(k) (Cn(k)T Cn(k))'1 E(k) (eq. 12)

After an optimisation sequence is complete, an inverse discrete
cosine transform is performed on each adaptive filter of AQ(iter)
to calculate all the adaptive filters of AW(iter) (so that the real
time control computations can still be performed in the time
domain):

AW(i,j,iter)T= [Aw (ij,iter,lw)... Aw(ij,iter,l)]
= inverse discrete cosine transform(Aco(i,j,iter,lw)...A©(ij,iter,1))
= inverse discrete cosine transform (AQ(ij,iter)T) (eq.13).

Figure 2 shows an implementation of the COS-NLMS algorithm.
Just like the NLMS, the range of u for which the algorithm
converges is : 0 < u < 2.

Some active control experiments in a duct have been performed to
compare the NLMS and the COS-NLMS algorithms. Figure 3
shows some typical convergence curves for the two algorithms. As
it is shown in that figure, the COS-NLMS has a faster
convergence behavior than the NLMS.

3.0 Conclusion
A robust low computational approximation of the Newton-LMS
algorithm was developped : the COS-NLMS algorithm. Real
experiments of active control of noise in a duct have shown the
effective gain of convergence speed provided by the COS-NLMS
over the NLMS (or over the standard Filtered-X LMS).

Acknowledgments
Financial support for this work was provided by the « Institut de
Recherche en Santé et Sécurité au Travail » (IRSST).

Rcfcrciticss
[1] DOUGLAS, S., OLBQN, J. (avril 1993) Multiple-Input, Multiple
Output, Multiple-Error Adaptive Feedforward Control Using the
Filtered-X Normalised LMS Algorithm, Proceedings of the second
conference on recent advances in active control of sound and
vibration. Blacksburgh(VA), 743-754.
[2] WIDROW, B., STEARNS, S.D. (1985) Adaptive Signal
Processing, Englewood Cliffs, Prentice Hall, 99-116,142-147.
[3] PAILLARD, B., BERRY, A., LE DINH, C.T., NICOLAS, J.
(1995) Accelerating The Convergence O f The Filtered-X LMS
Algorithm Through Transform-Domain Optimization, To be
. published in Mechanical Systems and Signal Processing.
[4] HAYKIN, S. (1991) Adaptive Filter Theory, Englewood Cliffs,
Second edition, Prentice Hall

X

Figure 1 : an implementation o f the Filtered-X LMS algorithm.

REAL TIME :
W H

signal to be
i cancelled

IDCT 1

H

R d c c

DCT b ^ R d ^
"n72T|

NOX REAL TIME.
Cn

~ L t D

C
o’>£3 _

0)

<

-NLMS -COS NLMS

Figure 3 : results of active noise control in a duct

Figures
signal to be

j NOT REAL TIME

Figure 2: an implementation of the COS-NLMS algorithm.

Optimisation iterations

0 10000 20000 30000 40000 50000

- 110

