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1.0 Introduction
A widely used algorithm for real-time implementations of multi
channel active control systems is the multi-channel Filtered-X 
LMS, and a normalisation of the algorithm has been published [1] 
: the NLMS. The drawback of these algorithms is their slow 
broadband convergence speed for strongly correlated reference 
signals. In this paper, a normalised fast convergence algorithm 
that has nearly the same low computational load than the Filtered- 
X LMS will be presented.

2.0 A new fast convergence algorithm
To describe the algorithms, here are some definitions for the 
different elements of a feedforward FIR adaptive control system :

Nx : number of reference sensors 
Ny : number of output actuators 
Ne : number of error sensors
W(ij,iter):adaptive filter between i* input sensor and j*  output 

actuator, after « iter » optimisation iterations 
AW(i j,iter):modification to the adaptive filter between ift input 

sensor and j*  output actuator, after « iter » optimisation 
iterations

H(j,m) : filter modeling the path between the j**1 output actuator 
and the m* error sensor 

Lw : length of the adaptive filters W (ij,iter)
Lh : length of the filters H(j ,m)
X(i,k) : vector of the Lh last samples at time k from the i* input 

sensor
residual error associated to the m error sensor, at time 
k
sample from the m* error sensor, at time k 

V(ij,m,k): vector of the Lw last samples of the filtered reference 
signal, calculated by filtering X(i,k) with H(j,m)

X(i,k) I = [x(i,k-Lh+l)... x(i,k)]
h(j,m,Lh)... h(j,m,l)J 
w (ij,iter,Lw )... w(ij,iter,l)]
Aw(ij,iter,Lw)... Aw(ij,iter,l)] 
v(ij,m ,k-Lw+l)... v(ij,m,k)].

e(m,k) : 

d(m,k) :

H(j»m) = 
W (ij,iter) = 
AW(ij,iter)T = 
V(ij,m,k) =

In practice, a Filtered-X LMS algorithm is often divided into two 
parts : the control part (real-time part) and the optimisation part. 
As shown in Figure 1, instead of optimizing directly the adaptive 
filters W (ij,iter) with the signals from the error sensors, variation 
filters AW(ij,iter) are optimized with the residual errors, i.e. the 
signals that have not been cancelled by both the W (ij,iter) and 
AW(ij,iter) filters. The real-time control task of the W(ij,iter) 
filters is executed at every sample, but the optimisation of the 
AW(ij,iter) filters is calculated during idle processor time 
(whenever the processor is not executing a real-time control task). 
After some number of optimisation iterations, the values of 
AW(ij,iter) are added to W (ij,iter) and then cleared to start a 
new optimisation cycle.

The basic equations of a Filtered-X LMS are then («*» denotes a 
scalar product):

v(ij,m,k) = X(i,k)T * H(j,m) (eq. 1)
e(m,k) = XZ V (ij,m,k)T * AW(ij,iter) + d(m,k) (eq. 2)

i J
AW(ij,iter+l) = AW(ij,iter) - u XV (ij,m,k)e(m,k) (eq. 3).

Now to describe the NLMS, an interlaced notation that will make 
the global correlation matrix of the filtered reference signals 
appear « block Toeplitz » will be introduced. We shall make use 
of that block Toeplitz property later.

If the following matrices are defined :

V(k)=

v ( l,l ,l ,k —Lw + 1) 

v(Nx,Ny,r,'k -  Lw +1 )

v(U'Xk) ' 

v(Nx,Ny,l,k)

v (l,l,N e ,k -L w  + l) 

v(Nx,Ny,Në,k -  Lw +1 ) 

v(l,l,N e,k) 

v(Nx,Ny,Ne,k)

AW(iter) =

w (l,l,ite r,L w -l) 

w(Nx,Ny,iter,Lw -1  ) 

w (l,l,iter,l) 

w(Nx,Ny,iter,l)

e(l,k) ' d(l,k) '
E(k) = e(Ne,k) D(k) = d(Në,k)

then equations 2 and 3 for the Filtered-X LMS algorithm can now 
be re-written in a compact way:

E(k) = V(k) AW(iter) + D(k) 

AW(iter+l) = AW(iter) - uV(k)E(k)

(eq. 4) 

(eq. 5).

The NLMS algorithm recurrence equation can easily be written 
with that same notation (equations 1 and 4 are still valid for the 
NLMS):

AW(iter+l) = AW(iter) - uV(k)(V(k)TV(k))‘1E(k) (eq. 6).

Introducing the inverse of the NexNe matrix V(k)TV(k) in the 
recurrence equation 6 sets the range of u for which the algorithm 
is to converge (that range is independent of the filtered reference 
signals statistics) : 0 < u < 2. At the opposite, the valid range of 
step sizes for equations 3 or 5 for the Filtered-X LMS depends on 
the filtered reference signals statistics and is the following (for u 
«  l/(any eigenvalue of E[V(k)V(k)T]) [4]) :

0 < u < 2/Trace(E[V(k)V(k)T])

E[V(k)V(k)T] is the NxNyLw x NxNyLw global correlation matrix 
of all the filtered reference signals (not to be confused with the 
instantaneous V(k)TV(k) of dimension Ne x Ne in equation 6). 
For now on, the former will be called Rw.This correlation matrix 
is block Toeplitz because of the interlaced notation chosen for 
V(k) and AW(iter).

The main drawback of the Filtered-X LMS is its low broadband 
convergence speed when the filtered reference signals are strongly 
correlated. To achieve optimal convergence speed, the Filtered-X 
Newton-LMS algorithm can be used [2], The Filtered-X Newton- 
LMS algorithm recurrence equation is (again equations 1 and 4 
are valid for the Filtered-X Newton-LMS) :
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AW(iter+l) = AW(iter) - u R w '‘V(k) E(k) (eq. 7).

The matrix product with Rvv"1 Requiring a lot of computational 
power, makes this algorithm unpractical for real-time systems 
with a large number of coefficients (Lw). Still, this algorithm 
achieves the optimal convergence speed and is the fastest of all 
stochastic gradient algorithms. The valid range of u for which the 
algorithm converges is (for u  «  1 ): 0 < u < 2/NxNyLw.

It is a well known fact in digital signal processing that the discrete 
cosine transform (DCT) can almost orthogonalize a strongly 
correlated signal. In [3], a fast convergence mono-channel 
Filtered-X LMS algorithm based on a transform domain 
optimisation (DCT transform) was presented. Orthogonalizing 
many filtered reference signals between each other is the same as 
diagonalizing the global correlation matrix Rvv. Let the new 
filtered reference matrix C(k) be defined as:

C(ij,m ,k)T = [c(ij,m ,L w )... c(i,j,m,l)]
= discrete cosine transform (v(i,j;m ,k-Lw +l)... v(ij,m,k))
= discrete cosine transform (V(ij,m ,k) ) (eq.8)

and C (k ):

The discrete cosine transform on the different filtered reference 
signals can make Rcc (=E[C(k)C(k)T]) approximately block 
diagonal, which means that the autocorrelation of the different 
filtered reference signals has been almost eliminated by the 
discrete cosine transform, and that the intercorrelation between 
the different filtered reference signals has also been almost 
eliminated except between components at the same frequency.

The matrix that has nul elements outside of the main block 
diagonal and that has the elements of Rcc in the main block 
diagonal is called RDcc (RDcc « Rcc). The filtered reference 
matrix Cn(k) is then introduced:

c(l,l,l,L w ) c(l,l,N e,Lw )

c(Nx,Nÿ,l,Lw) c(Nx,Ny','Ne,Lw)

c ( l ,U ,l ) " c ( l,l,N e ,l)  '

c(N x,N y,l,l) c(Nx,Ny,Ne,l)

Cn(k)=RDcc‘1/2TC(k)

and the new global correlation matrix will be:

Rcncn = E[Cn(k) Cn(k)T]
= E[RDcc Rcc RD cc'172]
« E[RDcc'm 1 RDcc RDcc _1?2]
= 1

(eq.9)

(eq.10).

So the filtered reference signals are now almost uncorrelated and 
the convergence behavior is almost optimal. Note that RDcc'1/2T 'm
eq.9 requires only the product of the main block diagonal unlike 
Rvv4 in eq.7 for the Newton-LMS (much less computations for a 
large Lw). The equations for the COS-NLMS algorithm are ( 
equation 1 remains valid, AQ(iter) is the transform domain 
equivalent of the time domain AW(iter)) :

E(k) = Cn(k)T AQ(iter) + D(k) (eq. 11 )

AQ (iter+1) = AQ(iter) - uCn(k) (Cn(k)T Cn(k))'1 E(k) (eq. 12)

After an optimisation sequence is complete, an inverse discrete 
cosine transform is performed on each adaptive filter of AQ(iter) 
to calculate all the adaptive filters of AW(iter) (so that the real
time control computations can still be performed in the time 
domain):

AW(i,j,iter)T= [Aw (ij,iter,lw )... Aw(ij,iter,l)]
= inverse discrete cosine transform(Aco(i,j,iter,lw)...A©(ij,iter,1)) 
= inverse discrete cosine transform (AQ(ij,iter)T) (eq.13).

Figure 2 shows an implementation of the COS-NLMS algorithm. 
Just like the NLMS, the range of u for which the algorithm 
converges is : 0 < u < 2.

Some active control experiments in a duct have been performed to 
compare the NLMS and the COS-NLMS algorithms. Figure 3 
shows some typical convergence curves for the two algorithms. As 
it is shown in that figure, the COS-NLMS has a faster 
convergence behavior than the NLMS.

3.0 Conclusion
A robust low computational approximation of the Newton-LMS 
algorithm was developped : the COS-NLMS algorithm. Real 
experiments of active control of noise in a duct have shown the 
effective gain of convergence speed provided by the COS-NLMS 
over the NLMS (or over the standard Filtered-X LMS).
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Figure 1 : an implementation o f the Filtered-X LMS algorithm. 
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Figure 3 : results of active noise control in a duct
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Figure 2: an implementation of the COS-NLMS algorithm.
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