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GUEST EDITORIAL / ÉDITORIAL INVITÉ

Mitigating the effect of anthropogenic noise on marine mam
mals is rapidly becoming the focus of management agencies, 
world navies, and industry. Traditionally, visual methods 
have been used for monitoring, mitigation, and density es
timation. Passive acoustic methods are now also commonly 
applied to detect and locate animal vocalizations. It has been 
widely postulated that acoustic methods can also classify vo
calizations to species, and that this process can be substan
tially or entirely automated. The potential advantages of pas
sive acoustic detection, classification, and localization (DCL) 
of animal vocalizations are clear: These techniques can be 
used day and night and are less weather-dependent than vi
sual methods. They can be automated, thus ensuring repro
ducibility and reducing or eliminating observer bias. Sensors 
can be left on-site and used to monitor for vocalizations over 
extended periods of time.

In principle, passive acoustic techniques are straightfor
ward. However, marine mammal vocalizations vary widely 
in frequency and structure over species, groups, individuals, 
and even for vocalizations from a single individual. For ex
ample, blue whales produce calls under 50 Hz with a variety 
of call types worldwide, while small odontocete clicks can 
exceed 100 kHz. Marine species may produce songs, clicks, 
whistles, moans, creaks, and other types of sounds. Thus 
designing an “optimal” detector is extremely challenging. 
Classifying vocalizations to the species level is even more 
so, especially for small odontocetes which may produce very 
similar vocalizations. Localization is highly dependent not 
only on the characteristics of the vocalizations, but also on 
the system used to collect and process data and the local en
vironment in which it is used. Warm to temperate oceans with 
downward-refracting sound velocity profiles may present a 
very different problem than an upward-refracting Arctic en
vironment.

To help develop and test new DCL and density estima
tion algorithms, common, verified data sets are critical. These 
data sets can be used by researchers to test the efficacy of 
algorithms on real-world signals and compare the results of 
such tests. With time, verified methods can be developed, re
fined, and fielded in real-time systems.

Passive acoustic methods continue to improve, but sig
nificant hurdles remain. Two previous workshops were held 
-  the first in Halifax, Nova Scotia in 2003, and the second 
in Monaco in 2005 -  to highlight research in detection and 
localization and to bring together researchers in the field. An
other opportunity for this was provided by the 3rd Interna
tional Workshop on the Detection and Classification of Ma
rine Mammals Using Passive Acoustics, which is the focus of 
this Special Issue. For this workshop, held in Boston in July 
2007, an associated data set was provided containing clicks 
from several visually-identified species of odontocetes. The 
set focused on Blainville’s (Mesoplodon densirostris) beaked 
whales, a species that have stranded during events associated 
with naval sonars. Researchers were encouraged to test their 
respective DCL algorithms and compare the results in a blind

Atténuer l’effet des bruits anthropiques sur les mam
mifères marins est rapidement devenu le focus des organ
ismes d’aménagement de l’environnement, des marines de 
plusieurs pays,, et de l’industrie. Traditionnellement, les 
méthodes visuelles ont été utilisées pour la surveillance, 
l’atténuation et l ’estimation de la densité. Les méthodes 
acoustiques passives sont aussi utilisées couramment main
tenant pour détecter et localiser les vocalisations d’animaux. 
Il a été largement postulé que les méthodes acoustiques peu
vent également classifier les d’espèces selon leurs vocalisa
tions, et que ce processus peut être partiellement ou entière
ment automatisé. Les avantages potentiels de la détection, 
classification, et localisation (DCL) acoustiques passives de 
vocalisations d’animaux sont clairs: ces techniques peuvent 
être utilisées jour et nuit, et elles dépendent moins des condi
tions météorologiques que les méthodes visuelles. Elles peu
vent aussi être automatisées, ce qui garantit la reproductibil- 
ité, et réduit ou élimine les biais d’observation. Les capteurs 
peuvent être laissés sur place et utilisés pour controller les 
vocalisations sur de longues périodes.

En principe, les méthodes acoustiques passives sont 
simples. Toutefois, les vocalisations des mammifères marins 
sont très variables en fréquence et en structure selon l ’espèce, 
le groupe, l ’individu, et même pour les vocalisations d’un 
seul individu. Par exemple, les baleines bleues produisent 
des appels en bas de 50 Hz avec une diversité à travers le 
monde des types d’appels, tandis que les clics de petits odon- 
tocètes peuvent aller jusqu’à plus de 100 kHz. Les espèces 
marines peuvent aussi produire des chansons, clics, sifflets, 
gémissements, grincements, et autres types de sons. Ainsi, la 
conception d’un détecteur “optimum” est extrêmement dif
ficile. Classifier l ’espèce selon ses vocalisations l ’est encore 
plus, surtout pour les petits odontocètes qui peuvent produ
ire des vocalisations très similaires. La localisation est très 
dépendante non seulement des caractéristiques des vocalisa
tions, mais aussi du système utilisé pour recueillir et traiter 
les données, et de l’environnement local dans lequel il est 
deployé. Les océans tempérés ou chauds, avec des profils de 
la vitesse du son qui réfractent le son vers le fond marin, peu
vent présenter un problème très différent des profils qui ré
fractent le son vers la surface, tel que dans l’environnement 
arctique.

Pour aider à développer et tester de nouveaux algo
rithmes de DCL et d’estimation de densité, des ensembles 
de données communs et vérifiés sont essentiels. Ces données 
peuvent être utilisées par les chercheurs pour tester l ’efficacité 
de leurs algorithmes sur des signaux réels, et comparer leurs 
résultats. Avec le temps, des méthodes vérifiées peuvent être 
développées, affinées, et implantées dans des systèmes qui 
fonctionnent en temps réel.

Les méthodes acoustiques passives continuent de 
s’améliorer, mais des obstacles importants demeurent. Deux 
ateliers précédents ont eu lieu - la première à Halifax, en 
Nouvelle-Écosse en 2003, et la seconde à Monaco en 2005 - 
pour mettre en évidence la recherche sur la détection et la lo-
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test. Workshop papers documenting both the algorithms used 
to analyze the data set, as well as a broad spectrum of cur
rent research topics in the field, are contained in this special 
edition of the journal. A paper which explains the data set 
and presents the results of the blind test is also provided. The 
data set remains available as a resource for current and future 
marine mammal passive acoustic research.

This third workshop was a success, with 120 registered 
participants, 54 oral presentations, 8 poster presentations, 
and a great deal of cross-fertilization of ideas among attend
ees. The next workshop will be held in Pavia, Italy in 2009. 
Having an annotated dataset used in common by many par
ticipants worked well and is recommended for future work
shops. Organizers of future workshops should note that this 
data set required a surprising amount of advance preparation, 
and to be most effective, should be released many months 
before the workshop -- so start early!

David Moretti, David K. Mellinger, 
and Francine Desharnais

calisation, et rassembler des chercheurs de ce domaine. Une 
autre opportunité en a été fournie avec le 3ème atelier inter
national sur la détection et la classification des mammifères 
marins utilisant l’acoustique passive, qui est au centre de 
ce numéro spécial. Pour cet atelier, qui s’est tenu à Boston 
en juillet 2007, un ensemble de données a été fourni conte
nant des clics de plusieurs espèces (identifiées visuellement) 
d’odontocètes. Les données sont centrées sur les baleines à 
bec Blainville (Mesoplodon densirostris), des espèces qui 
ont échouées lors d’événements associés aux sonars navals. 
Les chercheurs ont été invités à tester leurs algorithmes DCL 
et comparer leurs résultats dans un test aveugle. Cette édition 
spéciale du journal contient les articles de cet atelier docu
mentant les algorithmes utilisés pour analyser l’ensemble des 
données, ainsi qu’un large éventail de thèmes de recherche 
actuelle dans ce domaine. Un article qui explique l ’ensemble 
de données, et présente les résultats du test aveugle, est 
également inclus. L’ensemble de données reste accessible en 
tant que ressource pour les recherches actuelles et futures sur 
l’acoustique passive des mammifères marins.

Ce troisième atelier a été un succès, avec 120 partici
pants inscrits, 54 présentations orales, 8 posters et beaucoup 
d’échanges d’idées entre les participants. Le prochain atelier 
aura lieu à Pavie, en Italie en 2009. L’utilisation d’un ensem
ble données annotées commun par de nombreux participants 
est une approche qui a bien fonctionnée et qui est recom
mandée pour les ateliers futurs. Les organisateurs d’ateliers 
futurs devraient par contre noter que l’ensemble de données 
doit être préparé étonnamment à l ’avance, et doit être mis à 
la disposition des participants plusieurs mois avant l’atelier 
pour être effectif - alors commencez tôt!

David Moretti, David K. Mellinger, et Francine Desharnais
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O v e r v ie w  o f  t h e  3 rd In t e r n a t io n a l  w o r k s h o p  o n  t h e  d e t e c t io n  a n d  

c l a s s if ic a t io n  OF MARINE MAMMALS USING PASSIVE ACOUSTICS

David Moretti1, Nancy DiMarzio1, Ronald Morrissey1, David K  Mellinger2 
Sara Heimlich2 and Heather Pettis3

1 -  Naval Undersea Warfare Center Division, 1176 Howell St., Newport, RI 02841 USA 
2 -  Oregon State University, 2030 SE Marine Science Dr., Newport, OR 97365 USA 

3 -  New England Aquarium, Central Wharf, Boston, MA 02110 USA

ABSTRACT

The 3rd International Workshop on the Detection and Classification o f Marine Mammals Using Passive 
Acoustics was held 24-26 July 2007 in Boston, MA. A dataset containing verified odontocete vocalizations 
from five different species, including Blainville's beaked whale (Mesoplodon densirostris), was provided 
for the testing and development of detection and classification algorithms. Data collected under different 
acoustic conditions were included along with a blind test dataset. Six research groups tested their respective 
algorithms against the unknown data and presented their results. Both the data set and the test results are 
presented.

s o m m a i r e

Le 3ème atelier international sur la détection et la classification des mammifères marins employant 
l’acoustique passive a été tenu le 24-26 juillet 2007 à Boston, MA. Un ensemble de données vérifiées de 
vocalisations d'odontocètes de cinq espèces différentes, y compris la baleine à bec de Blainville 
(Mesoplodon densirostris), était disponible pour l'essai et le développement des algorithmes de détection et 
classification. Des données enregistrées dans des conditions acoustiques différentes étaient incluses, ainsi 
qu’un ensemble de données pour test aveugle. Six groupes de recherche ont testé leurs algorithmes 
respectifs avec les données inconnues, et ont présenté leurs résultats. L ’ensemble de données et les résultats 
du test sont présentés ici.

1. i n t r o d u c t i o n

Marine mammal passive acoustic methods to monitor 
individual animals and populations are undergoing rapid 
development. Algorithms for the detection, classification, 
and localization (DCL) of marine mammal vocalizations are 
critical to these methods. To foster this development, the 3rd 
International Workshop on the Detection and Classification 
o f Marine Mammals Using Passive Acoustics was held 24
26 July 2007 in Boston, MA, USA. Two previous 
workshops concentrated on detection and localization 
without emphasis on the problem of classification. This 
workshop emphasized classification as a core topic area. 
The workshop provided researchers from around the world 
the opportunity to present their work and to test the efficacy 
of their DCL algorithms on a common data set consisting of 
sounds recorded from odontocete species identified by 
experienced visual observers. The workshop drew 
participants from different fields and included specialists in 
biology, acoustics, signal processing, mathematics, 
electronics, and computer science. Topics for presentation 
were extended beyond passive acoustics to areas of research 
related to the effects of anthropogenic sound on marine

mammals. The scientific topics encompassed by the 
workshop were as follows:

1. Underwater acoustics
2. Detection and Classification
3. Localization
4. Biology of Marine Mammals
5. Density Estimation
6. Applications

A half-day was reserved for the comparison of scientific 
methods applied to a common workshop data set of 
recorded odontocete clicks. The dataset allowed researchers 
to develop and compare DCL algorithms. It was provided 
by the U.S. Navy's Naval Undersea Warfare Center 
(NUWC), Division Newport and hosted by Oregon State 
University on the MobySound website. It can be accessed 
at:

http://hmsc.oregonstate.edu/projects/MobySound/MsSound
Sets.html
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The first five journal papers are from participants who 
developed detection and classification algorithms and 
attempted to identify the species in the workshop dataset test 
files. A summary of their results is included below. The next 
four papers are from participants who used the workshop 
dataset in other ways. The remaining papers are organized 
according to the scientific topics listed above.

2. WORKSHOP DATA

Data for the workshop dataset were collected by the NUWC 
Marine Mammal Monitoring on Navy Ranges (M3R) 
program during species verification tests at two U.S. Navy 
ranges: the Atlantic Undersea Test and Evaluation Center 
(AUTEC) located off Andros Island, Bahamas, and the 
Southern California Offshore Range (SCORE) off southern 
California (Figure 1). Animal vocalizations were recorded 
on wide-band bottom-mounted hydrophones located at these 
ranges. Data were analyzed and prepared for the workshop 
at NUWC and Oregon State University.

2.1 Navy Ranges

The AUTEC range consists of 82 operational hydrophones 
covering a total area of over 1500 km2. The hydrophones are 
at varying depths of approximately 1300-1900 meters. 
Sixty-two of the hydrophones are arranged in offset rows on 
approximately 3.8 km (2 nm) baselines, with a bandwidth of 
about 50 Hz to 45 kHz. Fourteen of the hydrophones are 
arranged into two 7-hydrophone hexagonal arrays with a 
center hydrophone. These hydrophones are on a baseline of 
about 1.8 km (1 nm), and have a bandwidth of 8 to 50 kHz. 
The AUTEC hydrophones are located east of Andros Island 
in the Bahamas in a deep ocean canyon known as the 
Tongue of the Ocean (TOTO).

The SCORE range contains 88 hydrophones covering an 
area of over 1800 km2. The SCORE hydrophone baselines 
range between about 2.5 km (1.3 nm) close to shore to 6.5 
km (3.5 nm) farther west, although a few hydrophone pairs 
have shorter baselines, with one as small as 1.65 km (0.89 
nm). The hydrophones vary in depth from about 800 to 
1760 meters. Twenty of the hydrophones are individually 
cabled with a nominal bandwidth of 8 to 50 kHz, and the 
other 68 are on multiplexed arrays, with a nominal 
bandwidth of 8 to 39 kHz. The range is located to the west 
of San Clemente Island, California.

2.2 Alesis recorders

The raw acoustic data are cabled to shore, where they are 
recorded using a bank of eight Alesis HD24 hard disk 
recorders. Each Alesis unit records up to 12 channels, with 
an IRIG time code on the 12th channel. The data are 
recorded as 24-bit samples at a 96 kHz sample rate using 
standard IDE hard drives.

Figure 1. The AUTEC (top) and SCORE (bottom) ranges.

2.3 Species Verification Tests

M3R has conducted species verification tests at each of 
these ranges with highly trained surface observers. At the 
AUTEC range, M3R collaborated with the Bahamas Marine 
Mammal Research Organization and the Woods Hole 
Oceanographic Institution, and at the SCORE range with the 
Cascadia Research Collective and Scripps Institution of 
Oceanography. Animal vocalizations on the range were 
acoustically monitored in real-time using M3R software. 
The goal of the species verification tests was to use 
experienced surface observers to visually verify species that 
were acoustically detected and monitored on-shore. The 
shore team monitored the range for animals and directed the
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observers to the location of vocalizations of interest. The 
surface observers found the animals, verified the species 
present, took photo IDs and recorded behavioral data. 
During the course of these tests all hydrophones were 
recorded. The data provided in the workshop were drawn 
from the closest recordings both spatially and temporally to 
verified sightings of the species of interest. Though care was 
taken to provide sound cuts matched to visually verified 
species, there are cases in which the cuts may be 
contaminated with vocalizations from other unsighted 
species in the vicinity of the recorded hydrophones. This is 
particularly a problem for Risso’s dolphin sound cuts from 
the SCORE range, where the animal density is much higher 
than at AUTEC.

2.4 Workshop Dataset

Cuvier’s and Blainville’s beaked whale species are among 
those most often involved in mass strandings linked to naval 
mid-frequency sonars. The workshop dataset consists of 
both training data and test data for a variety of odontocete 
species, with an emphasis on Blainville’s beaked whales 
(Mesoplodon densirostris), as data from multiple verified 
sightings were available for this species. Sounds from each 
species comprised a number of “cuts”, short segments of 
continuously-recorded sound.

Training data
Training data sound cuts were provided for the following 
three species:

1. Blainville’s beaked whale (Mesoplodon 
densirostris)
2. Short-finned pilot whale (Globicephala 
macrorhynchus)
3. Risso’s dolphin (Grampusgriseus)

The Blainville’s beaked whale and short-finned pilot whale 
sound cuts were recorded at the AUTEC range, and the 
Risso’s dolphin sound cuts were recorded at SCORE. Most 
training sound cuts were 2 minutes long, though they varied 
from 0.5 to 3 minutes in length.

Sixteen sound cuts of Blainville’s beaked whale were 
provided. These data were collected at AUTEC on April 27, 
2005 and September 24 and 27, 2005. Nine short-finned 
pilot whale sound cuts were available for training. These 
data were recorded at AUTEC on September 24, 26, and 30, 
2005. The Risso’s dolphin sound cuts were collected at 
SCORE on August 14, 16, and 19, 2006. Eleven of these 
sound cuts were provided for training.

Test Data
Nine longer, unidentified sound cuts, approximately ten 
minutes each, were provided as test data. Six of these files 
were from verified sightings. Three were unverified, but

were from easily recognizable species (beaked whale and 
sperm whale). The test files were numbered one through 
nine and the species identity was withheld. The correct 
species identifications are shown in Table 1.

Table 1: Species identifications for workshop dataset test files.

The test cases were organized into three categories, with the 
following species in each category:

1. High signal-to-noise ratio (SNR) sound cuts
a. Blainville’s beaked whale
b. Short-finned pilot whale
c. Risso’s dolphin

2. Sound cuts with multiple species
a. Unverified Blainville’s beaked whale & 
verified short-finned pilot whale
b. Unverified Blainville’s beaked whale & 
unverified sperm whale

3. Sound cuts with no signal of interest
a. Pantropical spotted dolphin
b. Unverified sperm whale

High-SNR test cases were presented for the three species for 
which training data were provided. Alternate species and 
sound cuts with multiple species were also provided to test 
and compare the different methods for detection and 
classification. All the test cases were recorded at AUTEC 
except for the Risso’s dolphin cuts, which were recorded at 
SCORE.

Dataset Annotations
A spreadsheet was provided listing the sound cut filenames 
and source files for the sound cuts; the date and location of 
the recordings; the type of recorder, sample rate and

Test
File Key

1
Unverified Blainville’s beaked whale 

(Mesoplodon densirostris) & verified short-finned 
pilot whale (Globicephala macrorhynchus)

2
Blainville’s beaked whale (Mesoplodon 

densirostris)
3 Risso’s dolphin (Grampus griseus)
4 Pantropical spotted dolphin (Stenella attenuata)
5 Risso’s dolphin (Grampus griseus)

6
Unverified Blainville’s beaked whale 

(Mesoplodon densirostris) & unverified 
sperm whale (Physeter macrocephalus)

7 Pantropical spotted dolphin (Stenella attenuata)

8
Short-finned pilot whale (Globicephala 

macrorhynchus)

9
Unverified sperm whale

(Physeter macrocephalus)

9 - Vol. 36 No. 1 (2008) Canadian Acoustics / Acoustique canadienne



bandwidth; start and stop times referenced to the local time, 
Greenwich mean time (GMT), and the Alesis recorder; 
length (in minutes) and size (in megabytes) of the source 
files; whether the source files were time-aligned and 
visually verified; the local sighting time, nearest 
hydrophone and common and scientific names of the 
species sighted; notations regarding the presence of clicks, 
whistles/moans, creaks/buzzes, man-made noise, 
boat/engine noise, unknown sounds; and more detailed 
comments describing the contents of the cuts.

Information was also provided describing the naming 
conventions for the files, the hydrophone locations and 
depths in meters, and additional sighting data.

Additional Data
Upon request, two additional datasets were provided. One 
was a Blainville’s beaked whale dataset for localization, 
consisting of 18-minute long sound cuts from five 
neighboring hydrophones on the AUTEC range. These 
sound cuts were from a verified sighting at AUTEC on 
September 27, 2005. The second was an AUTEC noise 
dataset, consisting mostly of background noise. These were 
three files, each 30 minutes long, recorded from different 
parts of the range on April 26, 2005.

3. WORKSHOP DATASET ANALYSIS AND 
RESULTS

Six participants presented results from the application of 
their detection and classification algorithms to the test data 
set. The participants attempted to identify the species 
present in each of the dataset test files. Following the 
authors’ presentations, the correct species identification for 
each vocalization test file was released.

The results of the analysis, based on each author’s 
presentation, are provided in Table 2, which summarizes the 
number of species correctly identified, as well as those 
omitted, added, or misidentified. The table presents raw 
classifier outputs. To compile the results, the number of 
correctly identified species was first tallied. The number of 
species misidentified was then counted from those 
remaining, followed by the number omitted, and finally the 
number added. A direct comparison of the authors' results 
was difficult. In some cases, the results were open to 
interpretation, as they were simply a tabulation of the 
number of times a particular species was correctly 
identified. Future workshop organizers should provide 
participants with a clearly defined format for the tabulation 
of their results. A number of authors recognized that species 
were misidentified by their classifiers and suggested minor 
adjustments would improve performance.

Overall, Roch’s classifier performed best, with the most 
correct species and the fewest misidentified ones. Van

IJsselmuide’s detector did nearly as well, and the detectors 
of Gerard and Jarvis had only slightly more errors.

4. CONCLUSION

This third workshop was a success, with a great deal of 
cross-fertilization of ideas among attendees. The direct 
comparison of detectors on a common dataset was 
successful, in part because the workshop dataset was 
prepared months in advance of the workshop. It is hoped 
that this workshop series will continue into the future.
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Key Gerard Gillespie Harland
Van

IJsselmuide
Jarvis Roch

Test File 1 Md, Gm Md, Gg? Md, Gm Md Md, Gm Md, Gm Md

Test File 2 Md Md, Gg? Md Md Md Md Md

Test File 3 Gg Md, Gm? Gm Gm Gg? Gm Other
Test File 4 Sa Md, Gm? Gm Gm Gg? Gm Other

Test File 5 Gg Gg Gg Gg Other Md Gg

Test File 6 Md, Pm Md, Other Md, Gm Md Md, Pm Md, Pm Md, Pm

Test File 7 Sa Gg Gg Gg Md? Md, Gg Gg
Test File 8 Gm Gm? Other Md Other Other Gm

Test File 9 Pm Gg? Gm Gm Pm Pm Pm
# Species Correct 6 5 4 7 6 8
# Species Misidentified 5 6 5 4 5 2
# Species Omitted 0 0 0 0 0 1
# Species Added 3 0 0 0 1 0

Md Mesoplodon densirostris (Blainville’s beaked whale)

Gm Globicephala macrorhynchus (Short-finned pilot whale)

Gg Grampus griseus (Risso’s dolphin)

Sa Stenella attenuata (Pantropical spotted dolphin)

Pm Physeter macrocephalus (Sperm whale)

Table 2: Results for the participants who attempted to identify the species present in the dataset test files.

Photo Credit:Bahamas M arine M ammal Research Organisation
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a b s t r a c t

This paper presents a method to detect and classify odontocete echolocation clicks as well as to estimate the 
number of animals that are vocalizing. A transient detector using the Page test [1-3] is used to extract the 
clicks: the click time, the click duration, the click amplitude and the spectral information of the clicks are 
extracted. A probability distribution over the species is assigned to each click, based on the spectral 
information of the click. The estimation of the number of animals is done using feature-aided multi
hypothesis tracking (MHT) algorithms. The association is based on the assumptions of slowly-varying 
click amplitude and intra-click timing [4-5]. This work has been done on the dataset provided by the 
organizers of the 3rd International Workshop on the Detection and Classification o f  Marine Mammals 
using Passive Acoustics, Boston, July 2007. This dataset consists of training and test data; the training data 
includes vocalizations of three species: Blainville’s beaked whale (Mesoplodon densirostris), Risso’s 
dolphin (Grampus griseus) and short-finned pilot whale (Globicephala macrorhynchus).

s o m m a i r e

Cet article présente une méthode de détection et classification de clics d’écholocation d’odontocètes ainsi 
que d’estimation du nombre d’animaux vocalisant en même temps. Un détecteur de transitoires utilisant le 
test de Page [1-3] permet d’extraire les clics : leurs instants, durées et amplitudes ainsi que leurs spectres 
sont stockés. L ’analyse du spectre d’un clic permet de lui affecter une probabilité de distribution parmi les 
différentes espèces. L ’estimation du nombre d’animaux se fait à l’aide d’un algorithme de tracking (multi
hypothesis tracking MHT). L ’association des clics est basée sur l’hypothèse que l ’amplitude et l’intervalle 
entre deux clics varient lentement en fonction du temps. Ce travail a été réalisé sur le jeu de données mis à 
disposition par les organisateurs du 3rd International Workshop on the Detection and Classification o f  
Marine Mammals using Passive Acoustics, Boston, Juillet 2007. Ce dernier se compose de données 
d’entrainement sur trois espèces : Mésoplodon de Blainville (Mesoplodon densirostris), dauphins de Risso 
(Grampus griseus) et globicéphales (Globicephala macrorhynchus) et de fichiers test.

1 i n t r o d u c t i o n

The most reliable means to detect echolocating cetaceans 
is acoustic: one listens for "clicks". It is of interest to 
detect and classify the clicks automatically, and 
subsequently to determine how many animals are present.

The process observed from each animal is a sequence 
of clicks whose inter-event times and whose amplitudes 
vary slowly. From the observer’s point of view there is 
the superposition of an unknown number of such 
processes, in addition to spurious measurements, hence 
both tracking and data association are helpful in 
determining the number of independent sources.

Numerous approaches exist to the tracking problem. 
Contact-based approaches are of interest here, since clicks 
provide contact-level measurement information. These 
techniques include sequential (scan-based), as well as 
batch processing techniques. In earlier work we 
documented our results in the analysis of hydrophone 
datasets with a variety of approaches; the most effective,

at least at the time being, has proven to be the multi
hypothesis tracking (MHT) based approach. In this work, 
we further develop this tracker to include click feature 
information that allows to classify clicks originating from 
different species of vocalizing mammals.

Section 2 provides a description of the transient 
detection algorithm. Section 3 describes the assignment 
of probability over species to each click. Section 4 
describes the feature-aided MHT algorithm. Section 5 
provides some results. Conclusions are in section 6.

2 t r a n s i e n t  d e t e c t i o n  
a l g o r i t h m

The transient detection algorithm is a slightly modified 
version of the algorithm described in [1]. The algorithm 
is summarized in figure 1.

First, the data is high-pass filtered to remove part of 
the noise and avoid detection of whistles (Butterworth 
order 8, cut-off frequency: 15 kHz). The squared time
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series of the filtered data is normalized (using an 
exponential averager) and then submitted to the Page test. 
The Page test is a sequential detector that provides 
robustness against unknown signal duration as it detects 
the start and the end of a signal. At this step, the time, the 
duration, the amplitude and the spectral information of the 
click are stored for the next processing steps.

3 PROBABILITY DISTRIBUTION OVER 
SPECIES

The first step is to have some criteria to distinguish the 
clicks of the various species.

For the dataset provided for the workshop the 
maximum sampling frequency is 96 kHz (that means the 
spectrum is limited to frequencies below 48 kHz). This 
sampling frequency is not high enough to characterize the 
entire click spectrum of the different species; because of 
this limitation the criteria to distinguish the species will 
be based on the lower portion of the spectrum.

Below we describe some characteristics of the clicks 
of the three species of interest in the dataset. Based on 
these characteristics, to each click we identify a 
normalized likelihood vector that quantifies the goodness 
of fit of the click spectrum to those of the species of 
interest. In particular, the four-dimensional likelihood 
vector includes one element for each species, and one for 
none of these.

The likelihood vector impacts the track-to-click 
association scores that are also based on amplitude and 
Inter-Click Interval (ICI) information, as discussed further 
in section 4. In particular, the track state includes a 
probability distribution over the four classes of interest; 
the inner product between this distribution and the click 
likelihood vector impacts the track-click association 
score.

3.1 Blainville’s beaked whale
The energy of regular clicks of Blainville’s beaked whale 
is distributed between the -10dB endpoints of about 26 
and 51 kHz with a sharp cut-off below 25 kHz and a more 
gradual cut-off at the high end [6]. The spectra of a few 
Blainville’s beaked whale clicks coming from the training 
data are illustrated in figure 2; they correspond to the 
description of [6].

The spectrum of the extracted clicks is not always as 
nice as the examples of figure 2, as it depends on the 
quality of the signal, the signal to noise ratio and the 
quality of the click extraction; what seems important to 
recognize these clicks is that they have their maximum 
frequency above 25 kHz and a very sharp cut-off 
frequency between 20 and 25 kHz. The buzz clicks are 
different [6] from the regular clicks but no specific 
criterion to classify them was used.

3.2 Risso’s dolphin
For this species the clicks seem to have more spectral 
diversity; in all the training data files there are some 
clicks with narrow bursts in their spectrum. These bursts 
seem to be typical of the Risso’s dolphin. They are not 
always at the same frequency, and there is not always the 
same number of bursts, but many of these bursts are 
around 22, 25 and 31 kHz. Some other clicks don’t have 
these bursts at all and are more difficult to characterize. 
Figure 3 gives an example of some Risso’s dolphin clicks 
spectrum coming from the training data.

3.3 Short-finned pilot whale
The clicks of the pilot whale vary significantly and are not 
easy to characterize. In the training data, what is often 
observed is a maximum between 15 and 20 kHz with 
energy until the end of the band (45 kHz). Some 
examples in the training data contain clicks with a 
maximum frequency above 25 kHz. Figure 4 gives an 
example of some pilot whale clicks spectrum coming 
from the training data.

and stop time

Figure 1: Block diagram o f detection scheme.

Figure 2: Examples o f Blainville’s beaked whale regular 
click spectra (from the training data).
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Figure 3: Examples o f Risso’s dolphin click spectra (from 
the training data).

Frequency (kHz)

Figure 4: Examples o f pilot whale click spectra (from the 
training data).

4 MHT APPROACH TO CLICK 
ASSOCIATION

The clicks of interest are écholocation clicks that are 
emitted by the animals to find prey. The clicks are 
regular with some pauses; the tracker associates these 
sequences of clicks. Thus, the track (or associated 
sequence of clicks) of a single animal will not be 
contiguous; rather, each animal may generate a number of 
click sequences separated by lengthy pauses. Our 
estimate for the number of animals is given by the largest 
number of tracks that coexist at any time.

Signal processing of hydrophone data results in a 
single time series of clicks. This time series includes sub
sequences that originate from an unknown number of 
vocalizing whales, as well as possible spurious clicks. 
For each marine-mammal originated sub-sequence, we 
assume the click amplitudes (dB) are slowly varying. 
Changes in amplitude and intra-click timing are due to 
animal motion, ambient disturbances, multi-path effects, 
etc. Animal feeding patterns are another source of 
change. Each sub-sequence may have missing detections. 
Our dynamical model for each sub-sequence is the 
following:
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20 log xk+1 = 20log xk + wk , (1)

{tk+1 _ tk ) = {tk ~ tk-1 ) + Vk . (2)

x k is the click amplitude of the click at time k ; wk and 

vk are noise terms with variance qw (tk -  tk_ 1 ) and 

qv (tk -  tk_ 1 ), respectively; the time dependence results 

from integration of an underlying continuous-time 
dynamical model.

From equations (1-2), we see that the state of the sub

sequence at time tk is given by [xk tk tk _1 ] .A s  noted 

above, the overall observed click sequence is given by the 
union of the marine-mammal originated sub-sequence, 
with an additional (unmodelled) spurious false click 
sequence. In the following we have X k = 20log xk. 

Equation (1) becomes:

Xk+1 = Xk + Wk, (3)

Neglecting transmission loss differences from one 
click to the next, the model applies to the received signal 
amplitude.

The identification of the model parameters qw and 

qv requires the use of clean datasets for which each 

vocalization sequence has few missed clicks and these 
originate from the same animal. The workshop dataset 
does not provide the possibility to estimate these 
parameters because there is not enough data with just one 
animal vocalizing.

Our past work in MHT tracking has focused on 
ground and undersea surveillance, the latter based on the 
use of active sonar; see [7-8] and references therein. 
Here, we have leveraged the same data association 
methodology and track management logic, with 
appropriate modification to kinematic and measurement 
modeling, recursive filtering, and measurement gating 
logic. Kinematic modeling is given by (2-3), with 
parameter settings as noted above. We assume perfect 
measurements of click times and amplitudes.

The tracker processes the click time series in 
sequential fashion. At each step, the set of tentative track 
hypotheses is updated with the current click. With a fixed 
latency, known as n-scan, track hypotheses are resolved; 
by this we mean that a single global hypothesis is 
maintained and all conflicting track hypotheses are 
pruned. The global hypothesis selection is based on 
maximization of the sum of track scores, where each track 
score is a log-likelihood value that includes a track 
initiation penalty term.

Track hypotheses are generated on the basis of 
track validation criteria: each click initiates a tentative 
track. A later click leads to a track update hypothesis if 
the resulting ICI is low enough, and if the click 
amplitudes are sufficiently close, based on a chi-squared 
criterion; a track coast hypothesis is also generated.
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Under the hypothesis of two (or more) associated clicks, 
subsequent track updates require that a chi-squared 
criterion be met in both amplitude and ICI. Tentative 
tracks are confirmed with a minimum-click criterion. 
Tracks that fail to satisfy this criterion are discarded.

In our past work, the tracker did not exploit click 
feature information beyond click time and amplitude. In 
the present work, we exploit feature information in the 
form of the species type probability distribution described 
in section 3. Thus, the track state includes a species type 
vector, in addition to the current estimate of ICI and click 
amplitude.

As the time series click data is processed, the current 
click is compared against all active tracks, and only those 
clicks that satisfy the chi-squared criterion previously 
mentioned (for ICI and amplitude), in addition to a 
proximity test for species type, are considered as feasible 
track-click associations. Finally, it should be noted that 
elements of the species type vector are clipped at each 
track update: that is to say, each element is bounded away 
from 1, to avoid insensitivity over time to new data.

5 RESULTS
The results of our automatic-tracking formalism applied 
on sperm whale clicks can be found in [5-6]. In those 
efforts, the datasets supported identification of the 
relevant motion parameter estimates. In the present work, 
the dataset does not allow the identification of these 
parameters because it does not provide sequences of 
clicks long enough from any single animal. Without the 
estimation of these parameters, the method is challenged 
when many animals are present. Below we give the result 
of a very simple case for Risso’s dolphin; for Risso’s 
dolphin and pilot whales, we did not estimate the number 
of animals vocalizing at the same time.

The ICI of Blainvilles’ beaked whales is typically 
between 0.2 s and 0.4 s [6, 9-10]. With this limitation, 
even in the presence of many animals, click association is 
possible even if the right values of model parameters are 
not known. Some illustrative examples are presented 
below.

Note that, in the sequence of figures that go with the 
examples, tracks are plotted alternatively in dashed or 
dotted line. We do not know definitively whether distinct 
tracks originate from the same animal. Nonetheless, we 
estimate the number of vocalizing mammals as the 
maximum number of co-existing tracks present in a given 
dataset.

5.1 Training data: Risso’s dolphin.

The tracker was applied to a simple case of Risso’s 
dolphin coming from the training data. Figures 5 and 6 
give respectively the amplitude of the tracks and the ICI 
for each track. These results are obtained with the 
parameters qw = 30 5~2, qv = 0.004. In this case, clicks 
of one animal are associated leading to an ICI around 0.6 
s. Some clicks are not associated into tracks (figure 5): 
they can come from an animal that is far and whose clicks
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are not detected regularly enough to be associated, or 
possibly they are echoes of the associated clicks.

5.2 Training data: Blainville’s beaked whale
For the Blainville’s beaked whale data, because of the 
directivity of the clicks and the fact that these animals 
have a neck and can move their heads, we have chosen a

large value for q  w which allows for large variations in

click amplitude. The following parameters are used: q w

= 50 5~2, qv = 0.01. Figures 7 and 8 give respectively the 

amplitude of the tracks and the ICI for each track for one 
file of the training data. In this case, almost all the clicks 
are associated. Figure 9 gives the estimated number of 
whales versus time. It seems that for this file there are 
often two whales vocalizing simultaneously.

5.3 Test Data
For the test data, only the number of beaked whales is 
estimated. The tracks are plotted only if the probability 
for a track to come from a beaked whale is more than 0.5. 
We will present two examples. In the first one, most of 
the clicks come from a sperm whale, but there are also 
some Blainville’s beaked whale clicks. Figures 10 and 11 
give respectively the amplitude of the tracks and the ICI 
for each track generated from this data. Many clicks are 
not associated (those coming from the sperm whales); 
nevertheless, some clicks are associated at various times 
(figure 10). Figure 11 is given for a short time window, 
so as to illustrate how many whales are vocalizing at the 
same time. In this example, it seems that a maximum of 
two whales are vocalizing at the same time.

In the second example, all clicks have been identified 
(by the data provider) as coming from the pantropical 
spotted dolphin. Nonetheless, at two points in the time 
series, the tracker associates clicks with tracks having a 
high probability to be from beaked whales. Figures 12 
and 13 give respectively the amplitude of the tracks and 
the ICI for one of the two tracks generated from this data. 
The ICI of these clicks matches the expected ICI of the 
Blainville’s beaked whale, and is consistent with the 
species type probability distribution of the track. Note 
that the ICI is not used in determining the species type 
probability distribution, nor is it used in identifying 
individual animals. Rather, as discussed previously, the 
species vector is determined through the spectral content 
information in the clicks.

Figure 14 gives an example of the spectrum of a click 
coming from a pantropical spotted dolphin (continuous 
line) and the spectra of two of the associated clicks 
(dashed and dotted lines). The spectra of the associated 
clicks really have the typical shape of the Blainville’s 
beaked whale, which is quite different from the other 
clicks in the time series. Finally, figure 15 gives the 
temporal signal of these clicks: they too seem to have the 
typical shape of the Blainville’s beaked whale [11]. For
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all these reasons, we conclude that these few clicks likely 
come from a Blainville’s beaked whale.
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Figure 5: Risso’s dolphin click amplitude data (circles) and 
MHT output (in dashed or dotted lines).
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Figure 6: Sequences of Risso’s dolphin ICIs for tracks 
generated by the MHT tracker.
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Figure 8: Sequences of Blainville’s beaked whale ICIs for 
tracks generated by the MHT tracker.
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Figure 9: Estimated num ber of whales vocalizing versus 
time

Figure 7: Blainville’s beaked whale click amplitude data 
(dots) and MHT output (dashed or dotted lines).
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Figure 10: Click amplitude data (dots) and Blainville’s 
beaked whale clicks MHT output (test data, first example).
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Figure 11: Sequences o f ICIs for tracks generated by the 
MHT tracker.

Figure14: Examples o f pantropical spotted dolphin click 
spectrum (continuous line) and -  probably -  Blainville’s 
beaked whale click spectrum (dashed and dotted line; test 
data, second example).

Time(s)

Figure 12: Click amplitude data (dots) and Blainville’s 
beaked whale clicks MHT output (test data, second 
example).
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Figure 13: ICIs for a track generated by the MHT tracker.
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Figure15: Temporal signal of the associated clicks o f -  
probably -  the Blainville’s beaked whale (test data, second 
example).

6 CONCLUSIONS
This paper presents a novel application and extension of 
target-tracking technology to marine-mammal detection 
and classification; the paper extends our past work to 
include feature-aided tracking. The results are promising, 
and help in classifying beaked whales’ clicks as well as to 
estimate the number of animals present.

Our approach is challenged when many animals are 
present, especially if they are not beaked whales. To 
improve the results, it would be helpful to identify 
features or processing methods to distinguish animals 
within the same species, and, more generally, to 
determine an improved methodology to assign the click 
feature vector. Improved feature vector information 
would directly support improved tracking performance.

Finally, the parameters in our kinematic modelling of 
ICI and amplitude dynamics should be species dependent. 
Thus, a coupled approach to kinematic and classification
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filtering has the potential further to improve detection and 
classification performance.
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S t a t is t ic a l  C l a s s if ic a t io n  o f  O d o n t o c e t e  C l ic k s
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Sea Mammal Research Unit, Gatty Marine Laboratory,
University of St. Andrews, Fife, KY16 8LB, Scotland

a b s t r a c t

To the best of our knowledge, all odontocetes produce some kind of click like vocalisation, which is used 
primarily for echolocation but may also play a role in social communication. Characteristics of these 
echolocation pulses range from the broad band but relatively low frequency clicks of sperm whales to the 
ultrasonic, narrow-band clicks of harbour porpoise. Although these clicks are often easily detected, it can 
be difficult to classify them to species, thereby hampering efforts to monitor and study odontocetes using 
passive acoustics. Candidate clicks from three species were detected using a simple energy trigger, 
operating in the frequency band of interest. The clicks were then identified to species using two different 
statistical classifiers to separate beaked whale vocalisations from those of other odontocete sounds. In the 
first, a number of parameters (peak frequency, mean frequency, sweep frequency, click duration, width of 
principal spectral peak and the relative energy in different frequency bands) were calculated and a tree 
classifier was used to separate clicks of different species. In the second, the spectral energy in 32 relatively 
coarse energy bands 1.5 kHz wide were used as input to a multivariate classifier. Both classifiers were 
trained and tested using data provided to the 3rd International Workshop on Detection and Classification of 
Marine Mammals using Passive Acoustics in order to assess the classifiers performance with Blainville’s 
beaked whales, short-finned pilot whales and Risso’s dolphin clicks. The methods were also applied to 
survey data collected using a towed hydrophone deployed from a sailing research vessel in the Bahamas. 
Some of the towed hydrophone data were collected over the US Navy’s AUTEC range where independent 
confirmation of beaked whale vocal activity was available from bottom-mounted hydrophones.

s o m m a i r e

L ’état actuel de nos connaissances nous permet d’affirmer que tous les odontocetes émettent des sons de 
type impulsifs, aussi appelés clics, destinés surtout à l ’écholocation, mais ils peuvent également être utilisés 
pour la communication. En fonction des espèces, ces clics peuvent couvrir une bande de fréquence plus ou 
moins large. Le cachalot produit des clics couvrant une large bande de basses fréquences, alors que chez le 
marsouin, l ’écholocation est caractérisée par des clics ultrasoniques couvrant une bande de fréquence 
étroite. En sélectionnant les clics ayant une puissance supérieure à un certain seuil avec un simple détecteur 
d’énergie dans la bande de fréquence qui nous intéressait, nous avons collecté les clics de 3 espèces 
(Baleine à bec de Blainville, globicéphale tropical et dauphin de Risso). Deux méthodes d’analyse nous ont 
permis de discriminer les sons de la baleine à bec de Blainville de ceux des 2 autres espèces. Pour la 
première méthode, différent paramètres (pic de fréquence, fréquence moyenne, variation de fréquence, 
durée du signal, largeur du spectrogramme et énergie relative dans les différentes bandes de fréquences) ont 
été extraits de chaque clic et utilisés dans un arbre de classification afin de séparer les espèces. Pour la 
seconde méthode, l’énergie contenue dans 32 bandes de 1.5kHz a servi de données pour une analyse 
multivariée. Les 2 classificateurs ont été entrainés et testés en utilisant les données de la 3ième commission 
internationale de détection et de classification des mammifères marins en utilisant l ’acoustique passive. 
L ’objectif était de mesurer la performance des classificateurs pour discriminer la baleine à bec de 
Blainvilles, le globicéphale tropical et le dauphin de Risso. Ces 2 méthodes ont ensuite été appliquées sur 
des données collectées au Bahamas à partir d ’hydrophones tirés par un voilier de recherche. Quelques 
données furent collectées au dessus de la zone du réseau d’hydrophone Autec, appartenant à la marine 
Américaine, permettant d’obtenir une confirmation indépendante de l’activité sonore des baleines à bec via 
ce réseau sous-marin.
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1. INTRODUCTION

Concern over the link between the use of military sonar and 
standings of beaked whales has led to much research into 
the acoustic behaviour of beaked whales in recent years. 
Archival recording tags (Johnson and Tyack, 2003) attached 
to Blainvilles Beaked Whales (Mesoplodon densirostris) 
and Cuviers Beaked Whales (Ziphius cavirostris) (Johnson 
et al, 2004, Zimmer et al, 2005, Madsen et al, 2005) show 
that they produce narrow-band clicks with pulse lengths of 
around 200 |as and most of the energy concentrated in the 25 
to 40 kHz energy band.

Practical applications for the management of risks to beaked 
whales require that methods be developed to detect them 
more efficiently than can currently be achieved using visual 
observers (Barlow and Gisiner, 2006). Passive acoustic 
monitoring can potentially be used to assess the distribution 
and abundance of beaked whales and has also been 
proposed as a method for detecting animals in the 
immediate vicinity of vessels using sonar. Real time 
mitigation requires that beaked whale clicks be detected 
with a high efficiency, although it may not be necessary to 
identify to species level. Surveys of abundance do not 
require that detection efficiency be high, only that it be 
known, although species identification is more important 
than it might be for mitigation.

In this paper we demonstrate how beaked whale clicks may 
be detected and how they may be statistically separated 
from clicks from short-finned pilot whales (Globicephala 
macrorhynchus) and Risso’s dolphins (Grampus griseus). 
Pilot whales produce both tonal vocalisations (whistles) and 
clicks (Weilgart and Whitehead, 1990). Both the whistles 
and clicks can be heard by humans since they are at lower 
frequency than beaked whale clicks. Risso’s dolphins on the 
other hand echolocate at much higher frequencies. Risso’s 
clicks are generally broad band, having energy between 30 
and 100 kHz and an average 3 dB bandwidth of 39.7 kHz 
(Philips et al, 2003). The Risso’s data analysed in this study 
were only sampled at 96 kHz and had been low-pass filtered 
at 38 kHz, and were therefore only acquiring the lower 
frequency components of the Risso’s dolphin clicks.

2. METHODS

Detection and classification algorithms were trained and 
tested on data provided to the 3rd International Workshop on 
Detection and Classification of Marine Mammals using 
Passive Acoustics, which contained clicks from 
Blainvilles’s beaked whales (BBW), short-finned pilot 
whales (SFP) and Risso’s dolphins (RD). All of these data 
were in the form of wav file recordings, sampled at 96 kHz 
and containing data from a single bottom-mounted 
hydrophone either at the Bahamas Atlantic Undersea Test 
and Evaluation Center (AUTEC) range (BBW and SFP) or 
from the Southern California Operating Range (SCOR) in 
San Clemente Island (RD), California, USA.
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Data were also available from a towed hydrophone array 
deployed from a sailing vessel undertaking line transect 
surveys in the Bahamas. Some of these data were collected 
at the AUTEC range, where animals were being 
simultaneously monitored on bottom-mounted hydrophones.

Most of the analysis was done using RainbowClick software 
(www.ifaw.org/sotw). RainbowClick was originally 
developed for the detection and analysis of sperm whale 
echolocation clicks (Gillespie, 1997). As well as containing 
click detection and classification algorithms, and applying 
them either to real time data or archived data from file, 
RainbowClick provides the user with an interactive display 
where detected clicks may be easily selected and their 
waveforms and spectra examined by the user. Clicks, or 
groups of clicks, can be exported via a database for more 
detailed analysis by other software packages (e.g. Matlab).

2.1. Click Detection

Detection and classification of clicks were conducted as 
clearly separate stages of the analysis. In the click detection 
stage, regions of sound files found to have significant 
energy in the 25 -  40 kHz band were extracted and stored.

Clicks were detected using an algorithm operating on time 
series data. The algorithm is designed for real time 
operation, using infinite impulse response filters (IIRF) for 
efficient data analysis (Lynn and Fuerst, 1989).

Optimal detection of beaked whale clicks is achieved by 
band-pass filtering the data in the 25 to 40 kHz range. 
However, the statistical classifiers (see below) require a 
comparison between acoustic energy within the 25 to 40 
kHz beaked whale band and acoustic energy at lower 
frequencies. The detector therefore contains two separate 
filters as shown in Figure 1. The use of two filters allows the 
detector to operate only on signal within the band of 
interest, but data used in the classification stage can use 
signal in a wider band. Removal of low-frequency data, 
particularly at frequencies with wavelengths on the order of 
or longer than the clip length, is essential to avoid large 
sidelobes dominating the spectra used in the classifiers. The 
first filter was a second-order high-pass Butterworth with a 
cut-off frequency of 7 kHz and the second had a fourth 
order band-pass 25 kHz to 40 kHz Chebyshev response.

Figure 1. Schematic diagram o f click detection process.
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Training set extraction

Candidate clicks were detected in all samples of the training 
data set. To avoid occasional clicks from non-target species, 
or noise entering the training set, an operator (Caillat) then 
examined click files using RainbowClick in order to select a 
sub-sample of clicks which appeared to have consistency of 
amplitude and inter click interval with other clicks in the 
data (i.e. appeared to form part of an echolocation click 
train) and had waveform and spectral properties consistent 
with published literature for the three species. Numbers of 
clicks selected to form the training sample were BBW 6399, 
SFP 1555 and RD 609.

achieved by taking the maximum point in the WV 
distribution and then performing a regional search around it 
in order to establish a contour 6dB below the energy at the 
maximum (Figure 2). The ‘ridge’ of maximum acoustic 
energy along the length of the click was also extracted. The 
bandwidth was taken as the maximum distance between the 
lower and upper edges of the contour and the length of the 
click as the time between its start and its end. The sweep 
was taken as the difference from the start to the end of the 
maximum energy ridge. This broadly follows a pattern of 
parameter extraction found to be useful in detecting and 
classifying right whale contact calls (Gillespie, 2004).

2.2. Click Classification -  Method 1

Parameter Extraction

Beaked whale clicks are characterised by having most of 
their energy in the 25 to 40 kHz band. More detailed 
spectral analysis using a Wigner-Ville (WV) distribution 
shows that there is in fact a slight upsweep in frequency 
during a typical beaked whale click (Johnson et al, 2006 and 
Figure 2).

Six parameters were measured for each candidate click from 
the detector. From the power spectrum, the mean frequency, 
the peak frequency and the ratio of the acoustic energy in 
the 25 to 40 kHz band compared with that in the 10 to 25 
kHz band were measured.

From the WV distribution, the sweep of the click, the 
maximum ‘bandwidth’ of the click at any point along its 
length and the length of the click were extracted. This was

Classification

The six parameters described above were computed for all 
clicks in the training data set. A classifier was then realised 
using a tree classification function (Breiman et al, 1993). 
Tree classifiers divide data into groups using multiple 
binary splits. Each split uses a single variable or parameter 
to divide the data into two groups, the variable and the split 
value at each node being chosen to maximise the deviance 
between the two groups. This process is repeated until every 
group contains perfectly homogeneous data (i.e. clicks of 
only one type). For practical classifiers, the number of nodes 
is limited (the tree is ‘pruned’) to avoid problems of over
fitting to training data.

In order to establish which of the six parameters extracted 
for each click were most useful in classification, 11 different 
classification models were tested, each using a different sub 
selection of the six parameters (Table 1). Trees were pruned 
to five nodes. The training data were split and 2/3 of the
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Figure 2 Wigner-Ville distribution, power spectrum and waveform for a typical beaked whale click showing the -6dB contour
around the click and the ridge of maximum energy.
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Table 1. Parameter selection for eleven different models 
tested using the tree classifier.

Parameter
Model

1 2 3 4 5 6 7 8 9 10 11
Length V V V V
Width V V V V V
Sweep V V V V V V
Mean

Frequency V V V V V V V V
Peak

Frequency V V V V V V V
Energy
Ratio V V V V V V V V V

data randomly selected for classifier training. Equal 
numbers of clicks for each species were selected from the 
remaining 1/3 of the data for testing. Since we had the 
fewest clicks from Risso’s dolphins (609) this meant that 
203 clicks from each species were used in the testing 
samples. Bootstrapping was used to train and test each 
model 500 times, each time using a different random sample 
of training and test data and the average error rate from the 
500 bootstraps taken.

2.3. Click Classification -  Method 2

Parameterisation for the second classification method 
simply took the power spectrum for each click and divided 
it into coarse energy bins 1.5 kHz wide. A 512 point FFT 
was calculated for each click (each click clip either being 
truncated or padded with zeros to achieve the correct length) 
and the relative energy in bins 1.5 kHz wide (8 FFT bins)

taken, i.e. if S (® )is the power spectrum, then the coarse 

spectrum S'(a) is

S '(a, )= Wlog, Equation 1.

giving a total of 32 parameters for each click, although only 
those above 7.5 kHz were used in classification.

Clicks were classified using a one-way Multivariate 
Analysis of Variance (one way MANOVA) to divide 
training data into groups (Krzanowski, 1988.). The 
MANOVA calculates a linear discriminant function chosen 
to maximise the separation between groups and produces an 
matrix of eigenvalues which can be used to calculate 
canonical variables which are simple linear combinations of 
the parameters (relative energies in 1.5 kHz bands). These 
canonical variables can then be used to assign clicks to 
different groups using a relatively small number of 
variables.

Although such a classifier should work equally well, or 
better, with finer-scale data, the limited size of the training 
sample might have made the model over fitted to the 
available data if all 256 frequency bins had been used as 
input parameters.

3. RESULTS 

3.1. Click Classification -  Method 1

Distribution plots for the six parameters extracted for each 
species are shown in Figure 3. Most of the distributions 
overlap heavily, particularly for beaked whales and Risso’s 
dolphins. Pilot whale clicks are generally at lower frequency 
than those of the other species, making them stand out on 
plots of mean and peak frequency as well as the energy 
ratio.

Results of the tree classification are shown in Figure 4. 
When all three species are analysed together, the error rate 
varies between approximately 20 and 30 % for the pruned 
tree. If only beaked whale and pilot whale clicks are 
included in the analysis, the error rate is extremely low.

In both cases, the worst performing model is model 9, which 
does not include the energy ratio (Table 1) thereby 
indicating that this is one of the more important parameters. 
Of particular interest for practical applications are models 4, 
5, 9 and 10, which only use parameters extracted from the 
power spectrum. Computation of the Wigner Ville 
distribution takes approximately 2000 times longer than the 
calculation of a power spectrum, so any method that does

Figure 3: Distributions o f the six parameters for each species.
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not require those parameters will be much easier to 
implement in real time systems.

Model

Figure 4: Tree classification error rates for the 11 models.

3.2. Click Classification -  Method 2

Figure 5 shows the mean coarse spectra for different click 
types. Figure 7 shows distributions of the first two canonical 
variables from the MANOVA analysis of coarse spectra. 
Clearly, there is good separation between the three species 
when this method is employed although there is still slight 
overlap between beaked whales and pilot whales.

4. APPLICATION TO ‘UNKNOWN’ 
WORKSHOP DATA

The ‘Unknown’ workshop data were analysed using the 
second classification method since it had better overall 
performance for all three species than the first. During 
analysis, it was assumed that only the three species present 
in the training set were present. If C1 and C2 are the first 
two canonical variables (Figure 7) then clicks were 
classified according to the following selection criteria:

BBW if C1 > -0.5 and C2 < 2 
else
SFP if C1 < -1.5 and C2 < 2 
Else
RD if C2 > 3 
Else
Click is unclassified.

Numbers of clicks of each type in each of the test files are 
shown in Table 2. Since the classifier was trained only to 
identify three species, spotted dolphins (Stenella attenuata) 
and sperm whales (Physeter macrocephalus) were 
misclassified as pilot whales. Clicks from both these species 
have their predominant energy below 20 kHz (Lammers et 
al 2003; Mohl et al, 2003) so this misclassification is not 
surprising.

Click waveforms and spectra were viewed with 
RainbowClick. Of particular interest are the small numbers 
of beaked whale clicks in data sets 3 and 4. These beaked

0 10 20 30 40 50

Frequency (kHz)

Figure 5: Mean coarse spectra for the second click 
parameterisation.

whale clicks appeared in short bursts of 3 -  4 clicks and are 
quite clearly from beaked whales. However, this is not the 
case for the clicks classified as beaked whales in other files 
which, on visual inspection of waveforms and spectra, are 
clearly false classifications.

5. APPLICATION TO BAHAMAS TOWED 
HYDROPHONE DATA

As well as being tested with the workshop dataset, the 
detector and classifiers were tested using data collected 
using a towed hydrophone deployed from the sailing 
research vessel ‘Odyssey’ while undertaking line transect 
surveys around the Bahamas in June and July, 2007. 
Recordings were made at a sample rate of 192 kHz.

The second classification method did not work at all well 
with the towed hydrophone data, classifying large numbers 
of false triggers from vessel noise as beaked whales. The 
tree classifier on the other hand did perform well and picked 
out a number of beaked whale click trains, some of which 
were coincident with clicks being detected on the bottom- 
mounted hydrophones at AUTEC. In all, 172.5 hours of 
recordings were analysed. Initial processing to detect and 
classify clicks took approximately one week. It then took an 
operator (Gillespie) one day to go through the data and 
confirm beaked whale detections. A typical click from the 
towed hydrophone is shown in Figure 6.
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Table 2: Clicks identified within the ‘unknown’ test data files.

time (ms)

frequency (kHz)

Figure 6: Waveform and power spectrum of a beaked whale 
click recorded on the towed hydrophone.
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Figure 7: distributions o f the first two canonical variables from 
the MANOVA analysis.

6. DISCUSSION

Clicks from beaked whales, pilot whales and Risso’s 
dolphins can be detected and separated using statistical 
classifiers operating on parameters extracted from the clicks 
power spectra. Two methods have been tested, the first of 
which performed less well with the test data from bottom- 
mounted hydrophones than the second method, but was 
more stable when applied to data collected on a towed 
hydrophone array.

Set
Number of clicks

Truth
BBW SFP RD

No
Class

1 1502 531 5 542 BBW+SFP
2 1566 1000 5 131 BBW
3 11 15200 0 24 Spotted*
4 13 16674 0 28 Spotted*
5 13 462 10879 466 RD
6 947 1217 2 30 BBW
7 154 104 3414 758 RD
8 994 4749 5 2391 SFP
9 0 4909 1 30 Sperm

*Visual inspection of these data following analysis with 
RainbowClick shows clicks which clearly matched 
published waveforms and spectra for BBW.

Using the first method, when all three species were analysed 
together, the error rate was around 20 to 30 % for the pruned 
tree. Although this appears high, if multiple clicks were 
analysed together (as they generally are) this might improve. 
However this depends on whether or not the errors are being 
caused by random noise (in which case we would expect an 
improvement) or genuine overlap in click parameters in 
which case the improvement may be small since adjacent 
clicks from the same whale are likely to be very similar.

One of the reasons why the first method did not perform 
particularly well at separating BBW and RD clicks is 
probably that the RD echolocate at higher frequencies than 
could be represented in recordings sampled at 96 kHz 
(Philips et al, 2003), so the workshop data sets only 
contained the very low edge of the RD spectra. Had higher 
frequency recordings been available, it is likely that 
separation of these species would have been as 
straightforward as the separation of SFP and BBW. Given 
that many researchers are able to collect data at a sample 
rate of only 96 kHz, asking whether or not it is possible to 
separate BBW and RD in such data is a valid question. 
Unfortunately, however, the RD data had been collected at a 
different location and heavily filtered above 38 kHz, so if 
there was a difference, it was lost in these data. Conversely, 
and perhaps more worrying is the possibility that the 
detectors somehow ‘tuned in’ to this fundamental difference 
in the recordings rather than differences in the sounds 
themselves.

When applied to the ‘unknown’ data set, the detector found 
beaked whale like clicks in a number of recordings. Visual 
inspection of waveforms, power spectra and inter-click 
intervals convinces us that some of these are genuine beaked 
whale clicks. Although no visual sightings of beaked whales 
were made, these species are notoriously difficult to spot 
and it is quite possible that some were present, even though 
they were not seen.

A fundamental problem with classifiers trained to detect 
only a small number of species is that they will tend to mis-
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classify data from any other source (be it noise from a vessel 
or some other cetacean species). For classifiers of the type 
presented here to be genuinely useful, they must be trained 
with data from all species and noise sources likely to be 
present in the data to which they are to be applied.

Although beaked whales have been successfully detected on 
bottom-mounted hydrophones, beaked whales echolocate 
only when undertaking deep foraging dives (Tyack et al, 
2006). Since their clicks are produced in a narrow, forward- 
facing beam (Zimmer et al, 2005), it has therefore been 
suggested that detection using towed hydrophones close to 
the surface is unlikely. When applied to data collected using 
a towed hydrophone, the detector and classifier were able to 
pick out several beaked whale click trains. This result is 
extremely encouraging and opens up the possibility for 
towed hydrophone surveys for beaked whales. However, 
further work is required to establish with what efficiency 
this can be achieved as a function of detection range.

As well as separating beaked whale clicks from those of 
dolphin species (SFP and RD), some applications, such as 
abundance estimation, may require the separation of species 
within the beaked whale family. Although Johnson et al, 
(2004), show clear differences between clicks of 
Blainville’s and Cuvier’s beaked whales, vocal behaviour of 
many other beaked whale species remains largely 
undocumented. Another research priority for the coming 
years is therefore to obtain broadband recordings from other 
beaked whale species.

The click detector has been implemented into the 
PAMGUARD open source software (www.pamguard.org) 
and work is underway to implement the classification 
methods.
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a b s t r a c t

The Transient Research Underwater Detector (TRUD) is designed to search for echolocation clicks from 
marine mammals. It uses a spectrogram correlation method with a set of reference matrices to search for 
clicks from multiple species. This paper describes the algorithm and presents the results of processing the 
workshop datasets from the Third International Workshop on the Detection and Classification of Marine 
Mammals using Passive Acoustics held in Boston in July, 2007. The work shows that TRUD can detect and 
classify the target species. Recommendations are made for further improvements to the algorithm.

s o m m a i r e

Le Transient Research Underwater Detector (TRUD) est conçu pour rechercher les clics d'écholocation 
émis par certains mammifères marins. Il utilise une méthode basée sur la correlation de spectrogrammes 
avec un ensemble de matrices de référence pour rechercher les clics de plusieurs espèces. Cet article décrit 
l'algorithme et présente les résultats de la basée de donnes proposée par le 3rd International Workshop on 
the Detection and Classification of marine mammals using Passive Acoustics qui s’est tenu à Boston en 
juillet 2007. Ce travail montre que TRUD permet de détecter et de classer les espèces de cétacés que l’on 
recherche. Des recommandations sont formulées pour des améliorations futures de cette approche.

1. i n t r o d u c t i o n

There is an increasing need to monitor for the presence of 
acoustically-sensitive species such as marine mammals. 
Examples of such a need include as a precursor to the 
operation of high power sound sources (Tasker, 1998) or 
as part of a site survey leading to offshore installations 
such as wind farms or wave/tidal generators (Madsen, 
2006).

One option for detecting the presence of marine 
mammals is to detect, classify, and, if possible, localise 
their calls. Ideally this process should be completely 
automatic. This process should have a very low false 
alarm rate combined with an acceptable probability of 
detection.

Marine mammals generally make three classes of 
calls, narrow bandwidth, medium bandwidth, and high 
bandwidth calls. Narrow bandwidth calls are tonal signals 
that can be processed using high-resolution FFT 
techniques to produce a spectrogram. Image processing 
techniques can then be applied to detect tonals and 
measure parameters about the signal to allow 
classification. Medium bandwidth signals are roars or 
grunts that have a significant instantaneous bandwidth 
and are prolonged in time. High bandwidth signals are 
typically the echolocation clicks used by odontocetes. 
These are very short in duration and occupy bandwidths 
of several octaves.

The Transient Research Underwater Detector 
(TRUD) was designed to detect high bandwidth signals 
only. It is intended to be used in conjunction with other

27 - Vol. 36 No. 1 (2008)

medium and narrow bandwidth processing such as the 
MMADS system (Harland and Armstrong, 2004).

When designing such a classification system it is not 
necessary to classify every single click. Some clicks get 
distorted by acoustic propagation that results in miss- 
classificaton. It is necessary to look at the ensemble of 
clicks and make a majority decision on the single click 
classifications. It can be expected that any individual click 
may pass multiple species classification tests, but with 
varying degrees of confidence and any classifier must 
look across all of these outputs to arrive at the final 
classification decision.

This paper presents the background to the TRUD 
system, sets out how it operates and then presents the 
results of processing the workshop dataset for the Third 
International Workshop on the Detection and 
Classification of Marine Mammals using Passive 
Acoustics held in Boston, USA, in July 2007.

2. THE TRUD ALGORITHM

The TRUD algorithm is part of a suite of processing 
packages designed for the site characterisation role. Other 
packages process the medium and narrow bandwidth 
signals and also characterise the ambient noise levels. The 
whole package is aimed at stand-alone applications such 
as pre-installation monitoring for wind farms or tidal 
generators. However, the suite can also be used for real
time monitoring applications and the results presented in 
near real-time to an operator.
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Previous work by the author led to the prototype 
version of the Porpoise Detector (POD) currently 
available from Chelonia in the UK (Tregenza, 1998). 
This prototype system used analogue processing for 
detection and classification of the harbour porpoise 
(Phocoena phocoena) clicks and suffered from a number 
of problems inherent in analogue systems including low 
dynamic range and filter mismatch causing false 
detections. More recently an attempt was made to 
produce an improved system using digital processing and 
this resulted in the Simple Porpoise Underwater Detector 
(SPUD) (Harland, 2007). SPUD is based on the 
spectrogram correlation system proposed by Mellinger 
and Clark (Mellinger and Clark, 2000). The SPUD 
system was then made more general by using multiple 
reference matrices and evolved into the TRUD algorithm 
described here.

Figure 1 shows the block diagram of the TRUD 
processing chain. The incoming datastream is processed 
in 128 kilosample blocks using a 64 point FFT with 
Blackmann-Harris weighting and 75% overlap. These 
settings were chosen as a good compromise between time 
and frequency resolution for use with the range of pulse 
lengths of echolocation clicks. The resulting spectrogram 
is then searched for clicks using a sparse reference 
matrix. There is one matrix for each species. The 
reference matrix of weighting coefficients is cross
multiplied on a cell by cell basis with the spectrogram to 
form the classification factor at each time increment.

c l f  =  Z s f t  * w f t
fr t

where s is the spectrogram value at f,t and w is the 
weighting coefficient at f,t within the reference matrix.

Input

Spectrogram

I PW  classifier BIBW classifier RD classifier GWPD classifier

,

1
,

Pulse repetition Confidence
processor 1 comparison

B e st fit
c la ssif ie r 

.
Figure 1 TRUD processing chain

The reference matrix can be up to 16 time samples 
by 31 frequency bins in size. The reference matrix is then 
moved along the time axis of the spectrogram, repeating 
the cross-multiplications at each sample interval to form

the classification factor. By using negative and positive 
weightings classification occurs whenever the 
classification factor is positive.

In addition to the individual species reference 
matrices a General Wideband Pulse Detector (GWPD) is 
also implemented. This has two functions. It acts as a 
catch-all detector so clicks from species whose calls are 
not documented are not missed, and it can also be used as 
a pre-processor to minimise power consumption. The aim 
is to process the data initially using only the GWPD and 
to only search with the reference matrices when cetacean
like clicks are encountered. The GWPD uses energy 
summation over the frequency range 15-45 kHz and 
compares this with similar sums 5 samples ahead and 
behind the summation point. The detection threshold is 
chosen to be 10dB.

The outputs of each of the individual species 
classifiers are compared to decide which species any one 
click originated from. In order to aid this comparison it is 
better to use a confidence factor rather than the 
classification factor. The confidence factor is normalised 
and independent of the amplitude of the input click and 
reflects the degree of confidence in the single click 
classification. For the work described here the confidence 
factor was calculated as the ratio of the classification 
factor to the same summation carried out across only 
those cells with positive weighting. The confidence factor 
varies from 0 to 1 depending on the signal/noise ratio and 
the degree of match to the reference matrix.

The single click classification is then combined with 
the pulse train processing output and compared with 
references sets of expected parameters for individual 
species to form the classification decision. In a fully 
implemented system this would then be combined with 
the outputs from narrow and medium bandwidth 
classifiers and used with geographic information to arrive 
at the final classification decision.

TRUD is currently implemented in MATLAB 
(Mathworks, Release 14) running on a PC.

3. TRAINING TRUD

The initial training of the TRUD algorithm was carried 
out using a dataset from Blainville’s beaked whale 
(Mesoplodon densirostris) recorded on dTAGs from 
animals off El Hierro in the Canary Islands (Johnson et 
al, 2005). This dataset is available from the 
MOBYSOUND website (Mellinger and Clark, 2006). 
This dataset has the advantage of a high signal/noise ratio 
and a sampling frequency of 192 kHz. The high sample 
rate is important as it means the data contains all parts of 
the click signal. Past experience working with harbour 
porpoise clicks suggest that the algorithm works best 
when a sample of the spectrum above the call is available 
as part of the classification test.

The optimum reference matrix was determined 
by a manual iterative trial and error method. As may be
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expected with such a high signal/noise ratio, 100% 
detection was achieved with no false alarms.

The reference matrix was then truncated at the lower 
Nyquist frequency used by the workshop dataset and used 
to process a selection of the training files from the 
workshop dataset known to contain calls from 
Blainville’s beaked whale. It soon became clear that this 
reference matrix was sub-optimal because of the 
characteristics of the workshop datasets (see below). The 
reference matrix was then re-optimised using the same 
manual iterative trial and error method. This resulted in a 
significant improvement in the detection rate and a 
lowering of the false positive rate.

An example of a reference matrix is shown in figure 
2 for Blainville’s beaked whale. The areas shown in black 
have a positive weighting, while those shown in grey 
have a negative weighting. Blank cells are ignored and 
not used in the calculation.

Time

Figure 2 Reference matrix for Blainville’s beaked whale

Different regions of the matrix are weighted 
depending on the frequency response of the system and 
the characteristics of the target species signal. There is 
also an additional differential weighting between the 
black and grey areas to implement the detection 
threshold. For these tests it was chosen to be 10 dB. The 
cell by cell weighted cross multiplies are summed 
together and a detection occurs when the sum is positive.

The same methodology was then applied to 
generating reference matrices for the other target species: 
pilot whale (Globicephalus macrorhynchus) and Risso’s 
dolphin (Grampus griseus). No published information on 
the clicks of the pilot whale could be found so the 
reference matrix was initially chosen as a wideband pulse 
with spectral content from 15-48 kHz. The matrix was 
then optimised from the training dataset.

The Risso’s dolphin click classifier was trained to 
look for the off-axis clicks. Madsen et al (Madsen et al, 
2004) described the clicks of this species and showed that 
the off-axis spectral content was significantly different 
from the on-axis click. The training dataset contains

examples of both types of click, but the off-axis type 
predominates.

From the testing it became clear that rejection of a 
non-target species click was as important as accepting the 
target species click. As an example, the pilot whale 
reference was adjusted to minimise false classification of 
some sperm whale clicks. A further round of optimisation 
was then carried out to improve the false positive rate at 
the expense of a small reduction in the true positive rate.

The GWPD reference matrix was also tested and 
partially optimised during this process to improve 
rejection of non-cetacean clicks.

4. TH E DATASET

The dataset consisted of two groups of files. The training 
files were fully annotated with the sounds in the files, 
while the test files had no annotation. The aim was to 
train the classifiers using the training set and then use the 
trained classifiers to search and classify the test files. All 
files were sampled at 96 kHz and saved as WAV format 
single channel files.

During the training process described above it 
became clear that there were characteristics of the 
workshop dataset that were impacting operation of the 
TRUD algorithm and these are described below:

a) The low sample rate results in loss of the high 
frequency components of the call, reducing 
classification performance

b) The limited available bandwidth does not allow 
testing of the spectrum above the call which can 
result in a higher rate of incorrect classifications

c) System non-linearity introduces artefacts when signal 
levels are sufficiently high to drive the data 
collection system into non-linearity. This could be 
caused by clipping or slew-rate limitations (see 
figure 4). This can lead to incorrect classification

d) Different hydrophone channels have different 
characteristics, requiring a modified reference matrix 
to maintain optimum performance

e) Some clicks suffer significant dispersion due to 
acoustic propagation (see figure 3) which can lead to 
incorrect classification

The effect of the limited bandwidth and reduced 
spectral test is to reduce the effectiveness of the TRUD 
algorithm. Regrettably time did not permit an evaluation 
of the degree of degradation. The non-linearity was only a 
problem at high signal levels and resulted in a number of 
incorrect classifications when the animal was close to a 
hydrophone.

The reference matrix is optimised for a particular 
acoustic environment. This can be achieved by either pre
whitening the background or by optimising for a 
particular hydrophone system. The latter is the simpler 
method and was chosen for this test. Unfortunately the 
acoustic background was not consistent across the
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different hydrophones. This resulted in a number of 
incorrect classifications.

GWPD are the results for the general wideband pulse 
detector, BBW are the results for the beaked whale 
detector and PW are the results for the pilot whale 
detector. In later tables, RD are the results for the Risso’s 
dolphin detector.

The results of processing the training set are shown 
in the following tables:

Table 1. Processing the pilot whale files

File GWPD BBW PW
Pilot 1 424 11 205
Pilot2 645 14 399
Pilot3 3313 12 1495
Pilot4 2023 5 880
Pilot5 1780 508 1140

Figure 3 Spectrogram o f pilot whale click with dispersion

Some of the clicks suffered significant dispersion 
(see figure 3). It was not clear where this was occurring. 
It was probably predominantly acoustic dispersion but 
analogue transmission over long cables to the shore may 
have contributed to the effect. The effect was to turn the 
wideband clicks of species such as pilot whales into up
sweeps. This effect resulted in false negatives and/or false 
positives under some conditions.

5. PROCESSING THE DATASET

On completion of the training sequence the TRUD system 
was then used to process the test dataset. The initial 
processing suggested that there were other signals in the 
test files than those declared in the training dataset. This 
was seen as high GWPD counts but low counts from the 
target classifiers. Visual/aural checking suggested that the 
majority of these were sperm whale clicks and this was 
further confirmed by testing with a previously developed 
variant of the SPUD system optimised to detect regular 
sperm whale clicks.

Because of memory size limitations in the computer 
used to process the data, only five minutes of data from 
each file were processed. The cumbersome file names in 
the dataset were discarded and replaced with the simple 
terminology used in the following tables. The first five 
files for each of the species as listed in the dataset were 
used. The nomenclature used is that the column headed

The counts shown in bold are true-positives, the 
counts in italics are false-positives. The numbers in the 
GWB column are a guide to the possible number of clicks 
in the file. The level of false-positives are well within 
acceptable levels except for Pilot5. The pulses in Pilot5 
are distorted and also suffer dispersion, resulting in the 
high number of false positive detections of Blainville’s 
beaked whale and an increased number of missed pilot 
whale detections.

Table 2. Processing the Blainville’s beaked whale files

File GWPD BBW PW
BlBW1 91 128 1
BlBW2 244 330 19
BlBW3 603 917 1
BlBW4 1082 1432 2
BlBW5 1003 1429 0

It should be noted that for this species the number of 
detections by the GWPD is fewer than for the Blainville’s 
beaked whale detector. This is due to the characteristics 
of the clicks from this species which are not a good match 
to the GWPD. The level of false positive detections of 
pilot whales is well within acceptable limits.

Table 3 Processing the Risso’s dolphin files

File GWPD BBW PW RD
Risso1 6340 37 78 86
Risso2 2816 868 255 685
Risso3 5330 501 1480 6004
Risso4 14497 2339 7522 10814
Risso5 297 5 3 69

The Risso’s dolphin reference matrix was not 
available until a few days before the workshop due to 
time constraints so it was not possible to process all the 
training set with this classifier. Neither was it possible to 
complete the optimisation procedure. Nevertheless, the 
performance is generally satisfactory.

The test files were then processed to give the 
following results. NP denotes that the data was not 
processed. The Testl and Test2 files were processed in 
two blocks; a is 0-5 minutes and b is 5-10 minutes.
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Table 4 Processing the test files
File GWPD BBW PW RD
Testla 2902 2466 93 397
Test lb 1037 612 91 436
Test2a 5276 1328 376 100
Test2b 7870 986 200 88
Test3 21007 182 7989 NP
Test4 15213 110 3445 NP
Test5 5576 2663 665 6188
Test6 960 1237 110 NP
Test7 2884 1773 252 2965
Test8 4184 1915 1620 NP
Test9 1673 0 361 5

Test8 has distorted clicks due to both electrical and 
propagation effects. Test9 appears to be all sperm whale 
clicks. The PW classifications in Test9 occur on very 
strong sperm whale clicks with energy to 40 kHz.

A visual inspection of the test files reveals that a 
number of species are present. If the TRUD classification 
criteria is such that the species chosen is the classifier 
with the most outputs then these classifications are 
compared with the manual results in table 5. UNK are 
pulses from an unknown species. Note that the sperm 
whale classifier was not running for these tests so TRUD 
should not have found these clicks.

Table 5 Com]3arison of TRUD and visual results
File TRUD Visual
Test1a BlBW BlBW
Test 1b BlBW BlBW, Unk
Test2a BlBW BlBW, Unk
Test2b BlBW BlBW, Unk
Test3 PW PW
Test4 PW PW
Test5 RD RD
Test6 BlBW SW, BlBW
Test7 RD RD
Test8 BlBW PW
Test9 PW SW
The only incorrect classification is in Test8 where pilot 
whale calls are classified as Blainville’s beaked whale. 
Table 4 shows that this was a marginal decision and 
inspection of the file suggests that it is caused by the 
propagation distortion of the pulses in this file.

A detailed inspection of TRUD operation for the 
Testl and Test2 files shows that the unknown pulses were 
rejected by all three classifiers. The high false-positive 
count for Risso’s dolphin is caused by propagation 
distortion of the Blainville’s beaked whale clicks.

6. PULSE TRAIN TESTING

In addition to the single pulse classification testing, the 
pulses were associated into trains and the statistical 
properties measured to aid classification. A simple pulse 
train follower was written using a two parameter pulse
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association test (time and amplitude). The pulse interval 
was then measured between each successive pulse in the 
pulse train and the histogram plotted. The training dataset 
was used to gather the statistics for each of the target 
species. However, some of the files could not be used 
because the simple train follower could not cope with the 
multiply-interleaved pulse trains.

Once the histograms had been built for each of the 
species declared in the training files, a similar set of 
measurements were made for the test files and the results 
compared as shown in figure 5, 6, and 7.

This suggests that Testl and Test6 contained 
Blainville’s beaked whale, Test2 appears to have two 
species present, of which one is Blainvilles beaked whale, 
and Test7 is Risso’s dolphin. Test8 is a good match to 
pilot whale. Test6 also contains another species with a 
low repetition rate as can be seen in figure 7. From table 
5 it is likely that these are the sperm whale pulses. Test3, 
Test4, Test5, and Test9 were not processed.

Repetition rates

Ptriod (mS)

Figure 6 Pilot whale train processing results

These classifications were determined by visual 
comparison of the curves. Work is still in progress to 
carry out this comparison automatically.
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Repetition ra te s

Figure 7 Risso’s dolphin pulse train processing results

7. DISCUSSION

It must be emphasised that the results presented here are 
for the first stages in a multi-stage classification process. 
It is not possible, except in a very limited number of 
cases, to design a classifier that will uniquely identify the 
species that originated any one click. The complete 
classification process consists of building up a weight of 
evidence leading to a ‘best guess’ at the species. The 
results presented here are based on the classification 
factor output. Many of the false positives will be 
eliminated when the confidence factor is used and pulse 
association processing eliminates multiple classifications 
on a single pulse.

As an example, many of the incorrect Risso’s 
dolphin classifications listed in the results tables are 
caused by a low confidence classification immediately 
before a high confidence beaked whale classification 
caused by the partial overlap of the reference matrix and 
the signal. Similarly, a number of beaked whale and 
Risso’s dolphin false classifications are caused by the 
reverberation tail from a pilot whale click. Both of these 
would be eliminated by pulse association processing.

The pulse train classification needs a lot more data to 
fully define the pulse interval reference statistics for each 
species. The work here shows that it can be a useful 
classification aid for the specific circumstances of the 
training and test datasets, but much more work is needed 
to explore how useful it is across the full acoustic and 
geographic ranges of an individual species.

The present version of TRUD provides useful initial 
classification processing stages. The single pulse 
classification and pulse train statistics are two of the most 
important factors in the weight of evidence processing 
and this testing has shown that TRUD has the potential to 
fulfil this role. However, the testing has also shown that 
improvement is desirable in a number of areas:

a) For best performance the incoming data needs to be 
of a high quality with good linearity and a bandwidth 
sufficient to allow all of the spectrum tests. When 
used in its intended role as a stand-alone site monitor

it will generally be possible to provide the requisite 
high quality input stage.

b) The Risso’s dolphin reference matrix needs to be 
further optimised to reduce the false alarm rate from 
distorted Blainville’s beaked whale clicks.

c) For best efficiency the general wideband pulse 
detector needs to perform better. The aim is to run 
only the GWPD while searching for clicks and to 
only activate the more detailed classification 
processes when candidate clicks are found that pass 
this lower threshold.

d) TRUD alone cannot provide a unique classification 
for many species. It will be able to classify to an 
acoustic clade level, but to refine the classification 
decision it will need to be combined with medium 
and narrow bandwidth classifiers.

8. CONCLUSIONS

This work has shown that spectrogram correlation is a 
viable classification method for echolocation pulses of the 
species in the workshop dataset. It has also shown that 
pulse train processing can aid the classification process 
for echolocation click sequences.
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a b s t r a c t

Navy sonar has recently been implicated in several marine mammal stranding events. Beaked whales 
(particulary Mesoplodon densirostris) have been the predominant species involved in a number of these 
strandings. Monitoring and mitigating the effects of anthropogenic noise on marine mammals are active 
areas of research. Key to both monitoring and mitigation is the ability to automatically detect and classify 
animals, especially beaked whales. This paper presents a novel support vector machine based methodology 
for automated, species level classification of small odontocetes. The new classifier, called the class- 
specific support vector machine (CS-SVM), consists of multiple binary SVM's where each SVM 
discriminates between a class of interest and a common reference class. A main objective in the 
development of the CS-SVM was to realize a robust multi-class SVM whose implementation is simpler 
than existing multi-class SVM methods. A CS-SVM was trained to identify click vocalization from four 
species of odontocetes including Mesoplodon densirostris. The algorithm processes time series data in a 
fully automated fashion first detecting and then classifying click events. Results from the application of 
this automated classifier to the data sets provided by the 3rd International Workshop on Detection and 
Classification of Marine Mammals Using Passive Acoustics are presented.

s o m m a i r e

Le sonar a été récemment associé à un certain nombre d'événements de mammifère marin immobilisé en 
eau peu profond. Les Baleines a bec (en particulier le Mesoplodon densirostris) ont été les espèces 
prédominantes impliquées dans un certain nombre d'événements d'immobilisation. La surveillance et 
l'atténuation des effets du bruit synthétique sur les mammifères marins sont des domaines de recherche 
actifs. Ce qui est importante de la surveillance et la réduction des effets est la capacité automatiquement de 
détecter et classifier des animaux, particulièrement les baleines a bec. Cet article présente une nouvelle 
méthodologie basée sur une machine de support vecteur (SVM) pour automatisé le classification de niveau 
d'espèces de petits odontocetes. Le nouveau classificateur, appelé le "class-specific support vector 
machine" (CS-SVM), est composé de SVM binaire multiple où chaque SVM se distingue entre une classe 
d'intérêt et une classe commune de référence. Un objectif principal dans le développement du CS-SVM 
était de réaliser une multi-classe robuste SVM dont l'exécution est plus simple que des méthodes existantes 
de la multi-classe SVM. Un CS-SVM a été formé pour identifier le vocalisation de clic de quatre espèces 
des odontocetes incluant des Mesoplodon densirostris. Les données de série chronologique de processus 
d'algorithme sont traitées d'une mode entièrement automatisée détectant d'abord et classifiant ensuite des 
événements de clic. Les résultats de l'application de ce classificateur automatisé fournis par le "Troisième 
Atelier Internationale de Détection, Localisation, et Classification du Mammifères Marins avec les 
Acoutiques Passive" sont présentés.

1. b a c k g r o u n d

Until quite recently, little was known about the 
vocalizations of beaked whale. However, starting with the 
definitive recording of beaked whale clicks by Johnson, 
Tyack, et al. (using non-invasive DTAG's) [1,2] and 
continuing with the visually verified recording of beaked 
whales and other small odontocete vocalizations at AUTEC 
[3] there is now sufficient labeled data available to develop 
automated classification algorithms. To foster exchange of

ideas and classification methodologies, the 3rd International 
Workshop on Detection and Classification of Marine 
Mammals Using Passive Acoustics was convened. In 
addition to providing a venue for scientific exchange in the 
topic areas, the workshop provided a data set [12] consisting 
of both labeled training data for 3 species of odontocetes and 
unlabeled test data. This paper investigates the application 
of a novel class-specific support vector machine classifier to 
the classification of vocalizations from beaked whales and 
other odontocetes specifically using the data set provided by
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the Workshop.
At a basic level, a classification system is one that assigns 

the current input x  membership into one of v known classes 
according to some set of decision metrics or functions. In 
general, x  is a multivariate random variable where x  ~ P(x). 
For example, popular maximum likelihood classifiers assign 
an input data vector x  membership in one of v possible class 
hypotheses {Hh H2, ... Hj ... Hv} according to the 
probabilistic rule j*  = arg max(p(H3\x)). This is 
equivalently written as j*  = arg max(p(x\Hj)p(Hj)) after 
applying Bayes rule. Theoretically, a maximum likelihood 
(ML) classifier is optimal in that it offers the lowest 
probability of error of any classifier [4]. However, in 
practice, it can be difficult to attain this optimal performance 
because the multidimensional probability density functions 
p(x\Hj) are unknown and must be estimated from training 
data. The amount of training data required to estimate 
p(x\Hj) grows exponentially with the dimension of x. This is 
problematic because the collection of labeled training data 
is usually difficult, time consuming and expensive.

Statistical learning theory [5,6] represents a different 
paradigm for learning than the classical ML methods 
presented above. Statistical learning theory advocates 
solving specific problems directly vice solving more general 
problems as an intermediate step [5]. That is, if there are 
limited data available to train a classifier then the best course 
of action is to estimate a decision boundary directly from the 
data. This is in contrast to classical ML inference where the 
data are used to estimate the parameters of density functions 
and then the PDFs are used to form decision boundaries.

2. DISCUSSION

R[ f  ] < Remp[ f  ]
(  1 (

V m V

hi ln
2m

ln —
ô

[6] (1)

Support vector methods (or support vector machines, 
SVM) are a rich family of learning algorithms based on 
statistical learning theory. SVM's were originally developed 
to solve binary classification problems of the following type: 
Given a set of training data {(x1, y 1), . . . ,(xm, ym)} where 
each (multidimensional) input example xt drawn from X  is 
associated with classification label = ±1, determine the 
decision function that maps any new x drawn from X  to y  = 
±1 that minimizes risk of misclassification [5]. In short,

SVMs implement the SRM principle.
SVM's use the existence of a unique optimal hyperplane 

which separates the two classes in some feature space (figure 
1). The SVM that implements the optimal hyperplane while 
maximizing the separation (margin) between the two classes 
will have the lowest risk of test error [5]. This optimal 
separating hyperplane is realized as

f  ( x ) = ^ « k y k G (x ,x  k ) + b (2)
k=1

where G is a kernel mapping and b is an offset. The weights 
□ k for a “soft” margin SVM classifier [6] are found through 
the optimization (3)
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One of the corner stones of statistical learning theory is 
the principle of structured risk minimization (SRM). Using 
the SRM principle, Vapnik developed a bound on the risk of 
classification error for a given decision function f given the 
empirical risk (training error) Remp(f) associated with the 
function, the training set size m , and the capacity h of the 
hypothesis space in which the decision function resides [6]. 
This bound (1) is often referred to as the guaranteed risk, 
and is independent of the underlying distribution of the data. 
According to the SRM principle, the smallest bound on 
classification error is achieved by minimizing training error 
while using the function hypothesis space of the smallest 
capacity [5,6].

Figure 1: A notional view of a SVM [6]. a) Training data 
drawn from x shows two classes. b) A transformation T(x) 

maps the training data to a higher dimensional space where the 
optimal separating hyperplane is found. The hyperplane in the 
higher dimensional space corresponds to a nonlinear decision 

boundary in the input space.

The constant C controls the degree of “slack” in the 
hyperplane optimization. Large C corresponds to more 
rigid separation of the classes and less tolerance for class 
overlap in the training data. Smaller C allows for moreclass 
overlap in the training data [7]. Equation (3) can be solved 
using quadradic programming techniques [6].

While SVM's were originally formulated for binary 
classification, many real world problems involve more than 
two classes. As a result, a number of methods have been 
developed for applying SVM's to multi-class problems. 
These methods tend to follow one of three basic approaches. 
The first approach is to form v binary "one-against-the-rest" 
classifiers (where v is the number of class labels) and choose 
the class whose decision function is maximized [5]. The 
second approach is to form all v(v-1)/2 pairwise binary 
classifiers and choose the class whose set of pairwise 
decision functions are in some way maximized [7]. The 
third approach is to reformulate the objective function of the 
SVM for the multi-class case such that the decision 
boundaries for all classes are optimized jointly [8].

This paper presents a new type of multi-class support 
vector classifier called the class-specific SVM (CS-SVM). 
The new classifier consist of v binary SVM's where each

1
h
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SVM discriminates between one of v classes of interest and 
a common reference class. The class whose decision 
function is maximized with respects to the reference class is 
selected. The CS-SVM extends the concept of exploiting 
class-specific features as proposed by other researchers for 
maximum likelihood classifiers [4] and neural networks [9] 
to the multi-class SVM problem.

Many applications involve the classification of signals 
which are set in additive noise. In such cases, the problem is 
not to differentiate between two or more of v signals present 
at the same time but to differentiate between one of v signals 
and noise. The input vectors for such problems are actually 
of the form Xj=Sj +n, for j  = 1, 2,... v. Currently, SVM's 
are designed assuming the classification problem is to 
distinguish x i=si from Xj=Sj. Any noise in x  is assumed to be 
accommodated by allowing the "slack variables" in the 
hyperplane optimization [6].

The CS-SVM expressly acknowledges the presence of 
the noise by treating it as a common reference class. For a 
single class, the classification problem reduces to a detection 
problem, a decision as to whether signal s is present or not. 
That is, y  = sgnf(x)) =+1 when x=s+n and y  = sgnf(x)) =-1 
when x  = n. In the multi-class case, x  is assigned 
membership in the class whose decision function f(x) 
against the reference is maximum, or to the noise-only class 
when a llf(x ) < 0. Note that in acknowledging the presence 
of a common reference class no assumptions are made about 
that class. Although it is intuitive to think of the reference 
class as Gaussian noise, the reference class could be of any 
arbitrary distribution. This means that the CS-SVM can 
actually act as a signal detector for signals of unknown 
distribution set in noise of unknown distribution.

Figure 2 is an notional illustration of the CS-SVM concept 
for two dimensional data. Optimal separating hyperplanes 
for each class versus the noise-only reference class are 
found. Since the optimal hyperplane separating any two 
classes is unique [5], the optimal hyperplane for class i 
versus n will be different from the optimal hyperplane for 
class j  versus n. However, both hyperplanes are optimized 
against a common reference class. The decision function 
f  (x) for either signal-present class should reject the noise-
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Figure 2: A geometric view of the optimal separating hyperplanes 
for two CS-SVMs for class i and class j ,  respectively, versus a 
common reference class in a 2-D decision space.
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only reference case. Further, it is hypothesized that f i(x ) will 
be greater than f  (x) whenever x  is draw from class i since 
f  (x) is optimal for class i an d f (x) is not

3. EXPERIM ENTAL RESULTS

In the past several years there has been much interest and 
progress in acoustic monitoring, localization and tracking of 
marine mammals [3,10]. Acoustic monitoring has a number 
of benefits over visual monitoring. Chief among them are 
increased area of coverage and the ability to operate over 
wider weather conditions and at night. A major drawback of 
acoustic monitoring is associating species information with 
the received vocalizations. However, recent field tests 
combining visual verification and digital recording tags with 
acoustic monitoring and localization have resulted in sets of 
labeled acoustic data [3]. One such data set was provided as 
part of the 3rd International Workshop on Detection and 
Classification of Marine Mammals Using Passive Acoustics 
[12]. This section presents the development of a CS-SVM 
classifier using the Workshop data set.

The data set provided for the Workshop consisted of 
labeled training data for 3 species as well as unlabeled test 
data. Training data was supplied for Mesoplodon desirostris 
(Blainville's beaked whale), Globicephala macrorhynchus 
(short-fin pilot whale) and Grampus griseus (Risso's 
dolphin). The training data for each species consisted of five 
or more .wav files with each file containing 2 to 3 minutes of 
16-bit audio data sampled at 96KHz. The test data consisted 
of nine longer .wav files (each 10+ minutes) also sampled at 
96KHz. Within the 9 test files there were examples of the 
species alone, examples containing a mix of species as well 
as examples containing none of the 3 species given in the 
training data. Prior to analysis or processing, all data were 
passed through a 12 KHz high-pass filter.

3.1 Training Data and CS-SVM Feature Selection

The first challenge in working with the Workshop data 
was deciding which events and signal features the classifier 
should be trained to recognize. Design of a classification 
algorithm generally requires selection a set of distinguishing 
features qi to represent the raw data such that the input 
vector to the classifier is x  = [q1 q2 ... qn]T. Ideally the the 
feature set should be a sufficient statistic for the raw data but 
it also must be of reasonably low dimension as the amount 
of training data required grows with the dimension of x .

One goal for the CS-SVM classifier presented here is for 
it to become incorporated into the acoustic marine mammal 
monitoring system, M3R [3,10]. This means that the 
classifier would have to be fully automated and run in real
time. In turn, that required selection of features that can be 
readily extracted “on the fly”. Thus, it was decided that the 
classifier should classify individual click events rather than 
attempting to analyze click trains.

In previous experiments [11], the times between 
consecutive zero crossings were successfully used as 
features for classifying odontocete clicks. A zero crossing 
detector is easy to implement and the periods between
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crossings capture the time-frequency structure of the signals. 
Additionally, the envelope shape of the clicks can be 
captured by using the normalized peak values between 
crossings (figure 3).

T im e  (m s)

Figure 3: The times between zero-crossings and normalized 
envelope amplitudes were selected as features for classifying 

individual clicks.

Time-frequency analysis of the training data from 
Globicephala macrorhynchus and Grampus griseus showed 
the clicks contained in those files to be highly variable. In 
contrast to the Mesoplodon data where the regularity of 
click waveforms is almost uncanny, it was difficult to 
identify representative click waveforms in the pilot whale 
and Risso’s dolphin data (figure 5). After cross correlating 
all the clicks extracted from the training files, the click from 
each species most highly correlated with most of the other 
clicks was selected as a replica. Then, the training clicks 
which were most highly correlated with the replicas were 
used to build the training sets.

Nine dimensional feature vectors were formed using the 
times between 6 zero-crossings about the peak and three 
normalized envelope amplitude peaks. The resulting feature 
sets from the Globicephala and Grampus did not cluster as 
compactly as those from Mesoplodon. There was also 
significant overlap of the features for Mesoplodon and 
Grampus in the feature space (figure 6).

One binary SVM was constructed for each signal class 
versus an ambient noise reference class. The training set Tj 
for the j -th CS-SVM was defined as

The next step in the training process was to analyze the 
training data from each species to select the set of click 
events to be used in training the CS-SVM. The idea was to 
select several hundred representative clicks from each 
species, then to extract the zero-crossing and amplitude 
envelope features from them. Time-frequency analysis of the 
training data for Mesoplodon desirostris identified two 
distinct click waveforms, foraging clicks and buzz clicks 
(figure 4). A large majority of the clicks were the 
stereotypical foraging clicks, but several buzzes were also 
detected [13]. Since the foraging and buzz click waveforms 
are distinct, separate CS-SVM’s were trained for the two 
click types.

Time <m•)

(a )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (ms)

(b)
Figure 4: (a) Overlay of time series data for 3 Mesoplodon 

desirostris foraging clicks. (b) Time series of a single buzz click.

Tj  = {(xj y )} = {(sj+ n  U  (n  -1)} for j  = 1 to 4 .

The training sets for each of the four class-specific SVM 
consisted of approximately 250 signal-present vectors and a 
similar number of noise-only vectors. These training sets 
were used in the optimization (3) to find the optimal 
hyperplane fj(x) for each class. A Gaussian radial basis 
function was used as the kernel in (2) and (3) yielding

f j  (x )=  X  u k y k ex p ( -  ||x  -  x  k 112 /  2 c t) +  b

where k  e  S j  the set of support vectors class j.

The four class CS-SVM classifier was then tested using 
additional clicks extracted from the training data files. These 
test sets also consisted of approximately 250 signal-present 
vectors and 250 noise-only vectors (Table 3). The 
classification performance for the test sets was evaluated 
using the following metrics, Pcc = fraction correctly 
classified (signal present), Pmiss= fraction misclassified 
(signal present) and Pnse= fraction correctly classified 
(noise-only). The results were encouraging, especially for 
the Meso-plodon foraging click class. Note that the 
poorer performance of the buzz class was attributed to 
changes in buzz click waveform observed as the inter-click 
interval decreases during prey capture.

3.2 CS-SVM Results for the Test Data Files

Finally, the CS-SVM classifier was tested using the 
unlabeled test files. A cursory manual review of the test 
data prior to processing indicated the presence of sperm 
whales clicks in multiple test files. Although not part of 
Workshop training data, a class-specific SVM for sperm 
whale clicks was trained using additional labeled sperm 
whale data. The ability to add a class without affecting 
SVM design for the other classes highlights one of the

37 - Vol. 36 No. 1 (2008) Canadian Acoustics / Acoustique canadienne



strengths of the CS-SVM approach. However, to be 
consistent with the data conditioning stream for the other 
classes, the sperm whale data was passed through the same 
12 KHz high pass filter. This was known to be a suboptimal 
processing step as most of the energy in sperm whale clicks 
is typically below 12 KHz. A better solution for a CS-SVM 
classifier that includes a sperm whale class would be either 
to lower the frequency of the high-pass filter or to process in 
multiple frequency bands.

Class P c c P  .
m iss

P
nse

Mesoplodon (forage) 1.0000 0.0000 0.9680

Mesoplodon (buzz) 0.7900 0.2100 0.9600

Globicephela 0.9380 0.0620 0.9682

Grampus 0.9451 0.0549 0.9721

(a)

(b)

(c)

Time (ms)

(d)
Figure 5: Clicks showing some of the variability in the 

Globicephala macrorhynchus (a-b) and Grampus griseus (c-d) 
training data.

Table 3: Performance of the 4 class CS-SVM on test sets of 
approximately 250 signal-present vectors and 250 noise-only 
vectors drawn from the training data files for each clas

The nine test data files were processed in a fully 
automated fashion. The classifier program automatic-ally 
read the data from the .wav files, filtered it, and performed 
time domain energy detection to identify click events. Time 
series data about the energy detector peaks were used to 
construct feature vectors. The features vectors x  extracted 
for each click event were then used to evaluate the class- 
specific decision functions, f(x). The click event was 
assigned membership in the class whose decision function 
was maximum or to the noise-only reference class when 
max{ft(x)} < 0. Figure 7 shows the output of the 5 class- 
specific decision functions for data in the neighborhood of a 
Mesoplodon foraging click (from Test File 1). Although 
f 4(x) associated with Risso's dolphin also peaked, fj(x) for 
the foraging click was maximum. Figure 8 shows the class 
decision output of the CS-SVM for Test File 1. This test file 
contained clicks from both Mesoplodon and Globicephela. 
Table 4 summarizes the performance of the 5-class CS-SVM 
for all of the Workshop test data.

Amb. Noise 
Beak -buzz 
Rissos dolf. 
Beak -forage 
Pilot whale

Figure 6: Distribution of the periods between three consecutive 
zero-crossings for ambient noise, M. desirostris (buzz), Grampus 

griseus, M. desirostris (forage), and Globicephala 
macrorhynchus.
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4. CONCLUSION

This paper has presented a novel multi-class support 
vector machine classifier, the class-specific SVM. The new 
classifier consists of v binary SVMs where each SVM 
discriminates between one of v classes of interest and a 
common reference class. Test inputs are assigned 
membership in either the class whose decision function is 
maximized or the reference class if all decision functions are 
negative. A five class CS-SVM was created to classify 
broadband click vocalizations from several species of 
odontocetes using data provided by the 3rd International 
Workshop on Detection and Classification of Marine 
Mammals Using Passive Acoustics. While the CS-SVM's 
classification performance was quite good for species 
specific test cases drawn from the labeled training data, its 
classification performance was not as good for the unlabeled 
test data files. Some classes, like the Mesoplodon 
densirostris foraging class and the Sperm whale class, 
performed well on the test files but the performance for the 
other classes not as reliable.

Figure 7: Output of the decision functionsf (x )  vs time for the 
5-class CS-SVM processing a data stream containing a 

Mesoplodon foraging click.

This difference in classification performance for the test 
data files is most likely a reflection of the feature sets 
chosen. The zero crossing and amplitude features used were 
very distinctive for the sterotypical Mesoplodon foraging 
clicks, but less distinctive for the other classes. In particular, 
there was significant overlap in the feature space between 
the Mesoplodon foraging clicks and the Grampus clicks. As 
a result, many Grampus clicks were misidentified as 
foraging clicks. Further analysis of Grampus vocalizations 
and modification of the feature set is recommended. 
Another issue in classification of the test data was the lack of 
a “none of the above” designation. The CS-SVM always 
assigned detected events to one of the 5 classes or to the 
noise-only class. The addition of a second level of 
thresholding of the decision functions, such as requiring 
max{f(x)}>L, would reduce misclassification of unknown 
signal-present events.
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Figure 8: Class decisions from the 5-class CS-SVM for 579 
click events from Test File 1..

Test Files 5-class CS-SVM Results

File 1 = Unverified Blainville's 
Beaked Whale and Short-finned 
Pilot Whale

Correctly identified  as Blainville's 
beaked whale and Short-finned pilot 
whale

File 2 = Blainville's Beaked 
Whale

Correctly identified  as Blainville's 
beaked whale

File 3 = Pantrop ic al Sp otte d 
Dolphin

Incorrectly classified as Short-finned 
pilot whale

File 4 = Pantropical Spotted 
Dolphin

Incorrectly classified as Short-finned 
pilot whale

File 5 = Risso's Dolphin Incorrectly classified as Blainville's 
beaked whale

File 6 = Unverified Blainville's
Beaked Whale & Sperm Whale

Correctly identified  as Blainville's 
beaked whale and sperm whale

File 7 = Risso's Dolphin Incorrectly identified  as a mix o f
Mesoplodon forage & Mesoplodon 
buzz (only 11.1% of clicks correctly 
classified as Risso's dolphin).

File 8 =Short-finned pilot whale Incorrectly identified  as a mix o f
Mesoplodon forage, Mesoplodon buzz 
& Risso's dolphin (only 16% correctly 
classified as Pilot whale).

File 9 = Sperm Whale Correctly classified as Sperm whale 
(some confusion with Pilot whale 
probable caused by 12 KHz HPF)

Table 4: Results from the 5 class CS-SVM for the Workshop 
Test Data. The contents of the Test Files were not known prior 

to the Workshop.
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ECHOLOCATION CLICKS FROM THREE SPECIES OF ODONTOCETES
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a b s t r a c t

A species classifier is presented which decides whether or not short groups of clicks are produced by one or 
more individuals from the following species: Blainville’s beaked whales, short-finned pilot whales, and 
Risso’s dolphins. The system locates individual clicks using the Teager energy operator and then 
constructs feature vectors for these clicks using cepstral analysis. Two different types of detectors confirm 
or reject the presence of each species. Gaussian mixture models (GMMs) are used to model time series 
independent characteristics of the species feature vector distributions. Support vector machines (SVMs) 
are used to model the boundaries between each species’ feature distribution and that of other species. 
Detection error tradeoff curves for all three species are shown with the following equal error rates: 
Blainville’s beaked whales (GMM 3.32%/SVM 5.54%), pilot whales (GMM 16.18%/SVM 15.00%), and 
Risso’s dolphins (GMM 0.03%/SVM 0.70%).

SOMMAIRE
Ce travail concerne la création d’un système pour identifier trois espèces d’odontocètes par les clics 
d’écholocation: la baleine à bec de Blainville, la baleine pilote, et le dauphin de Risso. Les clics sont 
identifiés par l’opérateur d’énergie Teager-Kaiser, et les vecteurs cepstraux sont construits. Dans un travail 
de détection, on compare les résultats obtenus avec deux modèles différents : le modèle de mélange 
gaussiens (MMG) et la machine à vecteurs de support (MVS). Les résultats de la détection sont exprimés 
par les courbes de DET, « Detection Error Tradeoff». Le point sur les courbes de DET où les probabilités 
de fausses alarmes et manques de détection sont égales est comme suit : la baleine à bec de Blainville 
(MMG 3,32%/MVS 5,54%), la baleine pilote (MMG 16,18%/MVS 15,00%) et le dauphin de Risso (MMG 
0,03%/MVS 0,70%).

1. i n t r o d u c t i o n

The use of acoustic information for study of marine 
mammals is a promising method that is complimentary to 
visual observations. One use of acoustics is to determine 
the presence of species of interest, the so called detection 
problem. In this work, we describe a detection system 
implemented for the 3rd International Workshop on the 
Detection and Classification of Marine Mammals Using 
Passive Acoustics, a conference which brought together 
multiple groups to work on a common data set containing 
calls from Blainville’s beaked whales (Mesoplodon 
densirostris), short-finned pilot whales (Globicephala 
macrorhynchus) and Risso’s dolphins (Grampus griseus). 
Low error-rate detections were achieved for all three species 
using both Gaussian mixture models (GMMs) and support 
vector machine algorithms.

2. BACKGROUND

Building an effective machine learning solution is a 
combination of determining the right set of features to use 
and an appropriate classifier. Features should be chosen 
such that they capture the essence of the problem, a

statement that is easy to make and frequently difficult to 
achieve. Once the feature set is determined, a method of 
detection or classification must be selected that enables the 
system to effectively exploit characteristics of the feature 
set.

2.1 Features

Bioacousticians working on detection and identification 
problems for odontocetes have traditionally concentrated on 
extracting features from whistles. Typically, systems 
identify a variety of measurements of the whistle such as 
slope, inflection points, frequency, etc. either manually or 
automatically (e.g. [1, 2]). There has been little effort in the 
examination of echolocation clicks or burst pulses as 
providing information that can be used to determine species, 
and until recently, band limitations of most field recording 
systems prevented serious consideration of clicks as features 
for species recognition tasks.

We have noted unique spectral patterns in echolocation 
clicks of some species of delphinids, notably Pacific white
sided dolphins (Lagenorhynchus obliquidens) and Risso’s 
dolphins [3]. Earlier work [4] on an automatic species
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identification system showed good results on a species 
identification problem where whistles, burst-pulses, and 
clicks were processed in an identical manner. These results 
have led us to investigate the suitability of clicks as 
indicators of species. We see this as being a complementary 
task to whistle-based systems rather than a competing one. 
Both methods have advantages: whistles propagate farther 
than clicks [2], but the short duration of clicks makes call 
separation easier in large population groups, and some 
species are not known to whistle [5]. In addition, whistle 
production may be linked to behavioral state and we have 
observed species which are known to whistle producing 
only clicks.

A range of techniques have been used to characterize 
odontocete clicks [6]. In general, signal samples are 
squared and heuristics or distributional metrics are used to 
determine the beginning and ending energy. As described 
later, we use a technique based upon the Teager energy 
operator which is similar to that proposed by Kandia and 
Sylianou [7]. Once the click is identified, typical features 
include the peak frequency, 3 dB bandwidth, inter-click 
intervals, etc. [8]. These metrics are a very rough 
approximation of the spectral shape. Most of the work on 
echolocation has focused on on-axis clicks, but it is well 
known that off-axis clicks lack the coherence of on-axis 
ones and have significantly different spectra [9-11]. In 
addition to inter-species differences, click production is 
known to vary even in the same individual in source level, 
peak frequency, and bandwidth, depending upon factors 
such as activity and environment [8, 10]. The variation in 
click attributes suggests that an effective species detector 
needs to be able to learn a variety of click types associated 
with each given target species.

2.2 Classifiers and detectors

A recent discussion on applications of machine learning 
techniques to bioacoustics can be found in [4] and includes 
linear discriminant analysis, neural networks, dynamic time 
warping, adaptive resonance theory networks, classification 
and regression trees, hidden Markov models, self-organizing 
maps, and Gaussian mixture models (GMMs). In this study, 
we compare the performance of GMMs with that of support 
vector machines (SVMs). GMMs are well known for their 
ability to model arbitrary distributions whereas SVMs 
attempt to model the boundaries between distributions. 
SVMs have gained in popularity throughout the 1990s in the 
machine learning community and to our knowledge have 
only recently been considered in the bioacoustics 
community [12, 13].

3. METHODS

3.1 Click production of target species

The click characteristics of the three species vary greatly. 
Digital acoustic recording tag (DTAG) recordings of free- 
ranging Blainville’s beaked whales have shown that they 
produce two types of click trains [10]. One type has been 
Canadian Acoustics / Acoustique canadienne

observed in prey approach, characterized by a frequency 
modulated (FM) sweep with inter-click intervals (ICIs) of 
100 ms and a median centroid frequency of 38.3 kHz, RMS 
bandwidth and duration of 6.9 kHz and 271 ^s, respectively. 
These swept clicks are presumed to be related to foraging 
activities. As the whales close in on their prey, they have 
been observed to switch to buzz clicks which have different 
spectral characteristics from the FM  sweep clicks. The buzz 
clicks have greatly diminished ICIs, a higher median 
frequency of 51.3 kHz with wider RMS bandwidth (14.6 
kHz) and an RMS duration which is about half of the FM 
sweep clicks (29 ^s).

Analysis of clicks recorded on a ship-deployed hydrophone 
array [9] show that free-ranging Risso’s dolphins produce 
clicks w ith ICIs generally between 40-200 ms with short 
click trains having ICIs of 20 ms. Centroid frequency of on- 
axis clicks is 75 kHz (out of band for the conference data 
set) w ith an RMS bandwidth of 25 kHz and duration of 30
50 ^s. Presumed off-axis clicks from a different population 
of Risso’s dolphins have been shown to have a spectral peak 
and notch structure [3].

Echolocation clicks of short-finned pilot whales recorded in 
the Gomera and Canary Islands have been reported [14] to 
produce clicks with RMS bandwidths of 27 kHz and 
durations of 8.4 ^s. The mean centroid frequency was 68 
kHz (also out of band for the conference data).

3.2 Click detection and feature extraction

Clicks are detected using a two-stage search. In the first 
stage, spectra are created for 20 ms frames w ith a 10 ms 
frame advance that have been windowed using a Hann 
window. Noise is estimated on a per frequency bin basis 
over a 5 s average. A frame is said to be a click candidate 
when frequency bins covering at least 5 kHz exceed the 
noise floor by 12 dB. After obtaining a set of click 
candidates, a second pass locates clicks with greater 
precision in a high pass filtered (10 kHz) signal.

The Teager energy operator [15] is an estimate of the 
instantaneous energy of a signal and has been shown to be 
an effective method for detecting echolocation clicks [7]. It 
is based upon a model of the energy needed to drive a 
spring-mass oscillator, and measures energy with high 
resolution:

y/d (x[n]) = x2[n] -  x[n — 1]x[n +1] . (1)

A noise floor is set at the 40th percentile of the Teager 
energy measurements across the interval detected in the 
previous step. Locations where the Teager energy exceeds 
the noise floor by a factor of 50 are assumed to be interior to 
the click and the click onset is found by searching for the 
point at which the energy dips below 1.5 times the noise 
floor.

Once the click has been located, cepstral features [16] are 
computed for a 1200 ^s segment of the signal starting with
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the click onset. The log magnitude of the discrete Fourier 
transform of the segment is computed after windowing with 
a Hann window. The discrete cosine transform of this result 
is the cepstrum. We also form an estimate of the cepstral 
representation of noise in the vicinity of the click and 
subtract the average noise. This is known as cepstral means 
subtraction [17] and is a method which normalizes for 
convolutional noise (e.g. mismatched hydrophones or 
filtering). Once cepstral features have been generated, they 
are grouped such that the first click and the last click are 
separated by no more than 2 s and no click is more than 1 s 
apart from the previous click.

3.3 Detection

Gaussian mixture models (GMMs) and support vector 
machines (SVMs) were both used in this study. Due to 
space constraints, only an outline of each technique is 
presented, but references to the literature where complete 
details can be found are provided. For both methods, our 
experiments are designed to answer the question: Given 
that we are looking for target species X, was a specific set of 
clicks produced by this species? This contrasts with an 
identification task where one attempts to determine which 
species produced the set of clicks.

Gaussian mixture models

For GMM classifiers, one GMM was trained for each of the 
three species. GMMs are frequently used to approximate 
arbitrary distributions as a linear combination of parametric 
distributions. A set of N normal distributions with separate 
means ^  and diagonal covariance matrices are scaled by a 
weight factor ci such that the sum of their integral across the 
entire feature space is 1. The likelihood of the cepstral 
feature vector X which represents a click can be computed 

for model M  = [{ c },{Mi} , }  where 1 < i < N  ] by:

N ~(x-p j )'S71(x-fi, )
Pr(x |M ) = £ ------ C ----- r  e 2 . (2)

tt (2^)T I ^i F

The number of mixtures is typically chosen empirically. 
Model estimation (training) cannot be accomplished by a 
straightforward application of the maximum likelihood 
(ML) principle as the relative contribution c  of each 
mixture to the total likelihood is unknown. To address this, 
the GMM is trained incrementally. A single mixture GMM 
is estimated from the sample mean and variance. This 
mixture is then split into two mixtures by dividing the 
weight in two and forming new mixtures where the means 
have been slightly perturbed by a small vector ±o . The 
resulting model is then refined by an application of the EM 
algorithm [18] where the current estimate is used to 
determine the expected values of the mixture weights. With 
the missing weights estimated, the ML estimator can be

found. This process is executed several times and the model 
is split again. Once the desired number of mixtures is 
reached, iteration is performed until a convergence 
threshold is reached. Convergence is guaranteed and is 
typically fast (5-15 iterations).

After the models have been trained, the likelihood of click 
groups are computed and a log likelihood ratio test is used 
to decide whether each group belongs to each species [19]. 
We make the simplifying assumption that clicks in a group 
are independent and compute the group likelihood as the 
product of the individual click likelihoods normalized for 
group duration by using the geometric mean. These 
operations are done in the log domain to prevent machine 
underflow. Decisions to accept or reject the hypothesis that 
a click group was produced by the species in question are 
based upon a log likelihood ratio test. Due to the small 
number of competing classes, we set the alternative class 
likelihood to be the likelihood of the highest competitor 
model as opposed to a background model. The system is 
implemented using Cambridge University’s hidden Markov 
toolkit (HTK) [20] along with a custom set of programs 
written in Python and Matlab™.

Support Vector Machines

Support vector machines do not model the distribution of 
classes, but rather their separation [21]. SVMs find the 
separating hyperplane that minimizes the risk of a classifier 
under a 0-1 loss rule. Let /  ( ) be a function parameterized

by 0 that maps examples to negative and positive class 

labels y  e {-1,1} . As we almost never have access to the 

actual risk, we can attempt to minimize the empirical risk:

1 N  1
R emp  (*) = -  2  2 1 *  -  f S  (X ) | .  (3)

i=1

Thus, optimizing the parameter vector 0 is likely to result in 
lowering the misclassification rate. For a given family of 
classifiers, it can be shown that there exists an upper bound 
on the actual risk with any desired level of certainty [21, 
22]. For SVMs, each/ ^j(-) specifies a hyperplane

WX + b = 0 which separates the two classes of linearly 
separable training data (nonseparable data is discussed 
later). The hyperplane normal vectorW and bias b are 
scaled such that WX + b = +1 holds for the closest positive 
and negative training example, resulting in an empirical risk 
of 0. The separating line for a two dimensional synthetic 
data set and the parallel lines that occur at WX+b = +1 are 
shown in Figure 1. As points on the hyperplane 
satisfy WX+b = 0 , the distance between the closest point of 
each class and the hyperplane is .
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Figure 1 - Separating hyperplane (solid line) between squares 
and circles that maximizes the distance between the closest 

vectors (margin). Support vectors lying on wx + b =+1 are 
outlined.

Figure 2 -  Squares and circles that are not linearly separable. 
Hyperplane with dot product kernel (left) versus Gaussian 

kernel (right).

Consequently, the separation between the two closest points 
and the hyperplane is ̂ jjW|. This quantity is referred to as

the margin and we can learn the appropriate parameters for 
the SVM by maximizing the margin subject to the 
constraints of the closest vectors. This is done by

minimizing ||w|| or equivalently llwlf  subject to constraints:

\wx + (4)

This is a constrained convex optimization problem, which 
can be solved by optimizing the dual of the Lagrange 
multiplier representation [21]. The Lagrange multipliers 

0 C1< i < N  will only be nonzero for training examples which 

satisfy equality in (4). These vectors are called support 
vectors. The SVM normal vector w  can be constructed

from the dual solution: w  = ' ^ a i y i x i , and b is a more
i

complicated function of the support vectors which we omit. 

We decide the class of test vector t  by examining the sign 

of wt  + b , or equivalently in the dual representation:

1
Y j a i y i

x,t + b > 0

- 1 ^ a ,y,xtt + b < 0
(5)

The above discussion is for sets that are linearly separable, 
and can be extended in two ways. The first is to introduce a 
slack variable £  > 0 for each training vector which permits 

support vectors to be on the wrong side of the hyperplane:

wxi + b > 1 - £  y, = 1 

wxt + b < -1  + £  y, = -1 .
(6)

When minimizing the risk, a cost factor C  is introduced 
which scales the sum of the slack variables, with high values 
of C  resulting in higher penalties for crossing the margin. 
Like the linearly separable case, this can also be solved as a 
constrained optimization problem. The complexity of 
solving these problems results in selecting strategies such as 
the sequential minimal optimization algorithm [22] to 
provide solutions within a reasonable time frame.

Typically, the normal vector w  is not actually constructed, 
but left as a linear combination of the Lagrange multipliers 
oc, and their associated training data xi and class y i :

wt = ' ^ a iy iXi -t . A second key element to address
i

nonlinearly separable data is to use a kernel function K  (•,•) 

to transform the data into a different space where linear 
separation is possible. The examples that we have seen so 
far use what is known as the dot product 

kernel K (x, t ) = x t  . While numerous kernels have been 

proposed [22], we will restrict ourselves to nonlinear 
Gaussian kernels

£
K  ( x , t ) = e- o  2ct (7)

where a  is a tunable parameter. Figure 2 shows an example 
of separating hyperplanes for nonlinearly separable data.

When multiple test vectors are classified as a group, the 
decision to accept a hypothesis that the clicks are produced 
by a specific species is based upon the threshold of a 
statistic of the group’s click scores. We use as our statistic 
the percentage of clicks for which f  (•) > 0 . The system is

implemented using the Torch machine learning library [23] 
and custom C++, Matlab™, and Python code.

For both types of classifiers, we used all available training 
data for the final classifier. During development, training 
data was jackknifed by recording date so that the system 
could be evaluated with test data separate from the 
evaluation test reported in the results section.

3.4 Evaluating results

Results are plotted using the detection error tradeoff (DET) 
curve [24]. DET curves are similar to receiver operator 
curves (ROC) except that in the former error rate normal 
deviates are plotted on both axes, whereas in the latter the 
correct detection and false alarm probabilities are plotted. 
When the false alarm and missed detection probabilities are 
normally distributed, the result is a straight line in DET

2
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Figure 3 -  Detection error tradeoff curves for GMM detector 
on evaluation data.

Figure 4 -  Detection error tradeoff curves for SVM 
detector on evaluation data.

space. DET plots are more effective at highlighting 
differences between similar systems than ROC curves.

4. RESULTS

Mean normalized cepstral features were extracted for all 
files of the dataset. Tests on the jackknifed training data 
were used to tune the parameters of each classifier. For the 
GMMs, 2, 4, 8, 16, 32, and 64 mixture models were created, 
with 16 mixture models outperforming other parameters. 
For SVMs, a grid search on the penalty and standard 
deviation was performed (Ce {100, 200, ..., 600}, 
<7 e {100, 200, ..., 1000}). Equal error rates (EERs), the 
point at which a decision threshold results in the same 
percentage of false alarms (false positives) and missed 
detections are summarized in Table 1. Tests on the last 
day’s training data performed poorly for SVMs, leading to 
the high overall EERs.

The best performing models from the development data 
were then used to classify click groups from the nine 
evaluation files whose content is summarized in Table 2. 
The evaluation dataset contained calls from the three 
aforementioned species plus an additional two: Atlantic 
spotted dolphins (Stenella frontalis) and sperm whales 
(Physeter macrocephalus).

File 1 had mixed Blainville’s and pilot whale clicks. We 
manually established “correct” labels for each click group in 
the file based upon known characteristics of the species and 
our observations of the calls in the development data. A 
total of 2040 click groups with a mean of 10.1 clicks per 
group (min=1, max=103, std dev.=7.2) were classified. 
DET curves and EERs for all three target species are 
produced for the GMM and SVM detectors in Figures 3 and
4. The curves show the tradeoff between false alarms and 
missed detections for various detection thresholds. Note 
that the thresholds themselves would add a third dimension 
to the plot and are not reported.

5. DISCUSSION

For both classifiers, the detector performance on Risso’s 
dolphins appears to be nearly perfect in the evaluation data, 
but the Risso’s calls in the conference data were filtered, 
leading us to suspect that part of the accuracy is due to 
environment detection as opposed to species detection. It is 
also worth noting that much of the error on the SVM 
development set for Risso’s dolphins comes from one 
particular split where the data from August 19th 2006 was 
used as test data. This was the one day for which the 
Risso’s dolphin data contained clicks with spectra above 40 
kHz. The GMM classifier dealt better with this situation, 
recognizing other similarities in the data. The pilot whale

EER % GMM SVM
Blainville’s 2.8 21.4
pilot 3.7 21.1
Risso’s 2.3 14.7

Table 1 -  Equal error rates for jackknifed development data 
with 16 mixture GMMs and C = 100, ̂  = 200 SVMs for the 

best parameter set across all jackknife splits.

45 - Vol. 36 No. 1 (2008)

Species producing calls in the test files
1 Blainville’s + some 

pilot
4 spotted 7 Risso’s

2 Blainville’s 5 Risso’s 8 pilot
3 spotted 6 Blainville’s 9 sperm

Table 2 -  Contents of evaluation files 1-9.
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detectors had the worst performance on the evaluation data, 
with the majority of errors being in the 661 out-of-set 
(species not seen in training) click groups from the spotted 
dolphins and sperm whales. Using the EER threshold, 
42.97% (GMM) and 39.79% (SVM) of the out-of-set click 
groups were incorrectly identified as pilot whales, indicating 
that rejection of out-of-set clicks is an area for future work.

For any out-of-set test, the impostor click will most closely 
fit one of the three distributions, making its GMM 
likelihood higher than the others. The likelihood ratio 
between the two highest ranked models may be large, and it 
is not unexpected that a greater number of errors will occur 
in this situation. When examining the likelihoods produced 
by the pilot whale model without the normalizing alternative 
hypothesis, there is significant overlap. Consequently, 
setting a threshold based upon the pilot whale model alone 
would not have improved the results. Adding enough 
species to the alternative hypothesis to better represent the 
variability of clicks across species may improve out-of-set 
rejection. For SVMs, the lack of a distributional approach 
means that even if a click is far from the target species’ 
distribution, if it lies on the target side of the hyperplane, it 
will be considered a target, making the need for additional 
data critical.

It is worth noting that the DET curve for Blainville’s beaked 
whales has a relatively flat slope over much of its length for 
both detectors. This means that the threshold is not overly 
sensitive, and we can reduce either the miss or false alarm 
probabilities significantly with a low impact on the other 
metric. As an example with GMMs, it is possible to have a 
very low false detection rate (< 0.2%) and miss no more 
than 5% of the click groups. While the Risso’s dolphin 
curve has a steep slope, its location in the lower left corner 
makes this less critical. The shape of the pilot whale curves 
is more problematic, with small differences in threshold 
having more significant impact.

When examining what appeared to be off-axis clicks, 
Johnson et al. [10] were able to distinguish individual pulses 
by cross correlation with on-axis clicks. They noted that the 
spectra of the off-axis clicks were “highly featured,” lacking 
the smoothness of presumed on-axis clicks. The spectral 
irregularities were attributed to possible interference 
between pulses. We believe this to be a reasonable 
hypothesis, and one of the major reasons that echolocation 
based species detection works well. Measurements of the 
melon taken from CT scans of a deceased Risso’s dolphin 
show a 30 cm length from dorsal bursae to probable signal 
exit and a 20 cm width at the widest section. While exact 
propagation paths are beyond the scope of this work, the 
1200 ^s window used in this study is adequately long to 
permit multiple paths to have interfered in constructive 
and/or destructive manners (assumed sound speed of 1500 
m/s), even for the larger species. It is interesting to note that 
when we used windows smaller than 1100 ^s, detection 
performance degraded significantly.
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6. Conclusions

We have shown that cepstral feature vectors extracted from 
spectra over a 1200 ^s window starting at the beginning of 
an echolocation click can be used as the basis for automated 
species detectors. These detectors are competitive with 
other state-of-the-art systems for the detection of 
echolocating marine mammals. It is of particular interest 
that the system performed well even though the 
echolocation clicks extended beyond the bandwidth 
supported by the recording equipment. EERs for this dataset 
ranged between 0.03% and 16.8% for GMMs and 0.70% 
and 15.0% for SVMs. Further work is needed on rejecting 
out-of-set species whose clicks bear a stronger resemblance 
to the target species than to any of the species used to build 
the impostor set.

While other explanations may exist, we also believe that the 
observed degradation of performance when the analysis 
window was shortened is a strong indicator that interference 
patterns may play a role in the spectral patterns. Further 
experiments may help to confirm or reject this hypothesis.
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a b s t r a c t

In this paper we present a novel approach for the automatic detection of clicks from recordings of 
beaked whales based on the phase characteristics of minimum phase signals and especially using the 
group delay function. Group delay is estimated through the and first derivative of the Fourier 
Transform of a signal. A major advantage of the proposed approach is its robustness against additive 
noise while it doesn't require the definition of ad-hoc or adaptive thresholds for the detection of clicks. 
This method works on raw recordings which are usually quite noisy as well as on click enhanced 
recordings (after band-pass filtering or using operators like the Teager-Kaiser energy operator). 
Moreover, a click is just detected by searching the positive zero crossings over time of the slope of the 
phase spectrum. To evaluate the effectiveness of the proposed approach in detecting clicks, a one- 
minute recording has been manually marked providing a test set of about 320 clicks. Results show that 
the proposed approach was able to detect 71.37% of the hand labelled clicks within an accuracy of 3 
ms.

SOMMAIRE

Dans cet article, nous présentons une nouvelle approche pour la détection automatique de clics sur des 
enregistrements de baleines à bec exploitant les caractéristiques de signaux à phase minimale 
notamment via l' utilisation de la fonction de retard de groupe. Le retard de groupe est estimé à partir 
de la transformée de Fourier d'un signal et de la dérivée de celle-ci. L'approche proposée est robuste 
vis-à-vis du bruit additif et ne requiert pas la définition ad-hoc ou adaptative de seuils pour la détection 
de clics. Elle permet de traiter aussi bien des enregistrements bruts fortement bruités que des 
enregistrements rehaussés (après filtrage passe-bande ou à l'aide d'opérateurs tels que l'opérateur 
d'énergie de Teager-Kaiser). De plus, un clic est simplement détecté en recherchant un passage par zéro 
sur la partie croissante de la pente du spectre de phase. Pour évaluer l'efficacité de l'approche proposée 
à détecter des clics, une minute d'enregistrement a été annotée manuellement, fournissant ainsi un 
ensemble de test d'environ 320 clics. Les résultats montrent que l'approche proposée parvient à détecter 
71.37% des clics marqués manuellement avec une précision de 3 ms.

1. i n t r o d u c t i o n

Beaked whales are deep-diving toothed whales and are the 
least known family of all marine mammals [1]. Two 
genera of beaked whales, Ziphius and Mesoplodon, are not 
as well known as other genera of beaked whales such as 
Berardius. Acoustic monitoring of the sound activity of 
these animals may help to study their habitats, which is of 
considerable conservation value since these whales are 
very difficult to sight. Moreover, there has been a growing 
concern about the sensitivity of these animals to human- 
made sounds [2]. Acoustic analysis of the sounds they 
produce may help in understanding this sensitivity.

Although some whales (i.e., sperm whales) produce 
sound pulses in the range of human hearing, which is 
below 20kHz, beaked whales emit short directional 
ultrasonic clicks (with significant energy above 20 kHz). 
An analytic report on recordings using acoustic recording 
tags attached on Ziphius and Mesoplodon beaked whales 
may be found in [1] and [3]. Since clicks produced by 
beaked whales (as well as from other toothed whales) are 
highly directional, there is a difference in the properties of 
the signals if they are recorded off or on the acoustic axis 
of the whale [1]. In the case where hydrophones are used

for the recordings, the intensity of the clicks will vary a lot 
over short periods of time. This makes the detection of 
clicks harder using energy-based criteria. It modifies the 
frequency content as well, which complicates the 
detection problem for the frequency or time-frequency 
based detectors [4]. Moreover, recordings are usually very 
noisy which makes the detection task even more difficult. 
Band-pass filtering is widely used for the enhancement of 
clicks. However, since the frequency properties of clicks 
change over time, a time-invariant band pass filter may 
cancel some of the clicks. More appropriate methods for 
click enhancement have been suggested in the literature, 
like in the Rainbow Click detector [5] and the Teager- 
Kaiser energy operator [6], [7]. To overcome the 
variability in energy levels of clicks the above approaches 
need to define adaptive energy thresholds, increasing the 
complexity of the detection system without significantly 
improving the detection score.

Therefore, new techniques for the automatic detection 
and classification of clicks generated from beaked whales 
are urgently needed to study their behavior and habitat use, 
and to identify risk factors for exposure of these animals 
to noise [1]. In this paper time-domain and frequency 
domain techniques for the automatic detection of the high-
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frequency clicks of beaked whales will be considered. 
Although time domain techniques are widely used for 
detecting clicks, they are not robust in low Signal to Noise 
Ratio (SNR) conditions as was mentioned earlier. 
Frequency domain techniques are mainly based on the 
cross-correlation function defined on the magnitude 
spectrum of the sounds, ignoring therefore any 
information provided by the phase spectrum. In this paper 
we focus on clicks produced by Blainville's beaked whales 
(Mesoplodon densirostris) and we suggest a click detector 
that combines a time domain technique with frequency 
domain information based on the slope of the phase 
spectrum. Specifically, we suggest the use of the Teager- 
Kaiser energy operator [6] as a click enhancement tool 
followed by a high resolution group delay function 
obtained from short-time phase spectra. The group delay 
function has found important application in numerous 
signal processing areas, such as speech processing [8]. 
Clicks are then easily detected by locating the zero 
crossings of the slope of the phase spectrum (referred to as 
phase slope function) computed as the average of the 
group delay function. This makes the proposed detector 
insensitive to variations in sound source level. The 
proposed detection algorithm performs a frame-by-frame 
(short-term) analysis. In each analysis window, the slope 
of the phase spectrum corresponding to the center of the 
analysis window is computed as the average of the group 
delay function. Frame (step) size defines the resolution 
capability of the proposed approach. The algorithm has 
been tested both on raw recordings of beaked whales and 
after the application of click-enhancement tools. Results 
show that the proposed approach is capable of detecting 
clicks in raw data as well as in pre-processed data 
(enhanced). For the evaluation of the detector, a one- 
minute recording was manually labeled providing a set of 
317 clicks. Note that in this recording more than one 
animal is present since the click rate is much higher 
compared to the mean click rate reported in the literature 
[1].

The paper is organized as follows. Section 2 describes 
the time-frequency characteristics o f clicks of 
Mesoplodon beaked whales and tools to improve the SNR 
in recordings (click enhancement). In Section 3 we 
present different ways to compute the group delay 
function and the properties o f this function for minimum 
phase signals are discussed. To motivate the use of the 
group delay for the detection of clicks, the group delay of 
synthetic signals similar to a sequence of regular clicks is 
computed and extensively discussed. Details on the 
application of group delay for click detection using real 
click recordings are discussed in Section 4. To evaluate 
the effectiveness of the proposed approach, clicks have 
been labeled manually. The database which has been used 
for the evaluation of the proposed detection system is 
described in Section 5. A summary of the obtained results 
and future work concludes the paper.

2. CLICKS OF BEAKED WHALES

Beaked whales are difficult to study and they are mostly 
known from strandings. They are deep-diving animals, 
they echolocate on prey [1] and they react to human-made 
sounds. In [1] two genera of beaked whales, Ziphius and

Mesoplodon have been tagged making orientation and 
sound recordings. The tagged whales started clicking at an 
average depth of 400-500 m. Both species produce regular 
clicks with an inter-click-interval (ICI) o f about 0.4s for 
Ziphius and between 0.2 and 0.4s for M esoplodon. 
Regular clicks usually terminate with a buzz sound (rapid 
increase in click rate, 250 clicks per second [1]). The 
average duration of the clicks were measured at 175 ps 
and 250 ps for Ziphius and Mesoplodon, respectively. For 
both species, the energy of their sounds is mostly 
distributed at high frequencies, i.e., in the 30kHz-40kHz 
range.

2.1 Time-frequency information

In Fig. 1(a) 13 seconds of a recording from beaked whales 
(Mesoplodon densirostris) are depicted1. Sounds were 
digitized at a sample rate of 96 kHz, with 24-bit resolution. 
From this figure, it is not easy to detect clicks by 
inspecting the time domain signal. In Fig. 1(b) the time- 
frequency distribution of the signal is displayed, computed 
via the Short-Time Fourier transform using a Hanning 
window of 1000 samples (10.4 ms) with an overlap of 500 
samples, and a frequency resolution of 2048 bins. In Fig. 
1(b), looking at frequency bands above 20 kHz, some 
wideband signals may be detected (for instance, around 4, 
5, and 8 seconds), indicated the presence of clicks. The 
high frequency content o f the clicks is expected after the 
results presented in [1]. It is worth noting that by 
comparing the two figures, it is obvious that the detection 
of clicks is easier in the time-frequency domain. This is 
the motivation for using such a representation for the 
detection of clicks with software products such as Ishmael

[4].

2 4 6 8 10 12
(a) Time (»)

x 104

2 4 6  8 10 12
(b) Time (s)

Figure 1. Typical recording from a beaked whale (a) time- 
domain signal, sampled at 96 kHz, 24 bits, and (b) short-time 
Fourier transform (2048 frequency bins, Hanning window of 

1000 samples, with 50% overlap).

2.2 Click-enhancement

The signal depicted in Fig. 1(a) is very noisy and it is not 
easy (if not impossible) to detect any click by visual 
inspection. Therefore, a click enhancement tool could

1 This recording is part o f the recordings made available 
by the Naval Undersea Warfare Center (NUWC) Marine 
Mammal Monitoring on Navy Undersea Ranges (M3R) 
program.

49 - Vol. 36 No. 1 (2008) Canadian Acoustics / Acoustique canadienne



possibly reveal the clicks and improve the SNR. For this 
purpose, we will use 2 enhancement tools: one is based on 
the Teager-Kaiser energy operator [6] and the other is 
based on modulation and downsampling.

Teager-Kaiser energy operator

For a discrete time signal x[n], it is shown in [9] that the 
Teager-Kaiser (TK) energy operator is given by

Y [ x (« )] = X  ( n ) - x (n  + 1 )x (n - 1) (1)

where n denotes the sample number. An important 
property of the TK energy operator in (1) is that it is 
nearly instantaneous given that only three contiguous 
samples are required in the computation of the output at 
each time instant. More details on the TK operator as 
applied to click sounds may be found in [6, 7].

2 4 6 8 10 12
(a) Time (»)

x 104

2 4  6  8  10 12
(b) Time (s)

Figure 2. After applying the Teager-Kaiser operator (a) the 
output from the Teager-Kaiser (TK) operator and (b) the 
short-time Fourier Transform of the TK output using the 

same setup as in Fig.1.

Fig. 2(a) shows the results from the application of the TK 
operator on the original recording, while Fig. 2(b) displays 
the associated Short-Time Fourier transform. Contrary to 
Section 2.1, the time-domain signal now carries more 
information about the time occurrence of clicks than its 
time-frequency representation. Using an adaptive energy 
threshold, detection of most o f the clicks would be 
possible. Note that the sampling frequency of the signal 
has not been changed.

Modulation and down-sampling

Low SNR makes it difficult to detect clicks. Moreover, 
since most o f the energy of clicks is distributed to 
frequencies higher than 20 kHz, it is also hard to detect 
them aurally. Therefore, clicks cannot also be detected 
aurally. Based on the frequency characteristics of the 
emitted clicks we suggest to modulate the amplitude of 
the signal and then down-sample it appropriately. Let's 
denote the original signal by x[n]. Then the output signal, 
y[n] from the above operations is given by:
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u[n] = x [n] cos {mn ) 

w [n] = 2 j 

y  [n] = w [n]cos ( m  )

where -I 2 denotes the downsampling operation by two 
after applying an anti-aliasing lowpass filter. The last 
modulation in the above equations is required in order to 
re-establish the order of the frequency information. The 
time domain signal (y[n]) and the time-frequency 
distribution of the signal are depicted in Fig.3. As for the 
Teager-Kaiser operator, the clicks are clearly seen in the 
time domain signal. Although some of the narrow band 
signals are also present in the time-frequency distribution, 
not all of the clicks are visible. Therefore, again in this 
case, one would prefer the time domain representation to 
detect the clicks.

Although, after the application of the above 
enhancement tools, the ''click structure" was revealed in 
the previous examples, it is still difficult to detect a great 
number of clicks because of the variability of the click 
intensities. We recall that the intensity is a function of the 
position of the whale relative to a hydrophone. Since the 
whale is moving the intensity changes quickly because of 
the high directional characteristic o f clicks. Taking into 
account the possibility that other beaked whales are 
present in the area and may also emit clicks at different 
distances from the hydrophone, the click intensity can 
vary quickly over a short period. In this case, a 
sophisticated time-adaptive system of thresholds should 
be used for click detection. To overcome this, we suggest 
to use the slope of the phase spectrum, computed as the 
average of the group delay function, for click detections. 
This will make the click detector insensitive to the 
plethora of different click intensities.

1.---------,-------- ,-----—,------------------ ,-------------

0.5

■0-5

2  4  6  8 10 12
(a ) Time (s)

2 4 6 8 10 12
(b) Tim e (s)

Figure 3. After modulation and down-sampling (a) time- 
domain signal, sampled at 48 kHz, 16 bits, and (b) short-time 
Fourier Transform (1024 frequency bins, Hanning window  

of 500 samples, shifted by 250 samples).

3. GROUP DELAY FUNCTIONS 

3.1 Motivation

Consider a delayed unit sample sequence 

x[n] = S \ n - n0] and its Fourier Transform X (® ) = e~Jm"° .

The group delay is defined as [10]:
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r (®) = -
d^(®)

d a
(2)

so the group delay for the delayed unit sample sequence is 

r  (®) = n0 V® , since the phase spectrum of the signal is

^(® ) = -® n0 . The average over rn of z"(®) provides n0

which corresponds to the negative of the slope of the 
phase spectrum for this specific signal and to the delay of 
the unit sample sequence. An example of a delayed unit 
sample sequence with n0 = 200 samples as well as the 

associated group delay function are depicted in Fig. 4(a) 
and (b), respectively. In this example the Fourier 
Transform has been computed considering the center of 
analysis window to be at n = 0 . When the window center 

is moved to the right (closer to the instant n = n0 ), the 

slope of the phase spectrum increases (the average of the 
group delay function decreases) reflecting the distance 
between the center of the analysis window and the 
position of the impulse. When the center o f the analysis 
window is at n = n0 then the slope is zero. Continuing 

moving the analysis window to the right the slope will 
continue to increase (while the average of the group delay 
will decrease). In this way, the slope of the phase 
spectrum is a function of n  . Note that the location of the 
zero-crossing of this function will provide the position of 
the non-zero value of the unit sample sequence 
independently of the amplitude value of the impulse. 
Filtering the unit sample sequence by a minimum phase 
system, results in a minimum phase signal with the same 
delay as the input unit sample sequence. The group delay 
function will still provide information about this delay 
value as well as information about the poles o f the 
minimum phase system. In Fig. 4(c), (d) the output o f the 
minimum phase signal and the associated group delay are 
depicted. The slope function will have a similar behaviour 
to this described earlier for the unit sample sequence.

By creating a periodic sequence of minimum phase 
signals as the one displayed in Fig. 4(c), a sequence 
similar to a train of regular clicks may be obtained. 
Defining an analysis window of length proportional to the 
period of the sequence (it will be referred to as long 
window), a frame-by frame analysis is performed. In each 
frame the slope of the phase spectrum of the windowed 
signal is computing and it is associated at the center of 
analysis window. By setting the analysis step size at one 
sample (moving the analysis window by one sample at a 
time), the obtained phase slope function (signal) has the 
same time resolution as the original recording. The 
window length may have a duration shorter than the 
period of the signal (it will be referred to as short window). 
In Fig. 5(a) the periodic sequence of the minimum phase 
signal is displayed along with the phase slope function 
using long (dashed line) and short (dash-dotted line) 
window. As it was expected based on the description 
provided before, the positive zero crossings of the slope 
function provide the position of the ''clicks". O f course, 
the detection of clicks using a simple energy criterion will 
provide the same detection score as the proposed approach, 
in this example. In Fig. 5(b), the same sequence of 
''clicks" is repeated but now the energy of the minimum 
phase signals linearly decreases as time increases. In the 
same figure the phase slope function is also displayed

using, as in Fig. 5(a), the same types of lines for long and 
short analysis window. It is obvious that a simple energy 
criterion will not work as well as before and an adaptive 
energy criterion should be used. Instead, using the slope 
of the phase function, the position of ''clicks' are still 
easily detected. This is expected since the phase 
information is not related to the total energy of a signal 
but rather to the distribution o f the signal energy over time.

200

200
200 500

(a) Samples (b) Frcqucncy (rad)

200 
(c) Sample* (d) Frequency (rad)

Figure 4. (a) A delayed by 200 samples unit sample 
sequence. (b) The group delay function of the signal in 
(a). (c) A minimum phase signal with an oscillation at 
nj4 . (d) The group delay function of the signal in (c).

Figure 5. (a) A  sequence of impulses of constant amplitude 
and the associated phase slope function using long (dashed 

line) and short (dash-dotted line) window (b) A sequence of 
impulses with linearly time varying amplitudes and the 

associated phase slope function using long (dashed line) and 
short (dash-dotted line) window.

3.2 Computing group delay

To compute the group delay of a signal or the average 
slope of the phase spectrum we need to compute the 
unwrapped phase spectrum. This is necessary because 
phase is computed modulo 2k  and any attempt to 
compute the slope using wrapped phase data will produce 
erroneous results. Usually phase unwrapping is performed 
by adding appropriate integer multiples o f 2k  to the 
principal phase values, as to remove discontinuity (jumps 
of I k  radians) in the phase curve. Unfortunately, phase 
unwrapping is not always successful. Therefore, we 
suggest to compute the slope of the phase function
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through an alternative to Eq. (2) computation of the group 
delay [10]:

®) + X , (®)Y, (®) (3)

x(.)|2 ( }
where

X (® ) = X * (®) + J X I (®)

Y(®) = Y* (®) + jY i (®)

are the Fourier Transforms of x  [n] and nx [n] ,

respectively. Using Eq. (3) we avoid the computation of 
the unwrapped phase. The phase slope is then computed 
as the negative of the average of the group delay function.

4. DETECTION ALGORITHM

Clicks from beaked whales are highly directional and of 
very short duration. They can therefore be seen as 
realizations of impulse responses of minimum phase 
systems. For the application of the phase slope function to 
the detection of clicks, we set the length of the analysis 
window as a function of the average inter-click interval. 
According to Johnson et al. [1] the average inter-click 
interval for Blainville's beaked whales is about 0.3s. So 
for the experiments shown below, we used a hanning 
window of 0.5s (long window). In this section, the 
example of the recording shown in Fig.1 will again be 
considered. Comparing the original recording and its 
enhanced versions with the ideal train of pulses presented 
earlier, it is expected that the first step before the 
computation of the phase slope will be the application of 
an enhancement tool. In the upper panel of Fig.6 the 
output from the Teager-Kaiser operator on the original 
recording is repeated, while in the middle panel the 
associated phase slope function is depicted. By detecting 
the positive zero crossings of the phase slope function, the 
location of clicks is obtained. This is shown in the lower 
panel of Fig.6, where a unit sample sequence is generated 
according to the positive zero crossings. It is worth to note 
the high correlation between the train of clicks and the 
unit sample sequence. Similar results are obtained if the 
modulated and downsampled version of the original 
recording is used. The associated results are shown in 
Fig.7.

Finally, we have applied the phase slope function on 
the original recording without the application of any 
enhancement tool or any other pre-processing step. To our 
surprise, the structure of clicks is clearly revealed! We 
believe that this result merits further investigation. Results 
are depicted in Fig.8. It is worth to note the similarity of 
results with and without the use of enhancement tools. By 
comparing closely the detection results in these three 
cases, we found that there are some differences in 
detecting the clicks which is more noticeable in the noisy 
areas of the signal. W hen the SNR is high2 (for instance 
between 5 and 8 s, in Fig.6), the obtained results are very 
similar.

2 Although SNR is not so meaningful for the original 
recording, since none of the clicks are easily detected by 
visual inspection.

( \ X * 
rH = —

R  (

To evaluate a click detector, hand labeled data are 
required. Part o f the signal shown in Fig.7 and specifically 
between the 5th and 8th s, is depicted in Fig.9(a) along 
with a series o f hand labels shown as little triangular 
marks. It is worth to note the presence of very low 
intensity clicks in addition to the clicks with relatively 
high intensity. Labels for the low intensity clicks are also 
shown. We assume that these clicks are recordings by a 
conspecific made off the acoustic axis o f the whale. To 
also detect these low intensity clicks using the phase slope 
function, the window length has to be short enough. For 
this example the window length was set to 0.1s. In 
Fig. 9(a) the phase slope function is also displayed by a 
dashed line. It is worth to note the high correlation 
between the labels and the positive zero-crossings of the 
phase slope function. If  we were to use a longer window, 
for instance a window of duration 0.5s, then only the high 
intensity clicks would have been detected. In Fig. 9(b) the 
detection of clicks is indicated by a sequence of unit 
samples. For this example, the mean absolute error 
between the manually labeled and the automatic detected 
click instances is 1,1ms. Finally, there is deletion o f one

l im e  ( s )

Figure 6. Upper panel: the output from the Teager-Kaiser 
operator. Middle panel: the associated phase slope function.
Lower panel: detection of clicks based on the positive zero 

crossings of the phase slope function.

click at around 6.7s and one extra click detected at around 
7.8s. The mean absolute error in this case is low, however, 
there are some cases where the detection is not so accurate. 
The degree of accuracy mainly depends on the SNR. Thus, 
despite that the structure of clicks can be revealed under 
very low SNR conditions using the phase slope function, 
comparisons with hand labeled data shows that using an 
enhancement tool improves the accuracy. As we have 
seen, the modulation and the downsampling process 
improves the SNR of the original recordings. Besides, this 
is the signal that a human will use to mark the clicks. We 
suggest to improve further the SNR of that signal by 
applying the Teager-Kaiser operator on the output after 
the downsampling. For the short example discussing 
above, this shows an improvement in accuracy. Indeed, 
using the TK operator the mean absolute error was 
decreased to 0.03 ms. However the number of deleted or 
inserted clicks remained the same as before (one click is 
deleted and one is inserted). The proposed click detection 
system is shown in Fig. 10.
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5. APPLICATION

Figure 7. Upper panel: the output from the modulation and 
down-sampling operations. Middle panel: the associated 

phase slope function. Lower panel: detection of clicks based 
on the positive zero crossings o f the phase slope function.

Figure 8. Upper panel: the original recording. Middle panel: 
the associated phase slope function. Lower panel: detection 

of clicks based on the positive zero crossings of the phase 
slope function.

*7 ' V V  V  V v '
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(a) Time (s)

7 7.5

5.5 6 6.5 7 7.5
(b) Time (»)

Figure 9. (a) the original recording after modulation and 
downsampling (solid line), the manual labels (triangle), and 

the phase slope function (dashed line). (b) Positive zero 
crossings of the phase slope function indicated by a sequence 

of unit samples.

Window length

The proposed click detection system has been evaluated 
on the training dataset provided by the organizers of the 
3rd International Workshop on Detection and Localization 
of Marine Mammals using Passive Acoustics (Boston, 
MA, USA, 2007) and were recorded by the Naval 
Undersea Warfare Center. More specifically, we used 
recordings of Blainville's beaked whales recorded at a 
sample rate of 96 kHz, with 24 bits accuracy, from Set1, 
Alesis number 2, hydrophone H18 at AUTEC (one 
minute) to manually labeled and from Set3 and 4, Alesis 3 
and 6, hydrophones H27 and H76 for visually control the 
click detection results.

5.1 Database

One minute of recording3 was manually labeled providing 
in total 317 clicks. These labeled clicks will be referred to 
as ds1 dataset. The recording contained only regular clicks. 
However, the presence of more than one animal was 
evident in this recording because of the density of clicks 
and the variability in their intensity. From a visual 
inspection of the original recording, it was not possible to 
detect any of these clicks. The initial recording was 
modulated and downsampled to 48kHz and it was listened 
through a closed type headphone in a quite office room. 
Marking was facilitated by using the Sound Forge 
software. To improve the accuracy of the marking the 
playback speed of the sound was considerably lowered in 
some cases (i.e., to about 2kHz). This facilitates the 
auditory and visual inspection of fast moving acoustic 
events. It is worth noting that some of the clicks were not 
easily detectable visually, while only a trained person 
could hear them. The decision was made to remove some 
of the clicks, creating therefore a second dataset for the 
evaluation of the system. This set contained 248 clicks 
and it will be referred to as ds2 dataset.

In addition to the manually labeled dataset, the 
recordings mentioned above from hydrophones H27 and 
H76, were analyzed and inspected visually. The phase 
slope function and the automatically detected clicks 
(positive zero crossings of the phase slope function) were 
displayed along with the TK output of the modulated 
downsampled signals. In this way, the correlation between 
the positive zero crossings of the phase slope function and 
the clicks could be checked relatively quickly.

5.2 Results

The proposed system was tested on the manually labeled 
data as well as other recordings contained in the provided 
training dataset. For all tests, a Hanning analysis window 
of duration 0.15s was used. To speed up the computation 
of the slope phase function, a step size of 30 samples was 
used. Undetermined values of the slope function were 
computed by linear interpolation. A click was assumed to 
be detected if the absolute difference between the time- 
instances of the manually and the automatically detected

x[n ]_ Modulation
downsampling

TK operator Phase Slope
Crossings

Figure 10. Block diagram of the proposed click detection
system.
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clicks was within 3ms. If this difference was between 3 
ms and 20 ms, the click was assumed to be missed 
(deletion), while a difference over 20 ms indicated a click 
insertion. For the evaluation of the system two criteria 
were used; the detection rate (referred to as Det) and the 
corrective rate (referred to as Corr). The detection rate is 
defined as:
^  Number o f clicks correctly detected „„„
Det = ------------ ---------------------------------x100

Total
where Total is the total number of manually labeled clicks, 
and the corrective rate is defined as:
_ Total -  Deleted -  Inserted
Corr = ----------------------------------x100

Total
where Deleted referred to as the number of clicks that 
were considered to be missed (deleted) and Inserted 
refers to the number of extra clicks that have been inserted 
by the proposed system. It is worth noting that the phase 
slope function shows occasionally oscillations of very low 
amplitude about zero which are mostly associated to the 
noise. On the contrary, for clicks we observe high- 
amplitude oscillations about zero. Therefore, by 
subtracting a constant (dc component) from the phase 
slope function, most of the erroneous clicks associated 
with noise or very low intensity clicks embedded into 
noise were eliminated. Such a subtraction was done in 
order to use the same phase slope function for the two 
different sets of labels: ds1 and ds2. For ds1 and ds2, the 
constant was set to 0.1% and 1% of the maximum value of 
phase slope function, respectively, eliminating 24 
erroneous clicks for ds1 and 7 erroneous clicks for ds2.

Table 1 summarizes the detection results for the two 
datasets, ds1 and ds2 (we recall that ds2 is a subset of 
ds1). As expected, results are better for the second dataset. 
The number of clicks detected by the system was 
comparable to the number of manually detected clicks; 
321 for ds1 and 253 for ds2. The detection score as well 
as the corrective rate were mostly affected by the missed 
clicks. For instance for ds1, by increasing the lower 
threshold (tolerance) to 6ms, the detection score is 85.64% 
and the corrective rate is 78.12% (compare to 64.03% and 
63.72%, respectively). Most of the missed clicks were 
clicks closely located and for their discrimination a shorter 
analysis window was needed.

The system was also tested on the training test data 
mentioned above which contained recordings from 
Blainville's beaked whales. By visual inspection it has 
been found that the positive zero-crossings of the phase 
slope function corresponded to clicks in most cases while 
some erroneous clicks were introduced from occasional 
oscillations about zero of the slope phase function as 
discussed above. Again, by subtracting a constant (dc 
component) from the phase slope function most of these 
erroneous clicks were eliminated. Also some clicks were 
missed because the analysis window was not short enough 
for their detection (closely spaced clicks).

6. SUMMARY AND CONCLUSIONS
In this paper we present a new technique for detecting 
clicks from beaked whales based on group delay. More 
specifically we use the slope of the phase spectrum which 
is computed as the average value of the group delay 
function of the input signal. The approach is insensitive to

the intensity of clicks and it is robust against very low 
SNR conditions.

Clicks Corr (%) Det (%)
ds1 317 63.72 64.03
ds2 248 71.37 72.98

Table 1. Detection results using a tolerance of 3ms.

Combined with the Teager-Kaiser operator, a click 
detection system was developed and evaluated using 
recordings from Blainville's beaked whales (Mesoplodon 
densirostris). The proposed system was tested on 
recordings with manually labeled clicks as well as on 
unlabeled recordings. Results show the effectiveness of 
the proposed system in detecting clicks. Mainly, the only 
design parameter of the system is the length of the 
analysis window and dc offset. Window length controls 
the details of the detection. We plan to use the proposed 
system on clicks from sperm whales and compare its 
performance with frequency domain and energy based 
click detectors. Alternative ways in computing the slope 
of the phase spectrum will be considered.
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a b s t r a c t

Beaked whales are difficult to detect visually, and researchers have thus proposed using acoustic detection 
and classification. Because of the large data volumes often involved in acoustic detection and classification, 
automatic methods are often used. Here a neural network classification method is investigated. Using 
backpropagation, a feedforward neural network with one hidden layer was trained to classify clicks of 
Blainville’s beaked whales and other odontocetes recorded in the Bahamas. Training and testing data 
consisted of approximately 1600 Blainville’s beaked whale clicks and 3100 clicks from other odontocetes. 
Networks with 2-10 hidden units were trained and tested, with performance curves (ROC curves) 
calculated at several levels of signal-to-noise ratio. Results for most networks were quite good when 
compared with previous classification efforts, with less than 3% errors in both the wrong-classification and 
missed-call categories. Future work includes testing the network on sounds recorded in different noise 
backgrounds and from other populations of Blainville’s beaked whales, and combining it with a detector 
and evaluating the joint performance.

s o m m a i r e

Mésoplodons sont difficiles à voir et chercheurs ont proposé d'employer la détection et la classification 
acoustique pour en trouver. Face à la quantité de données produites par détection et classification 
acoustiques, méthodes automatisées sont souvent utilisées. Ici on present une methode de réseau neuronal 
pour classifier. Un réseau neuronal à rétropropagation non récurrent avec une seule couche cachée a été 
formé pour classifier des clics des Mésoplodon de Blainville et autres odontocètes enregistrés aux 
Bahamas. Les données de formation se sont composées d’environs 1600 clics de Mésoplodon de Blainville 
et 3100 clics d’autres odonotocètes. Reseaux avec 2-10 unités cachées ont été formés et examinés par 
courbes caractéristiques d'opération du récepteur (ROC curves) calculés à plusieurs niveaux du ratio 
signal/bruit. Résultats pour la plupart des réseaux étaient tout à fait bons en comparaison avec des efforts 
précédents de classification avec moins de 3% d’erreurs chez les clics incorrectement classifiés ou 
manqués. Travaux à suivre sont essais du réseau avec les enregistrements venant d’autres niveaus deu bruit 
de fond et d’autres populations de Mésoplodon de Blainville, et en combinaison avec un detecteur, une 
evaluation d’exécution commune.

1. i n t r o d u c t i o n

Beaked and bottlenose whales -  members of the family 
Ziphiidae, including the genera Ziphius, Mesoplodon, 
Berardius, Hyperoodon, and others -  are among the most 
cryptic and least known of all mammal species. They 
inhabit deep-water regions (MacLeod and Zuur 2005), 
which are mostly distant from land and thus relatively 
difficult to study. They spend much of their time 
submerged, making it difficult to see them (Barlow et al. 
2006). Indeed, visual line-transect studies have found 
narrower effective strip widths and lower detection 
probabilities on the trackline for beaked whales than for 
most other cetaceans (Barlow et al. 2006).

Despite being difficult to see, beaked whales have had 
notable interactions with humans: they have stranded in 
places and at times associated with anthropogenic sound use 
[Frantzis 1998; NMFS 2001; Fernandez 2005; Aguilar de 
Soto 2006], and have attracted intense interest from 
management agencies, conservation organizations, and the 
public. A basic first step in preventing harm to beaked 
whales is to detect when they are present in an area of 
concern. Because of the difficulty of detecting beaked 
whales visually, acoustic detection and classification 
methods have been suggested as a tool for aiding in 
mitigation of the effects of human activities. Beaked whales 
are known to produce both echolocation clicks (Johnson et 
al. 2004) and whistles (Dawson et al. 1998). However,
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whistles appear to be relatively rare among all species of 
beaked whales, making clicks a potentially more useful type 
of sound for an acoustic detection and classification system.

A wide variety of methods have been used for detection 
and classification of cetacean sounds. A method that has 
worked well for a number of species is a neural network 
(Ghosh et al. 1992; Potter et al. 1994; Kundu and Chen 
1997; Murray et al. 1998; Deecke et al. 1999; Houser et al. 
1999; Mellinger 2004). Neural networks combine a design 
phase, in which the structure of the network is chosen, a 
training phase, in which the parameters of the network’s 
units are configured, and a testing and use phase, in which 
the network is operated with the parameters fixed. Here a 
method is presented for acoustic classification of clicks of 
Blainville’s beaked whale (Mesoplodon densirostris) and 
other odontocetes using a neural network. Although a 
simple automated detector is used for finding clicks of other 
odontocetes to use in training and testing, the focus here is 
on classification of the clicks.

2. METHODS

2.1 Classification method

An input sound signal is used to compute a spectrogram, to 
which conditioning steps -  spectrum level equalization, 
rectification, and normalization -  are then applied. The 
conditioned spectrogram is then used as input to the neural 
network, resulting in a classification value indicating the 
certainty that a Blainville’s beaked whale click is present.

In more detail, the spectrogram is calculated using a 
frame length of 0.000667 s (64 samples at a sample rate of

96 kHz), overlap of 50%, and a Hann window. This short 
frame size was chosen because of the brief nature of beaked 
whale clicks (Johnson and Tyack 2005), and indeed other 
known odontocete clicks (e.g., Au 1993). At this frame 
length, time resolution is relatively good, while the 
spectrogram filter bandwidth is a relatively poor 6.0 kHz. 
Nevertheless, the upsweeping nature of these clicks can still 
be resolved in these spectrograms (Fig. 1). The logarithm of 
each spectrogram cell is used, compressing spectrogram 
values to a range typically in the range of ±10.
After calculation of the spectrogram, the next step is 
spectrogram level equalization, rectification, and 
normalization. This is similar to the method described by 
Mellinger (2004), and will be explained only briefly here. 
Equalization is performed by subtracting the time-averaged 
spectrum (Van Trees 1968) from each spectrogram frame; 
that is, the spectrum for each spectrogram frame is 
multiplied by a small positive constant a near zero and 
added to the product of the long-term average spectrum and 
1-a. Rectification consists of hard-limiting the minimum 
value in the spectrogram with a (constant) floor value to 
remove small and negative values. Normalization consists 
of subtracting the floor value from each spectrogram cell, so 
that the minimum spectrogram value becomes zero. In other 
words, the time-averaged spectrogram value is calculated 
for each frequency band of the spectrogram; this is 
subtracted from the spectrogram at each time step, a floor 
value is applied, and the floor constant is subtracted so that 
the minimum value in the resulting spectrogram is 0. The 
time constant used for equalization here was 0.02 s, while 
the floor value of the (logarithmic) spectrogram was 0.3 
(this is equivalent to e03~1.35 as a raw FFT value).

time

Fig. 1. An example click o f a Blainville’s beaked whale showing the upsweeping nature o f these clicks. Spectrogram parameters: 
frame size 0.000667 s (64 samples), FFT size 128 samples, hop size 1/16 frame, Hann window, for a filter bandwidth o f 6.0 kHz.

A neural network (Hagan et al. 1996) was designed i.e., without any backward loops. Each hidden unit consisted 
with 192 input elements, a variable number of hidden units, of a weighted sum with bias followed by an arc-tangent 
and 1 output unit. The network was strictly feedforward, nonlinearity. The output unit was linear, consisting of just a
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weighted sum. The number of hidden units was varied 
between 2 and 10 to estimate what the optimal number 
would be. The network was trained using the data set 
described below; batch training in each epoch was used to 
remove any bias in order of presentation. The training 
method was backpropagation (Rumelhart et al. 1987), so 
that network weights were adjusted according to a back- 
propagated error function, and a momentum term was used 
to prevent the network from getting ‘stuck’ in local maxima.

2.2 Data set

The data set consisted of recordings made at the Atlantic 
Undersea Test and Evaluation Center (AUTEC) in the 
Bahamas that contained clicks of Blainville’s beaked 
whales. The whales were visually identified in the field by 
trained observers; the visual sightings coincided with the 
acoustically localized positions of the clicks (Moretti et al. 
2006). Recordings were made at a sample rate of 96 kHz.

The recordings were manually scanned to detect clicks 
of Blainville’s beaked whales. Manual scanning was used to 
remove the possibility of bias in detection of clicks; 
automated methods were not used to detect sounds for use 
in training and testing, as the methods themselves may 
introduce bias. The recordings were annotated to indicate 
the time and frequency bounds of each Blainville’s beaked 
whale click. A total of 1595 Blainville’s beaked whale 
clicks were found, and are henceforth called the BBW 
clicks.

The AUTEC recordings were also scanned to find 
clicks, presumably echolocation clicks, of other 
odontocetes. Known species on these recordings included 
Risso’s dolphins (Grampus griseus) and long-finned pilot 
whales (Globicephala macrorhynchus). This scanning was 
done automatically, using a simple detector that found 
energy in the 20-38 kHz range of the Blainville’s beaked 
whale clicks (Moretti et al. 2006): a ratio of the long-term to 
short-term averages was calculated, and when this ratio 
exceeded a threshold, a click was registered. These clicks 
were annotated similarly to the beaked whale clicks, with a 
total of 3096 clicks found. These clicks were named the 
‘other’ clicks.

2.3 Training and testing

Conditioned spectrograms of the annotated clicks, both 
BBW and ‘other’, were calculated and used for training and 
testing the neural network. Only a portion of the 
spectrogram was used, namely the portion from 15 kHz to 
38 kHz, as this frequency band contained most of the energy 
of beaked whale clicks present in these recordings (Moretti 
et al. 2006). Also, it was important to exclude frequencies 
below 14 kHz, as some of the recordings were filtered with 
a high-pass cutoff at this frequency. Using the entire 
bandwidth of such recordings would provide an unrealistic 
cue to the neural network for distinguishing BBW and other 
clicks. This frequency range contains 16 bands of the 
spectrogram.
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For each click, a conditioned spectrogram centered on 
the click and lasting 0.004 seconds was used. For BBW 
clicks, the center was defined as the midpoint of the 
annotated sound; for ‘other’ clicks, the center was defined 
as the peak of the summed energy in the 20-38 kHz range. 
The 0.004-second spectrogram comprised 12 spectrogram 
frames, for a total of 12 x 16 = 192 cells. It was these cells 
for each click, arranged into a 192-element vector, that were 
used as input to the neural network.

The click data set was randomly divided into training 
and testing data. The BBW data were divided such that 9/10 
of the clicks were used for training, with the remaining 1/10 
used for testing; the ‘other’ clicks were divided similarly. 
The network was trained using the two datasets, with target 
outputs of +0.5 and -0.5 for the BBW and ‘other’ clicks, 
respectively.

2.4 Performance evaluation

Performance was measured using the one-tenth of the BBW 
and ‘other’ clicks reserved for testing. Testing was done by 
calculating the output of the network for the two sets of test 
data -  typical output values were between -1 and 1, though 
other values occurred too -  and applying a set of thresholds. 
For each threshold, the fraction of wrong classifications 
(false positives) and missed clicks (false negatives) was 
calculated; as the threshold was increased, there were fewer 
false classifications but more missed clicks. Varying the 
threshold and calculating the fractions of wrong 
classifications and missed clicks for each threshold yielded 
a parametric curve, the Receiver Operating Characteristic 
curve (Fawcett 2006). Training and testing was done five 
times, and the ROC curve calculated five times, for each 
number of hidden units in the network, and the five ROCs 
were averaged to produce the final results.

The signal-to-noise ratio (SNR) of any sound, including 
a click, is a key parameter in evaluating performance. 
Nearly all methods work well when the SNR is high, while 
only some work well at low SNR. Thus it is important to 
distinguish differing levels of SNR in describing 
performance of a classification method. Here SNR is 
measured by calculating the energy ratio of the signal in the 
20-38 kHz band in a time period ±0.01 s around each click; 
that is, the average band-limited energy of the click is 
measured and is divided by the average band-limited energy 
of the background noise in this time period. Separate ROC 
curves were calculated in 5-dB increments of SNR level, 
i.e., SNRs of less than 10 dB, 10-15 dB, 15-20 dB, and more 
than 20 dB.

3. RESULTS

ROC curves for the neural network are shown in Fig. 2. 
Because of the large range of values, the curve was plotted 
on a logarithmic scale. The left plot shows the ROC curves 
for varying numbers of hidden units, with the number of 
units indicated next to each curve. The right plot shows 
performance for various SNRs for the best network.
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A single-point measure of performance was assessed as 
well: at the 1% wrong-classification rate, a total of 0.6% of 
all BBW clicks are missed.

4. DISCUSSION

Some of the better ROC curves for the neural network are 
entirely less than the 3% error bounds in both dimensions, 
wrong classifications and missed clicks. This performance is 
very good compared with previous detection methods, 
including neural networks, that were applied to baleen 
whale vocalizations (Mellinger 2004, Mellinger et al. 2004). 
Part of the reason for the good performance is that the 
training and testing data were drawn from the same 
recordings of presumably the same whales, so the signals to 
be detected were probably very similar between the training 
and testing data sets. However, this was also true for the 
data sets in the baleen whale detection studies. Another 
reason may be that the clicks studied here are more 
stereotyped than the moans of baleen whales, so that a

network trained to detect clicks in the training data works 
well on other, adjacent clicks in the testing data. In addition, 
Blainville’s beaked whale clicks do not travel very far 
(Moretti et al. 2006), and so must have been produced closer 
to the hydrophone than the baleen whale vocalizations. They 
would therefore have been affected less by variability in 
ocean acoustic propagation. However, successive baleen 
whale vocalizations -  some used for training, some for 
testing -  should have been affected by essentially the same 
propagation conditions, so if they were produced in a highly 
stereotyped manner, they should have arrived at the 
hydrophone with very similar structure, and should have 
been detected equally well. It is also possible that the reason 
is timing: adjacent beaked whale clicks are closer to each 
other in time -  they are typically less than a second apart -  
while adjacent baleen whale sounds are tens to hundreds of 
seconds apart, so that the propagation conditions varied 
more between adjacent baleen whale vocalizations than they 
did between adjacent beaked whale clicks.

Fig. 2. Receiver Operating Characteristic curves for the neural network detector applied to the training data. Values near the 
lower left corner, representing smaller numbers of false detections and missed calls, are better. (a) ROC curve for different 

numbers o f hidden units in the neural network. [The 8-hidden-unit curve is hidden by the 10-hidden-unit curve to the right o f the 
1% false positive point.] (b) ROC curves for the 4-hidden-unit network, with the curve for each 5-dB SNR bin plotted separately. 

The bin with SNR greater than 20 dB had no missed calls, and so could not be plotted on a logarithmic scale.

It appears that the curve for the 4-hidden-unit network 
performed best over much of the range, with the 8-hidden- 
unit network best over the remainder (Fig. 2). However, re
running the training procedure on another 4-hidden-unit 
network resulted in a performance curve somewhat worse 
than this one, closer to the 10-hidden-unit curve shown here 
to the right of the 1% false positive mark. So the superior 
performance of this network cannot be attributed solely to 
the number of hidden units.

It is possible that the performance shown here is due to 
over-fitting. For instance, the network with 4 hidden units 
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has 192*4+4=772 weights, which were trained using a data 
set of 90% of the whole -  i.e., 1436 BBW clicks and 2786 
‘other’ clicks, or 4222 data points in total. This is about 5.5 
training clicks per weight, which could be insufficient. The 
networks with fewer hidden units are less likely to have 
suffered over-fitting, with e.g. 11 data points per weight for 
the 2-hidden-unit network, and vice versa -  the network 
with 10 hidden units had only 2.2 data points per weight.

Future work includes testing this network on sounds 
recorded from Blainville’s beaked whale populations 
elsewhere in the world and in different noise conditions.
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One might expect a neural network to perform poorly when 
confronted with different background noise. However, there 
is some hope that this one will do well, as the spectrogram 
conditioning steps reduce the influence of stationary or 
slowly-varying noise -  indeed, of any noise source that is 
stationary on roughly the time scale at which the spectrum 
equalization occurs, 0.02 s.

Also, this classifier needs to be combined with a 
detector and the two evaluated together so that they can be 
useful for detection of beaked whales in the field, and can 
be used to mitigate the effects of human activities, including 
anthropogenic noise, upon these cryptic and little- 
understood animals.

ACKNOWLEDGEMENTS

Thanks to Dave Moretti, Nancy DiMarzio, Ron Morrissey, 
and Jessica Ward for providing the data used here. Thanks 
also to Sara Heimlich and Sharon Nieukirk for the many 
hours spent annotating beaked whale clicks; you hung in 
there. Thanks to Kate Stafford for the French translation. 
The work was supported by Navy awards N00014-03-1- 
0099 from the Office of Naval Research (thanks to Bob 
Gisiner), and by N00014-03-1-0735, N00244-06-P-1870, 
and N00244-07-1-0005 from the Office of the Chief of 
Naval Operations and the Naval Postgraduate School 
(thanks to Frank Stone, Ernie Young, and Curt Collins). 
This is PMEL contribution #3147.

REFERENCES

Aguilar de Soto, N., M. Johnson, P.T. Madsen, P.L. Tyack, 
A. Bocconcelli, and J.F. Borsani. Does intense ship 
noise disrupt foraging in deep-diving Cuvier’s beaked 
whales (Ziphius cavirostris)? Mar. Mamm. Sci. 22:690
699.

Au, W.W.L. 1993. The Sonar o f Dolphins. Springer-Verlag: 
New York.

Barlow, J., M.C. Ferguson, W.F. Perrin, L. Balance, T. 
Gerrodette, G. Joyce, C.D. Macleod, K. Mullin, D.L. 
Palka, and G. Waring. 2006. Abundance and densities 
of beaked and bottlenose whales (family Ziphiidae). J. 
Cetacean Res. Manage. 7:263-270.

Dawson, S., J. Barlow, and D. Ljungblad. 1998. Sounds 
recorded from Baird’s beaked whale, Berardius bairdii. 
Mar. Mamm. Sci. 14:335-344.

Fawcett, T. 2006. An introduction to ROC analysis. Patt.
Recogn. Lett. 27:861-874.

Fernandez, A., J.F. Edwards, F. Rodriguez, A.E.de los 
Monteros, P. Herraez, P. Castro, J.R. Jaber, V. Martin, 
and M. Arbelo. 2005. “Gas and Fat Embolic 
Syndrome” involving a mass stranding of beaked 
whales (family Ziphiidae) exposed to anthropogenic 
sonar signals. Veterinary Pathology 42:446-457. 

Frantzis, A. 1998. Does acoustic testing strand whales? 
Nature 392:29.

Hagan, M., H. Demuth, and M. Beale. 1996. Neural 
Network Design. Brooks/Cole: Pacific Grove.

Johnson, M., P.T. Madsen, W.M.X. Zimmer, N. Aguilar de 
Soto, and P.L. Tyack. 2004. Beaked whales echolocate 
on prey. Proc. Royal Soc. London B Supplement 6, 
Biology Letters:S383-S386 (DOI
10.1098/rsbl.2004.0208).

Johnson, M. and P. Tyack. 2005. Measuring the behavior 
and response to sound of beaked whales using 
recording tags. National Oceanographic Partnership 
Program Report: Award Number OCE-0427577.

MacLeod, C.D., and A.F. Zuur. 2005. Habitat utilization by 
Blainville’s beaked whales off Great Abaco, northern 
Bahamas, in relation to seabed topography. Mar. Biol. 
147:1-11.

NMFS. 2001. Bahamas marine mammal stranding event of 
15-16 March 2000. Joint Interim Report, National Mar. 
Fish. Serv., Washington, DC. 66 pp.

Deecke, V.B., J.K.B. Ford, and P. Spong. 1999. Quantifying 
complex patterns of bioacoustic variation: Use of a 
neural network to compare killer whale (Orcinus orca) 
dialects. J. Acoust. Soc. Am. 105:2499-2507.

Ghosh, J., L.M. Deuser, and S.D. Beck. 1992. A neural 
network-based hybrid system for detection, 
characterization, and classification of short-duration 
oceanic signals. IEEE J. Oceanic Engr. 17:351-363.

Houser, D.S., D.A. Helweg, and P.W. Moore. 1999. 
Classification of dolphin echolocation clicks by energy 
and frequency distributions. J. Acoust. Soc. Am. 
106:1579-1585.

Kundu, A., and G.C. Chen. 1997. An integrated hybrid 
neural network and hidden Markov model classifier for 
sonar signals. IEEE Trans. Sig. Process. 45:2566-2570.

Mellinger, D.K. 2004. A comparison of methods for 
detecting right whale calls. Can. Acoust. 32:55-65.

Mellinger, D.K., S. Heimlich, and S. Nieukirk. 2004. A 
comparison of optimized methods for detecting blue 
whale calls. J. Acoust. Soc. Am. 116:2587(A).

Moretti, D., N. DiMarzio, R. Morrissey, J. Ward, and S. 
Jarvis. 2006. Estimating the density of Blainville’s 
beaked whale (Mesoplodon densirostris) in the Tongue 
of the Ocean (TOTO) using passive acoustics. Proc. 
IEEE Oceans ’06. 5 pp.

Murray, S.O., E. Mercado, and H.L. Roitblat. 1998. The 
neural network classification of false killer whale 
(Pseudorca crassidens) vocalizations. J. Acoust. Soc. 
Am. 104:3626-3633.

Potter, J.R., D.K. Mellinger, and C.W. Clark. 1994. Marine 
mammal call discrimination using artificial neural 
networks. J. Acoust. Soc. Am. 96:1255-1262.

Rumelhart, D.E., J.L. McClelland, and the PDP Research 
Group. 1987. Parallel Distributed Processing. MIT: 
Cambridge.

Van Trees, H.L. 1968. Detection, Estimation, and 
Modulation Theory, Vol. I. John Wiley Sons: New 
York.

59 - Vol. 36 No. 1 (2008) Canadian Acoustics / Acoustique canadienne



Research article / Article de recherche

P a s s i v e  a c o u s t i c  d e t e c t i o n  a n d  l o c a l i z a t i o n  o f  M e s o p l o d o n  d e n s ir o s t r i s  

(B l a i n v i l l e ’s  b e a k e d  w h a l e ) v o c a l i z a t i o n s  u s i n g  d i s t r i b u t e d  b o t t o m - 

m o u n t e d  h y d r o p h o n e s  in  c o n j u n c t i o n  w i t h  a  D ig it a l  T a g  (D T a g ) r e c o r d in g

Jessica Ward1, Ronald Morrissey1, David Moretti1, Nancy DiMarzio1, Susan Jarvis1, Mark Johnson2, Peter Tyack2, and
Charles White3

1 - Naval Undersea Warfare Center Division Newport, 1176 Howell St., Newport, R.I., USA 
2 -  Woods Hole Oceanographic Institute, Woods Hole, MA., USA 

3 -  University of Rhode Island, Narragansett, R.I., USA

a b s t r a c t

Click data from a tagged Mesoplodon densirostris was compared with broadband acoustic recordings from 
an 82 hydrophone wide-baseline array located in the Tongue of the Ocean, Bahamas. Two detectors, a Fast 
Fourier Transform (FFT) based detector and matched filter, were evaluated in white noise and with the 
acoustic recordings from the array for performance detecting M. densirostris clicks. The matched filter 
performed the best, allowing 92% of the tagged animal’s clicks to be detected on at least one hydrophone.
Time Difference of Arrivals (TDOAs) between the DTag and the surrounding hydrophones were 
computed. These TDOAs were used to compute a three-dimensional hyperbolic localization track of the 
tagged animal. A maximum detection range of 6500 m from the tagged animal to the recording 
hydrophone was observed. Offset aspect angles were determined from the DTag heading information and 
the bearing to the receiving hydrophone. Clicks within ±30 degrees were detected at the farthest ranges, 
while clicks were detected at all off-set angles at closer ranges.

s o m m a i r e

Les données de « clics », obtenues pour un Mesoplodon densirostris marqué, ont été comparées à des 
enregistrements acoustiques à large bande obtenus à l’aide d’un vaste réseau de référence à 82 hydrophones 
situés dans la Langue de l ’Océan (Bahamas). Deux détecteurs, soit un détecteur à transformée de Fourier 
rapide (FFT, de l ’anglais Fast Fourier Transform) et un filtre adapté, ont été évalués en bruit blanc et avec 
les enregistrements acoustiques obtenus grâce au réseau pour détecter les « clics » des M. densirostris. Le 
filtre adapté a réalisé la meilleure performance, ayant permis de détecter 92 % des clics de l’animal marqué 
au moins avec un des hydrophones. La différence entre les temps d’arrivée entre le DTag et les 
hydrophones avoisinants ont été calculées. Les différences ainsi calculées ont été utilisées pour effectuer un 
suivi tridimensionnel et hyperbolique des déplacements de l’animal marqué. Une plage de détection 
maximale de 6 500 m entre l’animal marqué et l ’hydrophone enregistreur a été observée. Les angles 
correcteurs ont été déterminés à partir de l ’information du DTag et le relèvement géographique a été 
effectué par rapport à l’hydrophone récepteur. Les clics se trouvant à l ’intérieur des angles de ±30 degrés 
ont été détectés aux distances les plus éloignées, alors que des clics se trouvant à l ’intérieur de tous les 
angles correcteurs ont été détectés à des distances plus courtes.

. i n t r o d u c t i o n

O n  October 23, 2006, a Woods Hole Oceanographic 
nstitute (WHOI) DTag was placed on one individual in a 
roup believed to consist of four Mesoplodon densirostris 
n the Atlantic Undersea Test and Evaluation Center 
AUTEC) underwater tracking range. The tag remained 
ttached for approximately 19 hours over which time seven 
eep dives were recorded. Whale vocalizations were 
imultaneously monitored using 82 AUTEC bottom- 
aounted hydrophones. The hydrophones are at depths of ~2 
m and are separated by ~4 km baselines. Two detectors are 
valuated for use in M. densirostris click detection: a FFT 
ased detector and matched filter. Detection performance is 
irst evaluated in the presence of Gaussian white noise, and 
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then with hydrophone recordings corresponding to the 
tagging event.

2. METHODS  

2.1 DTag Data Description

The DTag was attached to a probable female M. densirostris 
in a group believed to consist of two mother-juvenile pairs 
at 11:37:38 a.m. (+/- 5 seconds) local time on October 23, 
2006. The tagging GPS location was 24° 30.412’ N, 77° 
35.320’ W. A male M. densirostris may have been in the 
vicinity. The DTag recorded stereo audio at a 192 kHz 
sampling rate with an audio sensitivity of -171 dB re
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1.0/^Pa. The pitch, roll, heading, and depth of the whale 
were determined from the accelerometer, magnetometer, 
and pressure sensors sampled at 50 Hz. The DTag 
measurements were processed using the methods described 
in Johnson and Tyack [1] resulting in orientation and depth 
data with 5 Hz resolution.

2.2 AUTEC Hydrophone Array

Prior to and for the duration the tag was attached to the 
whale, audio data from the 82 bottom mounted hydrophones 
of the AUTEC tracking range were simultaneously recorded 
digitally on multiple Alesis HD24 hard drive recorders at a 
96 kHz sampling rate. Each recorder can accommodate 12- 
channels of data with the last channel recording an IRIG-B 
modulated time signal.

The hydrophones are mounted 4-5 meters off the sea 
floor with an upward, roughly hemispherical, beam pattern. 
There are 68 wideband hydrophones with a usable 
bandwidth from 50 Hz to approximately 45 kHz. There are 
an additional 14 hydrophones with a bandwidth from 
roughly 8 kHz to over 50 kHz installed in two 7 hydrophone 
arrays. Hydrophone data is digitized at a sampling rate of 96 
kHz. This is a standard audio rate that allows for Nyquist 
sampling of the wideband hydrophones. The upper 2 kHz of 
the 14 wider bandwidth hydrophones is aliased. This folding 
has not been found to have a significant effect on the 
determination of click arrival times.

2.3 Detection

M. densirostris produce echolocation clicks with a 
frequency modulated upsweep. The peak source level of 
similiarly sized delphinids has been estimated at 220 dB re. 
1 ^Pa [2]. Tag data from another species of beaked whale 
(Ziphius cavirostris) indicate a pronounced beam pattern 
with a 3 dB beam width of 6o [3]. Due to the narrow beam 
width, determination of the arrival time of a specific click 
on multiple hydrophones in a widely spaced array such as at 
AUTEC is a challenge. The hyperbolic localization 
technique used requires a minimum of three hydrophones 
for a two dimensional position to be determined. Improved 
detector performance is critical in order to maximize the 
probability that a given click will be detected on enough 
hydrophones to produce a position. Accordingly, two 
detection methods, a FFT based detector and a matched 
filter, were compared with respect to detection performance. 
Detection performance was first compared in Gaussian 
white noise, and then on recorded data in the vicinity of the 
tagged animal.

DTag Click Detector

Clicks recorded on the DTag were classified as belonging to 
the tagged whale based on two features. The attachment of 
the tag to the whale results in a low-frequency energy 
component that is not present in clicks from conspecific

whales [3]. Second, the angle of arrival for clicks from the 
tagged whale is close to zero between the two hydrophones 
on the tag, while it varies as the whale moves for clicks 
from conspecifics [4].

FFT based detector

A multi-stage FFT based energy detector has been 
successfully used for detection of clicks from a variety of 
echo-locating odontocetes, including sperm whales [5] and 
beaked whales [6]. A 2048 point FFT with a 50% overlap is 
used for this analysis. At the 96 kHz sampling rate this 
provides a frequency resolution (per bin) of 46.875 Hz and a 
time resolution (per FFT) of 10.67 ms. Each bin of the FFT 
is independently thresholded against an exponentially 
decaying time average of the data in that bin as given in 
Eq. 1:

n>0: NVT [n] = (1 -  a)bin[n] + aNVT[n - 1 ]  Eq. 1a

n=0: NVT [n] = 0 Eq.

1b

where, the parameter a has been chosen empirically to 
provide a time constant of 0.2 seconds.

The binary output of the thresholding process is 
combined into a single detection report. If any of the 1024 
bins have passed threshold, the first stage declares a 
detection and passes the detection report on to the next 
stage.

The output of the first stage of the detector is then 
examined to determine whether the event was triggered by a 
beaked whale. Since clicks are broadband events, the 
detection report may be broadly classified as a click by 
counting the number of FFT bins which triggered. 
Assuming a click event is declared, the frequency content of 
the thresholded detection report is examined. A set of five 
frequency bands roughly conforming to species of interest 
(cut off by the hydrophone response) have been selected, 
where beaked whales comprise band 2 (Table 1).

Table 1: Frequency bands

Band Low Frequency (kHz) High Frequency 
(kHz)

1 45 48
2 24 48
3 12 48
4 1.5 18
5 0 1.5

A ratio of bins above threshold to the total number of 
bins in each band is computed. If band two is selected, then 
the detection is tentatively classified as a beaked whale. Due 
to the fact that many of the bands overlap, a second check is 
performed by examining the number of bins set out-of-band. 
If this exceeds 10%, then the detection is reclassified as a 
dolphin as they are more likely to have significant spectral 
energy below 24 kHz.
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Matched filter detector

A linear matched filter can be shown to be the optimal 
detector for known signals in white gaussian noise [7]. A 
high signal to noise ratio M. densirostris click extracted 
from the data set was used as the match template. The 
instantaneous output of the filter is then compared to an 
exponentially decaying time average of the filter output with 
a time constant of 0.1 seconds. If the instantaneous output 
exceeds the time average by a specified threshold, a 
detection is declared.

False alarm statistics

Both the FFT detector and the matched filter have been 
implemented as constant false alarm rate (CFAR) detectors. 
A direct comparison of detection performance between the 
two requires normalizing the false alarm rates. False alarm 
statistics have been computed in the presence of white 
Gaussian noise using the Box-Mueller pseudorandom noise 
generation algorithm from the GNU Scientific Library 
(GSL). The false alarm rate was then computed by dividing 
the number of false detections by the total run time for each 
threshold.

Two sets of results were compiled for the FFT detector. 
The first set indicates the performance of the first stage of 
the detector. As can be seen, this stage runs with a high false 
alarm rate.

Noise V a riable Threshold (F ixed Threshold -100)

Figure 1: FFT Detector first stage false alarm curve

The false alarm rate drops dramatically at the output of the 
second stage. The main parameter determining performance 
is the click threshold used to determine when a sufficient 
number of bins have been detected to declare a click event.

The matched filter curve is typical and indicates a false 
alarm rate dropping exponentially with an increase in the 
threshold.

Figure 2: FFT Detector False Alarm Curve after filtering for 
beaked whales

Figure 3: Matched filter false alarm curve

A false alarm rate of 1x10-3 was chosen as the test criterion. 
To achieve this rate, the following thresholds were chosen 
based on the false alarm curves:

FFT Detector: -35.1432 
Matched Filter: 28.7009

Probability of Detection

Probability of detection statistics were compiled by creating 
a series of test data sets consisting of a high SNR click 
identified as M. densirostris. The click was scaled by a 
specified constant to achieve a desired signal level and 
repeated 827 times at a regular interval of 4/second. White 
Gaussian Noise was added to the signal to obtain the desired 
SNR.
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F FT detector, IMVT=-35.1432, tc=0.2

SNR (dB)

Figure 4: FFT detector probability o f detection

The FFT detector tops out at approximately 80% probability 
of detection. Visual examination of the data indicates that 
some clicks are not present at the output of the first stage of 
the detector. The performance deficit at high SNR is 
therefore most likely linked to the choice of time constant 
for the exponential noise filter. A lower time constant may 
improve performance for regular clicks, however this 
remains to be investigated.

The matched filter provides the expected behavior 
when the match template exactly matches the signal present 
in the data set. This is never the case in practice. To estimate 
the effect of using an arbitrarily chosen high SNR template, 
a click from a completely separate data set (also collected at 
AUTEC) was used as a second match template. This is 
plotted in the rightmost curve in Figure 5. Using an 
arbitrarily chosen click degrades detector performance by 
approximately 2-3 dB. In either case probability of detection 
is at least 95% by 0 dB SNR.

M atched filter detector, NVT=2 8.7009

-

— template 1 

—template 2

-20 -1 5 -1 0 -5  0 5

SNR (dB)

Figure 5: Matched filter probability of detection. Two match 
templates are plotted. First, template matching the click used 
to generate the dataset. Second template for high SNR click 

from a separate dataset.

Conclusion: ‘Optimal’ Detector

The matched filter significantly outperformed the FFT 
detector on the test data sets. This was true even when the
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click used as the match template was not the same as the 
click used to generate the data sets. The probability of 
detection data shows a performance gain of at least 25 dB 
for the test cases studied. This suggests that the click 
structure is relatively constant with reasonably low variance 
between clicks from different individuals.

High SNR clicks are typically chosen as match 
templates. Due to the narrow beam width emitted by the 
animal, it is expected that most high SNR clicks received 
will be received when the animal has the ensonified receiver 
directly in the beam. The structure of these clicks may not 
be representative of off-axis clicks. In this case the matched 
filter will be sub-optimal at any aspect angle other than the 
one at which the match template was tuned for. However, in 
a widely spaced array such as AUTEC, it is possible to 
enhance detection and association significantly by 
improving detection performance at hydrophones which are 
farther away from the animal, but still in the beam. In this 
instance the matched filter may be employed to significant 
advantage.

2.5 Data Association

Clicks originating from the tagged animal have been 
identified on the surrounding bottom mounted hydrophones 
by matching inter-click interval patterns [5,8]. These 
patterns have been found to be an effective means of 
associating patterns of detections among hydrophones for 
sperm whales (Physeter macrocephalus). A fundamental 
assumption is that each animal exhibits its own unique 
pattern of clicks. The unique pattern is used as a template 
for a comb sieve that is correlated against the beaked whale 
clicks detected on the surrounding hydrophones [5]. The 
window with greatest number of correlations between the 
template and the hydrophone is assigned as the TDOA 
between the DTag and the hydrophone. After the comb 
sieve is complete, the probability density function of the 
TDOAs for each hydrophone is calculated in one minute 
windows. TDOAs that are significantly above the noise 
level in each window are passed on for use in localization 
and considered valid. The remaining TDOAs are 
considered invalid and not used further.

2.6 3D Hyperbolic Localization

Positions are computed from the valid TDOA sets using a 
hyperbolic multilateration positioning algorithm developed 
by Vincent [9]. Two 2500-ft depth XBT profiles were 
collected on 23 October 2006. These profiles were 
combined with a standard deep water profile and converted 
to sound speed by AUTEC. The sound speed profile nearest 
to the tagging location was used for calculating the direct 
path effective sound velocity [9]. TDOAs are required 
between at least four hydrophones and the DTag to compute 
a 3-D position. Due to the directional nature of the clicks, 
there were very few instances when an individual click was 
correlated on 4 hydrophones. Therefore, the TDOA for 
each hydrophone was interpolated using a piecewise cubic
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Hermite interpolating polynomial function. The four 
hydrophones with the greatest number of valid time- 
difference of arrivals, 37, 43, 44, and 50, were used to create 
a Time of Arrival (TOA) matrix. The time of emission, x, 
y and z position of the sound source were estimated using 
the TOA matrix in the hyperbolic multilateration algorithm.

3. DISCUSSION

All results discussed in this paper are for the first deep dive 
recorded on the DTag, from approximately 34 to 91 minutes 
after tagging. The whale began vocalizing 6 minutes into 
the dive at 567 m depth, and continued to vocalize for 
approximately 36 minutes between 567 and 1049 m depth 
(Figure 6).

Dtve 1
---------- W hale Vocalizing
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Figure 6: DTag Dive Profile Depth (m) vs. Time (minutes)

3.1 Detection Efficacy

Detection efficacy was assessed by evaluating how many of 
the clicks emitted by the tagged whale were successfully 
detected and associated on the nearby hydrophones. For 
each method, hydrophones 36, 37, 38, 42, 43, 44, 49, and 50 
were processed through each detector and the beaked whale 
filter. These hydrophones were chosen by visually 
evaluating thresholded spectrogram data over the entire 
range for the presence of beaked whale clicks for the 
duration of the tagging event. Whale click times from the 
DTag were used as the template to search for correlation 
with the resulting TOAs produced using the FFT and 
matched filter detectors. Using the association algorithm 
detailed in Section 2.5, TDOAs were calculated between 
each hydrophone and the DTag.

During the 36 minute first dive, 5797 clicks were 
produced by the whale. Approximately 97% of these clicks 
were foraging clicks with an Inter-Click Interval (ICI) 
between 0.15 and 1 sec [3]. The mean foraging click ICI 
was 0.31 sec (std=0.05). This is in agreement with Johnson 
[4], who also observed a regular click ICI 0.37 seconds for a 
M. densirostris in the Canary Islands.

The FFT detector, implemented with a noise variable 
threshold of 34, was able to detect 49% of the clicks on at 
least one hydrophone. The matched filter detector,
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implemented using a threshold of 28.7 was able to detect 
92% of the clicks on at least one hydrophone. The filter 
template was a M. densirostris click recorded on an AUTEC 
hydrophone from a previous year. On each hydrophone, the 
matched filter detector performed significantly better than 
the FFT detector (Figure 7).
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Figure 7: Detection efficacy per hydrophone

3.2 Localization

While the majority of the clicks were detected on at least 
one hydrophone using the matched filter, three dimensional 
localization was still difficult due to the need for at least 4 
TDOAs between the DTag and hydrophone as input. Of the 
5767 clicks associated with the hydrophones, only 1% were 
detected on four or more hydrophones. More commonly, 
the clicks were detected on only one hydrophone (44%), 
two hydrophones (36%), or three hydrophones (11%). 
Only 8% of the clicks were not detected at all. As a result, 
the TDOA trends were interpolated as discussed in section 
2.6 prior to input into the hyperbolic multilateration 
algorithm. In addition, depth from the DTag was also used 
as an initialization parameter to provide better convergence 
of the solution.

The 577 localizations estimated using at least 3 
measured TDOAs and only one interpolated value, were 
used to “ground-truth” the track estimated by the DTag 
alone [1] (Figure 8). Usually, the DTag “tag on” and “tag 
off” positions are known and can be used as absolute start 
and end positions. However, in this case the tagging vessel 
had to leave the range due to the presence of range 
operations and the “tag off” position is unknown. To 
“ground truth” the DTag track, small user-chosen sections 
of the track were individually fitted to time-synchronized 
3D localizations by adjusting the swim speed to a least- 
squares match (Figure 9).

3.3 Detection Range

The 3D localizations created using the matched filter 
detection data were used to determine the range from the 
whale to the hydrophone for each detection method. Clicks 
from each hydrophone determined to be valid on the basis
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of their TDOA with the DTag were used to estimate range 
and bearing to the hydrophone. The maximum detection 
range for both methods was approximately 6500 m, 
significantly greater than previously estimated [10]. The 
whale was traveling generally in a north-east direction, but 
was observed to turn at various times in all directions 
(Figure 10). The off-axis aspect angle between the caudal- 
rostral axis of the tagged whale and the receiving 
hydrophone was determined by subtracting the bearing 
angle from the whale to the hydrophone from the heading 
measured by the DTag. The detection range as a function 
of off-axis aspect angle is depicted in Figure 11 and Figure 
12. The majority of the clicks detected at far ranges were 
within ±30 degrees. With decreasing range, a greater 
number of clicks were detected further off-axis. While a -3 
dB beam width of 6° has been suggested for Z. cavirostris 
by Zimmer [3], M. densirostris may be less directional due 
to their smaller body size and potentially smaller source 
aperature [10]. From these figures, it is evident that the 
matched filter detector significantly outperforms the FFT 
detector at longer ranges.
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Figure 8: Original DTag Kalman-filtered track and corrected 
DTag track, each grid square is 2 km x 2 km.

Figure 9:DTag track corrected based on 3D hyperbolic 
localizations, tick marks at 200-m increments

Figure 10:DTag heading for dive 1, Due North = 0, the radius 
axis is probability density (%)

Figure 11: Detection range vs. aspect from the whale's head: 
FFT (NVT34) detector

Matched Filer Detection Range vs Aspect

90

Figure 12: Detection range vs. aspect from the tagged whale's 
head: Matched filter detector

4. CONCLUSIONS
The matched filter detector performed significantly better 
than the FFT detector for M. densirostris foraging clicks. 
Using the matched filter detector, the wide-baseline AUTEC 
hydrophones were able to detect the tagged whale at up to 
6500 m range. The off-axis aspect angle from the tagged 
whale to the hydrophone indicates the ability to detect 
signals significantly off-axis at lesser ranges and out to far
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ranges when close to the axis. For Dive 1, 92% of the clicks 
produced by the tagged whale were detected on at least one 
hydrophone within the array. This combination of long 
detection ranges and increased probability of detection with 
the matched filter indicates that wide-baseline, broadband 
arrays, such as at AUTEC, provide an excellent opportunity 
for long-term monitoring of beaked whale populations and 
successful passive acoustic based mitigation.

5. ACKNOWLEDGEMENTS
We would like to acknowledge our sponsor, Dr. Frank 
Stone at N45, as well as the Office of Naval Research. We 
would also like to thank the Bahamas Marine Mammal 
Research Organization who provided observer support on 
the water. Finally we would also like to acknowledge the 
NUWC Division Newport Independent Laboratory 
Innovative Research program manager, Richard Philips, for 
providing the initial funding to study the data association 
methods presented here on sperm whales, and the AUTEC 
range staff for access to their considerable infrastructure.

6. REFERENCES

1. M. P. Johnson and P. L. Tyack, “A digital acoustic recording 
tag for measuring the response of wild marine mammals to sound.” 
IEEE Journal of Oceanic Engineering, 28(1), pp 3-12, 2003

2. P. T. Madsen, M. Johnson, N. Aguilar de Soto, W. M. X. 
Zimmer and P. Tyack, “Biosonar performance of foraging beaked 
whales (Mesoplodon densirostris)”, Journal of Experimental 
Biology 208, 181-194, 2005

3. Walter M. X. Zimmer, Mark P. Johnson, Peter T. Madsen, and 
Peter L. Tyack, “Echolocation clicks of free-ranging Cuvier’s 
beaked whales (Ziphius cavirostris)”, J. Acoust. Soc. Am., Vol. 
117, No. 6, June 2005, pp.3919-3927

4. M. Johnson, P. T. Madsen, W. M. X. Zimmer, N. Aguilar de 
Soto, and P. L. Tyack, “Foraging Blainville’s beaked whales 
(Mesoplodon densitrostris) produce distinct click types matched to 
different phases of echolocation,” The Journal of Experimental 
Biology (209), pp.5038-5050, 2006.

5. J. A. Ward,. Sperm whale bioacoustic characterization in the 
Tongue of the Ocean, Bahamas (U). NUWC-NPT TR 11,398. 
Naval Undersea Warfare Center, Division Newport, RI, 20 
September 2002 (Unclassified).

6. D. Moretti, N. DiMarzio, R. Morrissey, J. Ward, and S. Jarvis, 
“Estimating the density of Blainville’s beaked whale (Mesoplodon 
densirostris) in the Tongue of the Ocean (TOTO) using passive 
acoustics,” Oceans 2006, pp 1-5, September 2006.

7. Smith, “ The Scientist and Engineer’s Guide to Digital Signal 
Processing “, California Technical Publishing, San Diego, CA, 
1997, pp. 307-310

8. R. P. Morrissey, J. Ward, N. DiMarzio, S. Jarvis, D. J. Moretti, 
“Passive acoustic detection and localization of sperm whales 
(Physeter macrocephalus) in the tongue of the ocean”, Applied 
Acoustics 67, pp 1091-1105, 2006.

9. Vincent, H. “Models, Algorithms, and Measurements for 
Underwater Acoustic Positioning,” Ph.D. Dissertation. University 
of Rhode Island, Kingston, R.I., 2001.

10. P. L. Tyack, M. P. Johnson, W. M. X. Zimmer, P. T. Madsen, 
M. A. de Soto. “Acoustic behavior of beaked whales, with 
implications for acoustic monitoring,” Oceans 2006, pp 1-6, 
September 2006.

Photo Credit:Bahamas Marine Mammal Research Organisation 

Canadian Acoustics / Acoustique canadienne Vol. 36 No. 1 (2008) - 66



Research article / Article de recherche

T h r e e -D im e n s io n a l  S in g l e -H y d r o p h o n e  T r a c k in g  O f A  S p e r m  W h a l e  

D e m o n s t r a t e d  U s in g  W o r k s h o p  D a t a  F r o m  T h e  B a h a m a s

Christopher O. Tiemann
Applied Research Laboratories, University of Texas at Austin 

P.O. Box 8029, Austin, TX 78713

a b s t r a c t

A passive acoustic localization method for tracking the movement of a clicking sperm whale in three- 
dimensions using data from just one hydrophone is demonstrated using data made available for the 3rd 
International Workshop on Detection and Classification of Marine Mammals. One recording contains 
sperm whale clicks recorded on a bottom-mounted hydrophone on a steep slope of the Navy’s AUTEC test 
range. When the direct-path acoustic ray arrivals from several clicks are time-aligned, persistent associated 
multipath arrivals of reflected ray paths can be identified for each click event and used for localization. 
Although the use of multipath arrival information is a standard procedure for range-depth tracking, a three
dimensional estimate of whale position can be obtained from the same multipath information with 
knowledge of an azimuthally-dependent environment relative to the receiver. In this case, azimuthal 
distinction arises from varied bathymetry. Multipath arrival patterns are matched to unique range-, depth-, 
and azimuth-dependent modeled arrival patterns to make an estimate of whale location. A three
dimensional whale track in range, depth, and bearing from the fixed hydrophone is presented.

s o m m a i r e

On démontre dans cet article une méthode de localisation acoustique passive pour suivre la trace d’un 
cachalot cliquant dans les trois dimensions utilisant les données d’un seul hydrophone, en utilisant les 
données disponibles à partir du Troisième Atelier Internationale sur la Découverte et la Classification des 
Mammifères Marins. On a enregistré les bruits secs du cachalot enregistré par un hydrophone monté au 
fond sur une pente raide du champ d’essai d’AUTEC de la Marine Américaine. Quand les arrivées des 
rayons acoustiques des plusieurs cliques avec des trajectoires directes sont alignés par intervalles, des 
arrivées multi-trajectoires associées et persistantes des trajectoires de rayons reflétés peuvent être 
identifiées pour chaque événement d’une clique et peuvent être utilisées pour la localisation. Bien que 
l ’utilisation de l’information d’arrivée multi-trajectoire soit une procédure normale pour suivre la trace 
portée-profondeur, une estimation en trois dimensions de la position des cachalots peut être obtienne en 
utilisant les mêmes informations multi-trajectoires si l’on connait l ’environnement azimuthalemment- 
dépendent relatif au récepteur. Dans ce cas, la distinction azimutale dérive de la bathymétrie variée. Les 
schémas des arrivées multi-trajectoires sont attribués aux schémas uniques qui dépendent de la portée, de la 
profondeur, et de l’azimut pour faire une estimation d’emplacement du cachalot. Une trajectoire en trois 
dimensions qui montre la portée, la profondeur, et le rapport du hydrophone fixe est donnée.

1. i n t r o d u c t i o n

Passive acoustic methods for monitoring marine mammal 
activity have been used for many years in censusing and 
behavioral studies, often in conjunction with visual surveys, 
because of the advantages they offer: they are unobtrusive 
and continue to work at times when animals are not visible 
(swimming underwater, nighttime, etc.) [1-3] Methods for 
not just detecting but also tracking the movement of animals 
underwater through analysis of their recorded vocalizations 
have advanced since early work that used geometric 
hyperbolic fixing techniques. [4-10] Techniques that 
exploit acoustic propagation models, multipath arrival 
information, or both can now provide alternate and possibly 
more accurate localization estimates. [11-15] Two

dimensional (2D) location solutions (range and depth) can 
be achieved using data from as few as one hydrophone, but 
a full three-dimensional (3D) estimate (range, depth, and 
unique bearing relative to a sensor) has previously required 
the use of multiple receivers. [12,16-20] A technique that 
uses range estimates from a single hydrophone to make a 
hydrophone-relative 3D track does not provide an absolute 
measurement of azimuth.[20]

In 2006, Tiemann et al. [21] demonstrated a model- 
based technique for using acoustic data from just one 
hydrophone to make three-dimensional estimates of sperm 
whale locations in the Gulf of Alaska. The method exploits 
multipath arrival information from recorded sperm whale 
clicks, yet it does not require specific ray path identification 
(i.e., direct-path, surface-reflected). The technique can not 
only account for waveguide propagation physics (ray
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interaction with the sea surface and sea floor in particular), 
but in fact relies upon reflections to estimate bearing to the 
source (whale). While the single-hydrophone localization 
technique was demonstrated successfully in its first 
application, a dataset made available for the 3rd International 
Workshop on Detection and Classification of Marine 
Mammals provided an opportunity to further exercise the 
localization algorithm in another much deeper environment. 
This paper describes the application and results of that 
localization attempt.

Among the data that the Naval Undersea Warfare 
Center (NUWC) provided for the workshop was a 10- 
minute recording (“test data #9”) containing numerous 
sperm whale vocalizations from what was assumed to be 
one animal. The data are from hydrophone #16 of the 
Navy’s Atlantic Undersea Test and Evaluation Center 
(AUTEC) in the Bahamas, positioned about 5 m off the sea 
floor at 1386 m depth, from March 3, 2006, at 09:48 local 
time with a 96 kHz sample rate. NUWC also provided 
bathymetry information from a multibeam survey of the 
range; Figure 1 shows the topography around the receiver 
that provided data for this demonstration.

2. METHODOLOGY

Sperm whale vocalizations appear in the data as brief (~10 
ms) broadband clicks with an inter-click interval of about 1 
sec. The collection of all the multipath echoes from a single 
click event is an arrival pattern, and one step in the 
localization process is to identify these patterns in the data. 
Additionally, an acoustic propagation model is used to 
predict the arrival patterns expected at the receiver from 
hypothesized impulsive sources at many ranges, depths, and 
bearings around the receiver; these modeled arrival patterns 
are called the replica. After comparing the measured arrival 
patterns with the replica, the hypothesized source position 
for which they agree best is the best estimate of whale 
location. Repeating the localization for each click event 
creates a track of animal motion.

In cases where the environment is unique along radials 
at every bearing around the receiver, a source at every 
range/depth/bearing bin will have a unique multipath arrival 
pattern “fingerprint.” It is azimuthal dependence in the 
environment that allows for bearing discrimination when 
using just one receiver, and the rough terrain around the 
hydrophone, as shown in Figure 1, ensures that the 
environment (bathymetry slice) looks different along radials 
in every direction.

2.1 Replica Generation

One input needed for the localization process is predictions 
of travel times for all ray paths between a source and the 
receiver for a suite of hypothesized sources on a grid of 
several ranges, depths, and bearings around the receiver. 
Specifically, the algorithm requires relative arrival times for 
all the multipath arrivals, not absolute travel times, so the 
time elapsed since the arrival of the direct ray path is 
calculated and saved for later use. The Gaussian beam 
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acoustic propagation model BELLHOP [22] provides travel 
time predictions for the eigenrays assuming a grid of 
sources spaced 10 m in range out to 5 km and 5 m in depth 
to 2 km. The model uses a different bathymetry profile for 
radials spaced every 5° in azimuth around the receiver; the 
bathymetry data was that provided by NUWC as shown in 
Figure 1. The model assumes a source frequency of 5 kHz, 
a range-independent downward refracting soundspeed 
profile taken from the Levitus historical database, and 
geoacoustic properties of fine-grained sediments. [23]

Figure 1. Bathymetry around AUTEC hydrophone #16. 
Coordinates are for UTM  zone 18.

2.2 Arrival Pattern Extraction

A tool for automating the identification and extraction of 
arrival pattern information for click events in acoustic data 
is described in detail in Tiemann et al. [21], and it was used 
again here to extract information for 383 click events in the 
workshop data. A summary of its use follows.

Broadband sperm whale clicks are readily apparent 
when viewed as spectrograms like that of Figure 2a which 
shows four seconds of workshop data at the start of a click 
train; this spectrogram was made using 256-point fast 
Fourier transforms with 50% window overlap on data 
downsampled to 44 kHz (6 ms of data for each FFT). To 
make fainter click arrivals more apparent over background 
noise, spectrograms are summed over the frequency bins 
from 3 kHz to 22 kHz within each time bin, as shown in 
Figure 2b. Each peak in the spectral sum time series 
represents an arrival from either a direct or reflected ray 
path, with the direct paths typically having greater 
amplitudes than their associated echoes. In this example, 
the arrivals for five direct paths are spaced about 0.7 sec 
apart. Note that the inter-click interval between click events
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was often less than the time separation between the two 
loudest arrivals of a given click event, as in this example. 
(The weaker reflected-path arrival at 393.9 sec is associated 
with the direct path arrival at 393.0 sec, not the one at 393.7 
sec.)

Figure 2. (a) Spectrogram o f acoustic data from AUTEC; 
broadband sperm whale clicks appear as vertical stripes. (b) 
Spectrogram summed over frequency bins; broadband clicks 

appear as peaks.

The automated pattern matching tool assists in identifying 
the direct-path (earliest) arrivals for several click events in a 
click train. In order to assist in recognition of possibly faint 
multipath arrivals, a display tool time-aligns windows from 
the spectral sum time series which begin at the direct-path 
arrival. These aligned spectral sum excerpts can then be 
viewed as a two-dimensional color surface like that of 
Figure 3 where each horizontal slice conveys the relative 
amplitude and arrival time information of all arrivals 
occurring within 1.2 sec of a direct path arrival at relative 
time 0 sec. Note that the absolute time axis of Figure 3 
indicates the time since the beginning of the data set; the 
relative time axis is the time elapsed since the direct path 
arrival of a given click event.

Persistent peaks in these surfaces that are time-aligned 
over every horizontal slice represent multipath arrivals that 
will be compared to the modeled arrival patterns, and 
another tool helps extract the arrival pattern information 
from these surfaces. Identifying the arrivals as either from 
surface-reflected paths, bottom-reflected paths, etc. is not 
required for the automated localization to follow, but such 
an interpretation of Figure 3 is provided as an example. The

order of the arrivals in this example is direct path, bottom- 
bounce path, surface-bounce path, and bottom-surface- 
bounce path as labeled on Figure 3. Note that the isolated 
peaks on these surfaces that do not align in time with other 
peaks can be ignored during arrival pattern extraction as 
they are not associated with a given click event under 
consideration. For example, the isolated peaks around 
relative time 0.7 seconds are direct-path arrivals of the next 
click event; the ~0.7 sec inter-click interval is shorter than 
the length of the spectral sum excerpts used to make this 
figure.

Figure 3. Time-aligned spectral sum excerpts, each starting 
with a direct-path arrival at relative time 0 sec, represented as 

a 2D surface.

A benefit of making the time-aligned spectral sum 
surfaces is that they allow the eye to integrate over multiple 
click events to recognize faint broadband arrivals that would 
not be obvious in any single spectral sum excerpt. For 
example, Figure 4 shows one of these surfaces made using 
data from most of the 10-minute workshop recording, 383 
click events in all. Color scales were adjusted in this figure 
in attempts to make the faintest persistent arrivals visible, 
but doing so increases the visible clutter from non-aligned 
arrivals.

The same four persistent arrivals identified in Figure 3 
are present in Figure 4 and are labeled there as well, but 
note how the relative spacing between the arrivals evolves 
with time. This is expected as the source is changing 
position relative to the fixed receiver, and it will have a new 
arrival pattern at every new location. The lengthened 
relative time axis of Figure 4 (now 3.5 sec) also shows two 
more arrivals around 2.5 sec relative time. The acoustic 
model predicts these should be present then and identifies 
them as a surface-bottom-surface reflected path and a 
bottom-surface-bottom-surface reflected path. To put that 
2.5 sec delay into context, in the time between the direct- 
path arrival and its late echo, three more click events 
occurred, yet that late, faint arrival can still be associated 
with the correct direct-path arrival.
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Figure 4. Time-aligned spectral sum excerpts, each starting with a direct-path arrival at relative time 0 sec, 
represented as a 2D surface. Persistent arrivals with identified ray path geometries are labeled.

Identification of the ray path geometries, though not 
required, can be challenging when the data indicates there 
are more ray arrivals than a model would predict, as was 
the case in this recording. For example, notice the 
arrivals present at about 1.5 sec relative time. These 
arrivals are curious not only because they split, merge, 
and even disappear but also because there is no match 
anywhere close to them in the modeled arrival patterns. 
One hypothesis to explain these arrivals is that they are 
from reflected paths outside of the vertical plane of 
propagation connecting the source and receiver. The 
acoustic propagation model used is limited to 2D 
problems (range/depth slices), yet the map of Figure 1 
shows a rough 3D terrain with several ridges around the

receiver which may allow for reflections of ray paths 
outside the vertical plane of modeling.

For another example of unusual arrivals, notice 
several that arrive at about 0.3 sec relative time, shortly 
after the direct path arrival. These arrivals are persistent 
throughout the entire record, and they are also locked in 
time to the arrival of the direct path, i.e. their relative 
arrival time never changes. Every other arrival shifts in 
time as the source moves except these. One hypothesis 
to explain these is that they are due to sound reflecting off 
the receiver housing, then off some nearby fixed terrain 
feature and back to the receiver. That scenario would 
cause stripes of constant relative arrival time like those 
seen in the figure regardless of the source location.
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Figure 5. (a) Arrivals from a modeled source at 2140 m 
range, 700 m depth overlaid on measured arrivals from time 

365.2 sec. No arrivals overlap, so it is given a low overlap 
score. (b) The same measured arrivals overlay modeled 

arrivals from 2140 m range, 1340 m depth. All measured 
and modeled arrivals overlap.

2.3 Ambiguity Surface Construction

The source location for each click event is estimated 
through the construction of bearing-dependent ambiguity 
surfaces. Each surface graphically conveys the likelihood 
that a whale was at a given range/depth bin when it 
vocalized. These surfaces have the same resolution as the 
replica, and a scoring mechanism assigns a score to each 
hypothesized source location based on how closely a 
measured arrival pattern matches the modeled arrival 
pattern for that location. The scoring technique and 
ambiguity surface construction are described in detail in 
Tiemann et al. [21]; a summary of its use here follows.

The score for every candidate source position is 
calculated by first counting the number of measured 
arrivals that have the same relative arrival times as those 
in the replica for that source position. From this score is 
subtracted the number of arrivals in both the data and 
replica that do not have a match in relative arrival time. 
A tolerance of 10 ms is used in defining a match in 
relative arrival times as that was a typical duration for a 
recorded click. To illustrate the scoring process, Figures 
5a and 5b show the relative arrival time and amplitude 
information for a measured arrival pattern overlaid by 
modeled arrival patterns for two candidate sources at the 
same range but different depths. The first example has no 
overlapping arrivals among the 8 considered for a total 
score of -8; the second example shows all 4 arrivals from 
both the data and replica matching to result in a score of 
+4. Note that for early parts of the data set the direct-path

and bottom-bounce arrivals were difficult to distinguish. 
Therefore, the bottom bounce path was not considered 
during the scoring process.

Scores are calculated for all candidate source 
positions and presented on an ambiguity surface like that 
of Figure 6, one surface for each bearing radial in the 
replica. Peaks on these surfaces indicate likely source 
positions, and the global maximum among all ranges, 
depths, and bearings is declared the best estimate of 
source location. Repeating the scoring process for every 
click event results in a track of whale motion.

Figure 6. An ambiguity surface showing overlap scores on a 
vertical range/depth slice along bearing 200° from the 
receiver. The peak at 2140 m range, 1340 m depth is 

marked and indicates the best estimate o f source location for 
the click event at time 365.2 sec.

3. RESULTS

The range, depth, and bearing estimates resulting from the 
localization process described above are presented in 
Figure 7. The whale track originates 3 km to the 
southwest of the receiver, ending within 2 km of the 
receiver and shallower. No independent ground truth data 
of whale motion was available for this workshop data, but 
the whale’s average speed over this track was 2.9 m/s, 
comparable to other acoustically derived sperm whale 
swim speeds. [18,19] Figure 8 puts this track in context 
of the AUTEC environment, overlaying estimated 
positions on a plan view of the bathymetry contours. One 
can see that the whale’s change in depth tracks the 
shallowing terrain. It is the 5° binning in the replica that 
causes a disjointed track when bearing changes; the whale 
did not suspend clicking.

4. DISCUSSION AND CONCLUSION

The ability to passively monitor the movement of marine 
mammals underwater benefits behavioral studies of such,
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but the multi-sensor arrays typically required to make 3D 
tracks of animal motion increase the cost and complexity 
of those studies. An economical single-hydrophone 
solution for doing the same should be of benefit to the 
bioacoustics community. A previous effort demonstrated 
how to produce such a 3D estimate of sperm whale 
location by exploiting multipath arrival information from 
a single sensor, and this work used data provided by the 
3rd International Marine Mammal Workshop to 
demonstrate that the same technique seems viable in deep 
water environments as well, at least in locations where 
there is some environmental variation in azimuth.

Time (min)

Figure 7. Range, depth, and bearing estimates relative to 
hydrophone #16 o f the AUTEC range for a clicking sperm 

whale.

Azimuthal dependence in the environment is 
necessary in order to obtain a bearing estimate to the 
source. In locations where the topography is flat along all 
radials from the receiver, no unique bearing information 
can be obtained; however, the mechanics of the 
localization algorithm work exactly the same in providing 
a two-dimensional range/depth location estimate. Again, 
multipath arrival information can be exploited without 
knowledge of ray path geometry. A second recording 
provided for the marine mammal workshop (“test data 
#6”) also contained sperm whale click trains, but it was 
taken from a hydrophone on a relatively flat part of the 
AUTEC range. Although not presented here, range/depth 
estimates of whale location were made from that data, but 
bearing information could not be resolved.

Questions of accuracy are warranted when 
demonstrating a localization technique, and there are two 
types of error that can negatively affect the method shown 
here: mismatch between the modeled and truth 
environment, and errors in measurements of the relative 
travel times between multipath arrivals of a given click

event. Both contribute nonlinearly to an overall error. A 
thorough sensitivity analysis for this technique was 
described in Tiemann et al. [21] showing it to be 
reasonably robust against such errors: 14 m error due to 
environmental mismatch and 16 m error due to 
measurement inaccuracy in a simulated case.

Figure 8. Estimates o f sperm whale position overlaid on a 
plan view o f bathymetry contours from the AUTEC range. 

Coordinates are for UTM  zone 18; depths are in meters.

Lastly, although not implemented as such, the 
computational method for localization as presented here 
could be considered just a variation on the traditional 
hyperbolic fixing technique. In standard hyperbolic 
fixing, the time delay between an event recorded at two 
sensors defines a hyperbola of candidate source positions. 
The intersection of hyperbolas traced from multiple 
receiver pairs localizes the sound source. The same 
technique is basically being applied here (minus the 
isovelocity medium assumption), but in this single
hydrophone case, those additional receivers are virtual.

Recall that in ocean waveguide propagation, a ray 
path reflection off a boundary creates a virtual receiver 
vertically offset from the real receiver. Those real and 
virtual receivers are the foci in the definition of a 
hyperbola. The time of arrival difference between the 
direct and a reflected path, as measured during the arrival 
pattern extraction process, is like the time delay between 
an event arrival at the real and virtual receivers. Each 
additional multipath arrival time that can be measured 
contributes another virtual receiver and thus another 
hyperbolic path to the localization. To illustrate, consider 
the ambiguity surface of Figure 6. A direct ray path plus 
four late arrivals contributed to making this surface, so 
there are four paths of relatively high overlap scores. 
Those high-score areas even resemble hyperbolas for at 
least 2000 m away from the receiver, and they all

Canadian Acoustics / Acoustique canadienne Vol. 36 No. 1 (2008) - 72



intersect at one range/depth bin to provide the localization 
estimate. With this understanding, a more elegant 
analytic solution for exploiting relative arrival times may 
become apparent as a substitute for the brute force 
computational method described here.
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a b s t r a c t

When collecting and analyzing marine mammal vocalizations one of the most important goals is to 
automatically extract the pitch/fundamental frequency of the collected calls. In dolphins we can assume that 
there are two main pitched sounds: whistles, which can be described as tonal AM-FM signals, and bursts, 
which can be described as highly harmonic signals. There are three main difficulties with pitch extraction 
on dolphin vocalizations that arise from the nature of the data. First, most underwater recordings are 
restricted to a low signal-to-noise ratio due to reflections, hardware noise and other interferences. This 
constitutes a big challenge for most existing pitch trackers. Second, one has to take into account the 
significant differences in the frequency range of bottlenose dolphin vocalizations compared to humans. 
Finally, dolphin whistles and bursts generally are emitted in two distinct frequency ranges, which result in 
different modes in the analysis data. In this work we compare our novel pitch extraction approach with two 
widely popular algorithms. Our approach uses hierarchy-based hidden Markov models (HMM) with 
cepstral coefficients as features. We quantitatively compare the performance of our algorithm with Yin, 
which is based on a modified autocorrelation method and get_f0, a popular off-the-shelf pitch tracker that 
utilizes linear predictive coefficients (LPC) and dynamic programming. Our approach outperforms the 
comparative methods by at least a factor of 10%.

s o m m a i r e

Pour la collecte et l'analyse de vocalises de mamifères marins, l'extraction de la fondamentale est une étape 
cruciale. Dans le cas des dauphins, nous pouvons considérer qu'il y a deux types de sons voisés : les chants 
qui peuvent être décrits comme des tonalités AM-FM, et les rafales ("bursts") constituées de signaux 
hautement harmoniques. La première des trois difficultés pour extraire le timbre est le très faible rapport 
signal sur bruit dû aux reflections multiples et autres interférences. La seconde consiste à appréhender les 
résolutions harmoniques sur le signal de cétacés par rapport aux traitements connus en parole par exemple. 
Dans ce papier, nous testons notre nouvelle méthode d'extraction de timbre sur un modèle Chaîne de 
Markov Cachée Hièrarchique à partir de coefficient cepstraux. Nous comparons nos résultats à la méthode 
YIN basée sur un calcul d'autocorrélation, et à get_f0 qui est extracteur de timbre classique par 
programmation dynamique utilisant des coefficients LPC. Nous montrons que notre méthode apporte un 
gain de 10% par rapport à ces méthodes.

1. i n t r o d u c t i o n

When analyzing dolphin vocalizations, one of the most 
important tasks is the extraction of the
fundamental frequency/pitch of the desired calls. Several 
methodologies for attempting to automatically extract 
pitch exist as scientists are extensively studying this 
problem, especially with respect to human speech and 
musical recordings.

Most existing packages used by researchers in the 
analysis of dolphin vocalizations require manual 
interaction for the extraction of the desired calls. 
Moreover, they do not extract the pitch at a per-frame 
level; rather they provide a frequency range that is 
manually obtained. These packages, such as Ishmael [1] 
and Raven [2] are widely used in the field and have been 
valuable tools for onsite researchers.

Canadian Acoustics / Acoustique canadienne

In order to resolve the problem of pitch extraction on 
dolphin vocalizations without manual interaction we 
utilize methodologies that have been effectively applied 
in the fields of speech and music processing. One such 
technique is Hidden Markov Models (HMM) [3, 4]. 
HMM’s can be used either directly on the unprocessed 
spectrogram of the audio or in combination with the 
extraction of descriptive features e.g. mel frequency 
cepstral coefficients. Another class of algorithms that 
have been used widely in speech processing is based on 
the auto correlation of the signal or some transformed 
variation of it.

These different algorithms need domain engineering 
in order to take into account the intricacies of dolphin 
recordings as compared to human speech. As discussed in 
the introduction, there exist two main differentiating
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issues when analyzing dolphin vocalizations. The first 
and arguably most important difference is that dolphin 
recordings exhibit extremely low signal to noise ratios, 
which require a careful selection of robust features to be 
used.

Next, almost all information in human speech exists 
in the range below 4kHz and 20 kHz for music. These 
ranges could be considered the low register for dolphins 
that can vocalize above 90kHz. This suggests three 
problems with using off-the-shelf algorithms designed for 
speech. Parameters such as filter cutoffs and domain- 
specific tuning curves must be modified to accommodate 
the revised frequency range. Also, the wider signal 
bandwidth of interest necessitates a much higher 
dimensionality of the feature space. Most importantly, 
however, is that the frequency range of harmonic content 
present in a dolphin vocalization can be much higher than 
the Nyquist rate of most commonly used underwater 
recording devices. Unfortunately, this means much of the 
high-frequency content of the dolphin calls is lost during 
recording.

Finally, there are differences in the frequency ranges 
of the various types of dolphin vocalizations. It is thus 
possible to cluster a call based on vocalization type, and 
using a different classifier for each type. This suggests a 
hierarchical or two-stage pitch extraction system. 
Knowing the frequency ranges of each type of call allows 
us to build classifiers with a lower feature space 
dimensionality.

In this paper we proceed by providing an explanation 
of three methodologies used for pitch extraction in section 
2. Section 3 summarizes the experimental results, and 
finally in section 4 we discuss the implications of the 
nature of dolphin calls on the design of pitch extraction 
algorithms.

Algorithm Feature Classifier

Cepstrum+HHMM
256 Cepstral 
coefficients

Hierarchy
HMM

YIN
Modified

Local minimum
autocorrelation

get_f0 LPC residual
Dynamic

Programming
Table 1: Description of pitch extraction methodologies

2. PITCH EXTRACTION METHODS

Three algorithms are used in order to achieve a 
comparative result in the desired pitch extraction task. 
Our novel approach consists of the use of a 
hierarchy/decision based HMM with the use of cepstral 
coefficients. The second algorithm, YIN [6], is widely 
used in speech processing for single pitch extraction and 
is based on a modified autocorrelation method. Finally, 
indicative results from get_f0 [7, 8], a popular off-the- 
shelf pitch tracker are obtained. Table 1 summarizes the 
three algorithms and the features used.

2.1 Cepstral coefficients with hierarchically 
driven hidden Markov models (HMM)

Hidden Markov models (HMM) [3, 4] have been 
extensively used in many natural sequences such as 
speech, language and handwriting. They provide us with a 
valuable tool for the analysis and extraction of 
information of time dependent data.

As previously discussed, there needs to be a robust 
selection of features that will be able to overcome the 
inherent low SNR present in the recordings. In this work 
the use of the cepstrum is preferred given its ability to 
highlight the pitch of a given signal. Through the existing 
literature the cepstrum [5] has been successfully 
employed in speech to obtain the desired pitch. It assumes 
a source-filter model and provides a homomorphic 
deconvolution thus separating the detailed excitation part 
of the signal from the broad, filter part.

We utilize the real cepstrum using the observation 
that a pitch peak will appear at the high n coefficients. 
The real cepstrum is defined as the inverse Fourier 
transform of the log magnitude of the spectrum of our 
signal. This can be seen in Equation 1.

'  (i)
Fa = ) cfeJ

Figures 2, 3 show an example of the cepstral 
coefficients for one call.

Figure 1: Description of HHMM system

We remove, as is common, the first coefficient, 
which captures the average energy of the original signal.

Arguably, the use of the spectrogram or even a 
normalized version of it could have been a suitable 
feature, it is clear that it will not provide a good noise 
suppression feature given that noise will be distributed 
across all frequencies, thus interfering with the task at 
hand.

Domain engineering suggests the existence of 
narrowband clusters of calls within the wide frequency 
range of vocalizations. In this work, analysis of the data 
as will be seen in section 4.1 dictated the use of a decision 
level. The idea behind this implementation is that there is 
an inherent bimodality in the data that can be taken 
advantage of with the use of a hierarchy. Initially, two 
HMM’s are created with different number of hidden states 
that correspond to different frequency ranges of the calls. 
For every input vector both HMM’s are evaluated using 
the forward algorithm and the one that gives us the 
highest likelihood is activated for the implementation of 
Viterbi decoding [3, 4], thus obtaining the most likely 
path across the hidden states.
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Figure 1 provides a schematic description of the utilized 
system. It is evident from Figure 1 that two different 
HMM’s are used each of them with different parameters 
representing two different frequency ranges respectively.

Each HMM is defined through parameters, X that are 
extracted from the data. In this work both HMM’s are 
continuous, implying that each state, q, can be represented 
with a single Gaussian probability density function:

where the states sets q1, q2 represent the frequency 
ranges of approximately 2.2kHz-11kHz and 440Hz- 
740Hz respectively. A noise state is also added for every 
HMM in order to capture the lack of pitch in a particular 
frame. Each state, q represents a pitch delay number that 
can be directly mapped to a specified frequency. Also, n1, 
n2 define the priors for state sets q1, q2 respectively as 
obtained from the statistics of the ground truth data. A1, 
A2 define the transition matrices for each HMM directly 
obtained from our ground truth and E1, E2 are the 
emission distributions for each state set. These are single 
256 dimensional Gaussian distributions obtained from the 
extracted cepstral coefficients.

Once the parameters of the HMM’s have been 
extracted we proceed to evaluate every call in order to 
identify its frequency range. This is shown in Equations 4, 
5. The last stage of the system employs Viterbi decoding 
[3, 4] in order to find the most likely path across the 
evaluated state set, thus extracting the desired pitch at 
every frame, Equation 6.

(4)

(5)

(6)

Where is a sequence of observations,
(ft £ ■  1,-2 is a sequence of the hidden states, 
(ffrf- 1,2 ..I T is the maximum probability state path and 
X1 are the parameters of the HMM.

2.2 YIN: A fundamental frequency estimator

Yin, created by de Chevigne and Kawahara [6], is a 
widely used algorithm for the estimation of the 
fundamental frequency/pitch of speech or monophonic 
musical sounds. It is based on a modified autocorrelation 
method and is extremely successful in extracting single 
pitches. Its popularity is also enhanced by the fact that it 
is a relatively simple and efficient algorithm, thus 
minimizing the computational cost.

Since our goal is to extract the fundamental 
frequency of dolphin vocalizations we can assume that 
our signal xt is periodic with period T.

As mentioned previously YIN is based on the 
autocorrelation of the signal as defined in Equation 7. 

f - fV

. - = (7) 
J - f t L

where is the autocorrelation at lag x calculated at 
time t and W is the integration window size.

We can also see that Equation 6 holds if we take the 
square and average over a window, W. This implies that a 
difference function can be formed where an unknown 
period may be found while searching for those values of r 
for which the function is zero. The function is seen in 
Equation 8.

^  ■ (8)

One of the problems that the difference function creates is 
that it has the value of zero at zero lag and often times a 
non-zero value at the lag corresponding to the period due 
to imperfections in the periodicity. This indicates that the 
method will fail since it will always choose for the zero 
lag. In order to alleviate the above problem, the method 
proposes the use of the cumulative mean normalized 
difference function instead of the one in Equation 8. This 
new function is shown in Equation 9.

(9)

This new function is actually one at zero lag and 
stays large at small lags.

There are several more steps that can be employed in 
order to ensure a better estimate and these steps can be 
seen in detail in [5]. Overall, the desired pitch can be 
obtained by picking the smallest value of the lag/pitch 
delay, r that gives the minimum d . An example of the 
YIN function for a specific call as well as the cepstral 
coefficients for the same call is shown in Figures 2-4.
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Figure 2: Whistle example

Figure 3: Cepstral coefficients

Figure 4: YIN coefficients

There are several more steps that can be employed in 
order to ensure a better estimate and these steps can be 
seen in detail in [5]. Overall, the desired pitch can be 
obtained by picking the smallest value of the lag/pitch 
delay, r that gives the minimum d . An example of the 
YIN function for a specific call as well as the cepstral 
coefficients for the same call is shown in Figures 2-4.

2.3 Get_f0: A software package for pitch 
extraction in speech

Get_f0 is one of the most popular pitch tracking 
algorithms. It is part of a widely used software package 
called Entropic Signal Processing Systems (ESPS) and 
Waves [8]. The majority of researchers in speech 
processing are familiar with this package. It is based on 
Doddington’s and Secrest’s 1983 algorithm [7] for pitch 
tracking in speech systems.

This method utilizes the linear prediction coding 
(LPC) residual error signal in order to extract the desired 
pitch candidate. LPC is based on the source filter model 
as seen for the cepstrum in section 2.1. This indicates that 
we theoretically expect that the residual signal will 
provide us with the excitation information.

To best alleviate some problems of high frequency 
noise, the authors devise and employ a de-emphasis filter 
as a pre-processing tool, whereby they low pass filter the 
residual signal in voiced regions of speech and high pass 
filter in unvoiced regions. These filters need to be 
redesigned for dolphin vocalizations.

To extract the candidate pitch at each instance the 
peaks of the normalized cross-correlation are acquired, 
Equation 10.

(10)

Where r is the lag and m is the number of samples to be 
correlated. As previously mentioned, the candidate pitch 
values are the lags at the peaks of C(k) and the 
“goodness” measure is the corresponding value of C(k) at 
those lags.

After having extracted the above values, dynamic 
programming [9] is employed in order to extract a 
smoother pitch contour. This requires some sort of 
penalty metric in order to decide what the best path 
amongst the candidates is. The cumulative penalty for 
each pitch candidate consists of a transition error in going 
from one frame to the next. This methodology provides a 
good pitch extractor specialized for speech.

3. EXPERIMENTAL RESULTS

In this section we provide the comparative experimental 
results as obtained from the methodologies described in 
section 2.

It is important to provide information on the data that 
was used for the experiments. Recordings from captive 
dolphins were obtained. From these recordings, whistles 
and bursts were manually extracted so that there would be 
no overlapping vocalizations. Overall, 110 calls were 
extracted of balanced type. These calls have a mean 
duration of 0.5sec and a mean SNR of 9.7dB. The low 
SNR was partly a result of analog to digital conversion 
given the lack of high precision hardware at the time of 
the recordings. The SNR was obtained by averaging the
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peak SNR, Equation 10, at every frame, which was 
computed through the short-time autocorrelation function.

«■“-“«SW <n)
Where r(0) is the energy of the signal plus the noise and 
r(x=p) is the energy of the signal with period at lag x=p.

To be better able to extract meaningful conclusions, 
ground truth was obtained by bootstrapping (semi-hand 
labeling for every frame). Initially, YIN was employed 
and then visually inspected in order to correct possible 
errors. Evidently, the extraction of ground truth allows for 
some errors due to resolution and rounding limitations 
given that we extract a pitch delay/lag for every frame. It 
is expected that such ground truth may incorporate some 
bias in the final results.

After obtaining the ground truth, the analysis of the 
data indicated an inherent bimodality. That led us to the 
choice of the hierarchy driven hidden Markov models for 
our approach. This is clearly shown in Figure 5. Two 
distinct frequency ranges are evident, thus allowing us to 
insert a decision level in the system. Arguably, one might 
explore the reasons for not choosing a single dynamic 
model/HMM for this task. In several experiments, a single 
system suffered from erroneous “doublings” and/or 
“halvings” at a per frame level caused by the fact that the 
cepstrum captures the presence of noise e.g. hardware, 
reflection noise.

Table 2 provides the average per frame accuracy for 
all three methods. It is worth noting that there are three 
different metrics in our results: Strict rate, which implies 
that the resulting pitch is an exact match with the ground 
truth, relaxed rate of ±1 pitch delay (lag), and finally a 
relaxed rate of ±2 pitch delays (lag). Basically, this 
implies a soft boundary or range of acceptable error. The 
relaxed rates correspond to an approximate 1.5% and 3% 
deviation from the ground truth, which in many 
applications could be acceptable. The same results are 
provided schematically in Figure 6. All results are 
generated using leave one out cross validation, otherwise 
known as round-robin.

Data Histogram

Figure 5: Data histogram. The two ellipses show the two 
modes o f the data

_________ Average per fram e accuracy (%)
HMM cepstrum Yin get f0

Strict Rate (%)
66.12 47.09 29.3

Relaxed Rate ±1 pitch delay (%)
76.01 54.35 N/A

Relaxed Rate ±2 pitch delay (%)
77.9_____________55.11_____________N/A

Table 2: Comparative results

Strict Rate

Relaxed Rate ±1 (%)

>  0 10 20 30 40 50 60 70 80 90 100 

HHMM frame rate (%)

Figure 6: Comparative results o f the YIN frame rate vs. the 
HHMM  frame rate for every call

Whistle call

Figure 7: Example o f successful pitch extraction using 
hierarchy HMM

In all cases it is apparent that our novel approach is 
superior to the baseline algorithms by over 10%. It is also 
interesting to note that get_f0 fails to give us comparable 
results for the relaxed rates due to the fact that it is highly 
tuned for human speech and is not able to track the 
desired pitch in dolphin vocalizations, which exhibit a 
much wider frequency range.

Furthermore, Figure 6 provides comparative results 
for each call for the novel approach of the hierarchy 
driven HMMs with the cepstral coefficients and the YIN 
algorithm. As it is clearly seen in the figures there is a 
shift of the points towards the right side of the plots. This
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indicates that our methodology is superior and has a 
higher percentage of calls that are achieving above 80% 
frame accuracy.

In addition, an interesting fact arises from these plots. 
There appear to be a constant number of calls that are 
giving us a near 0% percent match. This discrepancy is 
caused due to the error that is introduced by the hierarchy. 
Basically, for these calls the decision of which frequency 
range they belong to is false, and thus the pitch extraction 
fails completely.

Lastly, Figures 7, 8 provide indicative examples of 
success and failure of the implemented algorithms. In 
both figures, the original spectrogram is shown and the 
comparative results are overlaid on the short time 
autocorrelation in order to provide a good visualization 
tool with results extracted from YIN.

In Figure 7, our implementation is closer to the 
ground truth where YIN actually exhibits a number of 
errors due to noise interference that leads to wrong peak 
picking.

In Figure 8, both YIN and the hierarchy driven HMM 
fail to extract the desired pitch again, due to the extremely 
low SNR as well as the ambiguity of the type and range of 
the call. In this case the evaluation stage of our system 
fails to classify this call in the correct range.

Figure 8: Example o f fair pitch extraction using hierarchy 
HM M

4. CONCLUSIONS

As described in the previous sections, this work provides 
a comparative view on the success of three different pitch 
extraction algorithms for dolphin vocalizations. As 
evident from the experimental results presented in section 
3, our novel approach of using hierarchy driven hidden 
Markov models with cepstral coefficients outperforms the 
other two popular methods in speech and music, YIN and 
get_f0.

The success of our approach is based on the idea of 
the hierarchy, which was implied from the nature of our 
data as seen in Figure 5. The existing bimodality allowed 
us to create two different HMM’s with two different sets 
of states. This immediately reduced the state space

dimensionality of our system, thus minimizing the 
computational cost, while alleviating problems when 
training our model.

It is worth noting that the bimodality in the data 
needs to be explored in a larger body of data to extract 
meaningful conclusions in terms of the generic aspect of 
our method. Our data set needs to be enhanced so that we 
can extract possible biases from these specific recordings. 
Moreover, it would be interesting to compare the 
differences between recordings of captive dolphins versus 
dolphins in the wild.

Another reason for a larger labeled data set is to 
avoid pitfalls of over fitting when resorting to training 
testing methods such as leave one out cross validation.

Also, it should be noted that the hierarchy introduces 
an extra error term when it comes to deciding which range 
the call belongs to. Overall, this error accounts for only 
4% of the total calls.

The use of the cepstral coefficients as a feature is 
considered a good match given that it showed a better 
descriptive feature than using the magnitude of the 
spectrum.

Also, it appears to be more resilient to noise. 
Furthermore, we can make assumptions about the location 
of the pitch peak, thus eliminating a number of 
coefficients and reducing the dimensionality of the feature 
space. This could also lead to a more computationally 
efficient algorithm.

Lastly, it is worth noting that YIN was far superior to 
get_f0. Its simplicity and efficiency make it a good 
candidate in simple cases. However, YIN is not so 
resilient to an increased noise level present in the 
recordings. Interestingly though, both YIN and our 
approach utilize dynamic programming/Viterbi, which 
could be an advantage to get_f0.

Overall, there are several steps that can be taken to 
improve the algorithm presented in this work. In 
summary, this paper clearly shows that a choice of good 
features and the use of a classifier which can be tuned 
according to a given data set can provide us with very 
satisfactory results for the task of pitch extraction.

5. ACKNOWLEDGMENTS

The authors would like to thank Diana Reiss who 
provided us with the recordings of captive dolphins from 
her own collection. These recordings were hand-labeled 
by the authors and used for the experiments described in 
this work. Also, many thanks to Hervé Glotin and Olivier 
Adam for the French translation of the abstract.

6. REFERENCES

1. ISHMAEL, Integrated System for Holistic Multi
channel Acoustic Exploration and Localization, D. K. 
Mellinger, U.S. Department of Commerce, at 
http://pmel.noaa.gov/vents/acoustics/whales/ishmael/

79 - Vol. 36 No. 1 (2008) Canadian Acoustics / Acoustique canadienne

http://pmel.noaa.gov/vents/acoustics/whales/ishmael/


2. RAVEN, Interactive sound analysis software, Cornell 
Lab of Ornithology at:
http://www.birds.cornell.edu/brp/raven/Raven.html

3. R. O. Duda, P. E. Hart and D. G. Stork, Pattern 
Classification, John Wiley & Sons, Inc., second 
edition 2001

4. L. R., Rabiner and B. H. Juang, “An Introduction to 
Hidden Markov models”, IEEE ASSP Magazine, 
January, pp. 4-15, 1986

5. A.V. Oppenheim and R. W. Schafer, Digital Signal 
Processing, Englewood Cliffs, NJ, Prentice-Hall, 
1975

6. A. de Chevigne and H. Kawahara, “YIN, a 
fundamental frequency estimator for speech and

music”, Journal of the Acoustical Society of 
America, 111 (4), April 2002

7. B. Secrest and G. Doddington, “An integrated pitch 
tracking algorithm for speech systems”, Acoustics 
and Speech, and Signal Processing, IEEE 
International conference on ICASSP’83, vol. 8, April 
1983, pp. 1352-1355.

8. ESPS/WAVES, Entropic Signal Processing Systems, 
software package at: 
http://www.speech.kth.se/software/

9. B. Gold and N. Morgan, Speech and Audio Signal 
Processing: Processing and Perception o f Speech 
and Music. John Wiley & Sons, Inc., New York, 
1999.

SoundPLAN
Z O R B A  is an

easy to use 

software tool 

for predicting 

the sound  

absorption  

coeffic ients  

of porous 

materials such as fiberglass, mineral wool and 

polyester. It predicts both normal and random 

incidence absorption using simple input of 

physical parameters. ZO R B A  predicts the 

performance of perforated, slatted and panel 

absorbers. It estimates the absorption 

coefficients as well as acoustic impedance

Trial V ers ion: www.navcon.com/zorba.htm  

N avcon E ngineering N etw ork

Phone: 714-441-3488  

Email: forschner@navcon.com

SoundPLAN is a graphics 
oriented noise prediction 

program used for noise 
planning, noise assessment 
& the development of noise 
mitigation measures. The 

database and management 

structure allows for a quick 
& easy generation of variants for small & complex noise 
models (i.e., Road & Railroad Projects, Industrial Plants, 
Quarry & Mines Operation, Power Plants, Amusement Parks, 

Wind Farms, Manufacturing Buildings/Rooms & Enclosures).

SoundPLAN is based upon 30+ standards such as ISO 9613, 
Concawe, Nord2000, FHWA RD 77-108, TNM™2.5, FRA, VDI 
3760. It generates traceable result tables and professional 
looking maps visualizing the input & output data. Noise Control 

& Optimization Tools include Noise Barrier Design and 
Industrial Noise Control Planning.

Please visit us www.navcon.com/soundplan.htm for more 
information. Occational users please check out SoundPLAN 
essential www.navcon.com/soundplan essential.htm_________

Canadian Acoustics / Acoustique canadienne Vol. 36 No. 1 (2008) - 80

http://www.birds.cornell.edu/brp/raven/Raven.html
http://www.speech.kth.se/software/
http://www.navcon.com/zorba.htm
mailto:forschner@navcon.com
http://www.navcon.com/soundplan.htm
http://www.navcon.com/soundplan


Research article / Article de recherche

A t t r a c t iv e  T im e -V a r ia n t  O r t h o g o n a l  S c h u r -L ik e  R e p r e s e n t a t io n  F o r  

C l ic k -T y p e  S ig n a l  R e c o g n it io n

Maciej Lopatkat î , Olivier Adam1, Jean-François Motsch1 and Jan Zarzyckit
tWroclaw University of Technology I-28 Signal Theory Section 

Build. C5 W. Wyspianskiego 27 Poland Wroclaw 50370 
Université Paris 12 Laboratoire Images Signaux et Systèmes Intelligents (Lissi)
Ingénierie des Signaux Neurosensoriels, 61 Av. de Gaulle 94000 Créteil, France

a b s t r a c t

Analysis of click-type signals in the presence of noise with time-varying statistics is a challenging task, 
especially in low signal-to-noise ratio conditions. This well-known problem is commonly present in 
underwater passive acoustics applications. In this paper we present a novel solution for this dilemma as 
applied to marine mammal acoustics - a well-established basis for marine mammal study and protection.
The adaptive orthogonal Schur-like algorithm is proposed to classify medium-frequency odontocete clicks.
This technique is characterized by excellent convergence behaviour, very fast parametric tracking 
capability and robustness. The difficulty of recognition (classification) resides in the extraction of the 
signal's intrinsic information; i.e. extraction of an efficient signal signature. It is expected that the distances 
between the signatures within the class are minimal (small intra-class variance) and between the classes are 
maximal (high inter-class variance). This condition ensures a good recognition performance (separability of 
classes). The 2D signature proposed in this work and based on a selected set of the time-varying Schur 
coefficients assures this requirement. When compared to the classical Fourier approach, the proposed 
recognition method is four times as efficient for inter-class distances and twice as efficient for intra-class 
distances. The results of the recognition are given for sperm whale (Physeter macrocephalus) regular clicks 
and striped dolphin (Stenella coeruleoalba) nacchere clicks. They are very satisfactory and promising for 
other applications. The proposed technique can be easily implemented in real-time applications such as 
underwater acoustic monitoring systems.

r e s u m e

Les analyses des signaux du type cliquetis noyés dans un bruit dont les statistiques sont temps-variant est 
un challenge, surtout dans des conditions de rapports signal-sur-bruit défavorables. Cette problématique 
largement connue est couramment présente dans des applications de l’acoustique passive sous-marine. 
Dans cet article, nous présentons une solution novatrice appliquée dans le domaine de l ’acoustique des 
cétacés qui actuellement constitue une base bien établie de l ’étude et la protection des mammifères marins. 
L ’algorithme orthogonal adaptatif de Schur est proposé pour classifier des clics de 2 espèces d'odontocètes. 
La technique introduite est caractérisée par une excellente convergence, un très bon suivi des paramètres et 
est robuste au bruit. Les difficultés de reconnaissance (classification) résident dans l’extraction de 
l ’information intrinsèque du signal i.e. la mise en forme d’une signature efficace du signal. Il est attendu 
que les distances entre les signatures de la même classe soient minimales (petite variance intra-classe) et 
pour les différentes classes soient maximales (grande variance inter-classe). Cette condition assure de 
bonnes performances de reconnaissance (séparation des clases). La signature bidimensionnelle proposée 
dans ce travail et basée sur un ensemble sélectionné des coefficients temps-variant de Schur assure cette 
exigence. En comparant cette méthode avec l’approche classique de Fourier le gain d’efficacité est 
multiplié par 4 pour les distances inter-classe et par deux pour les distances intra-classe. Les résultats de la 
reconnaissance sont donnés pour les clics usuels de cachalots (Physeter macrocephalus) et les clics du type 
nacchere de dauphins bleus et blancs (Stenella coeruleoalba). Ils sont très satisfaisants et promettant pour 
d'autres applications. La technique proposée peut être facilement implémentée dans des applications temps- 
réel telles que des systèmes acoustiques de surveillance sous-marine.

1. i n t r o d u c t i o n

The click-type signal is characterized by short duration 
(microseconds to milliseconds), wide bandwidth (quasi flat 
spectrum), and is generally far from stationary. The

processing of such a signal is a complex and challenging 
task, especially in low signal-to-noise ratio conditions. This 
becomes more difficult when the statistics of the 
background noise are time-varying. Click-type signal 
analysis requires signal processing techniques that fulfil the
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following principal conditions: robustness (to non-stationary 
noise), good time resolution (a click can last from tens to 
several hundred samples), efficient extraction of the signal’s 
intrinsic characteristics (for detection, recognition, etc. 
purposes). A variety of methods are used for automatic 
recognition of transient signals. Some of them employ time 
and/or frequency representations. Other methods transform 
the signal to another space. These representations can be 
used for classification (e.g. template matching). Different 
parameters can be extracted for statistical classification. 
Many different classical (Fourier transform and its 
derivatives, parametric filters, time domain statistics) and 
advanced techniques (wavelets, Hilbert Huang Transform, 
High Order Statistics) are commonly used in processing of 
non-stationary brief signals, although not all are well suited 
for such processing. Classical temporal techniques use 
parameters such as duration, mean, variance, energy, 
amplitude, instantaneous phase, zero crossing rate or 
moments [16]. The bio-acoustics community widely uses 
Fourier based techniques and parameters such as principal 
frequency, bandwidth, cepstral coefficients or variations of 
the frequency or of the phase [17, 18]. Time-frequency 
representations are also used for signal description and 
classification [13]. The comparison of AutoRegressive (AR) 
modelling and the wavelet transforms as feature extraction 
tools is given in [19]. The use of neural networks for 
underwater signal processing is proposed in [20]. The 
chosen technique depends on the application and other 
factors such as implementation or budget issues. For 
example, for acoustic monitoring systems, real-time 
processing is paramount. Therefore it is expected that 
complex and time consuming methods would not be used, 
though there may be deterioration in performance.

In this paper we introduce the adaptive orthogonal 
Schur-like parameterization, a novel technique for analysis 
of brief acoustic signals. The adaptive Schur algorithm as 
shown in this paper is a powerful, low complexity technique 
that is also very easy to implement. A first study of this 
technique as applied to underwater passive acoustics is 
presented in [1]. This technique has already been applied to 
detection and analysis of sperm whale clicks [2]. This paper 
is an endeavour to classify mid-frequency marine mammal 
clicks.

The adaptive Schur algorithm is composed of two steps. 
First, recordings are analyzed to extract all non-stationary 
transients (detection of clicks) [2,7]. Secondly, the extracted 
clicks are assigned to different classes (recognition of 
clicks) [7]. We introduce a click-type signature that is based 
on a selected set of the time-varying Schur coefficients. The 
objective of this study is to recognize (classify) broadband 
acoustic transients emitted by two odontocete species, the 
sperm whale (Physeter macrocephalus) and the striped 
dolphin (Stenella coeruleoalba). The sperm whale regular 
clicks [3-5] and striped dolphin nacchere clicks [6] have 
very similar time and frequency characteristics; i.e. duration 
of a few milliseconds and a wide bandwidth [7]. These two

odontocete species were chosen because they seem to 
represent the most difficult scenario for marine mammal 
click-type calls: similar duration and frequency bandwidths 
that overlap by more than 90% [7].

The clicks considered here are emitted in sequences. 
The principal parameter characterizing the sequence of 
clicks is the ICI (inter-click interval). This slow time- 
varying parameter defines the time distances between 
consecutive clicks within the sequence of clicks. Therefore, 
the recognition of such clicks can be carried out in two 
ways: by a global and a local approach. In this paper we 
consider the latter approach, which means that the 
classification is performed on every single click. This 
method is much more challenging than the global approach. 
In the global approach, the distinction between sperm whale 
regular clicks and nacchere striped dolphin clicks can be 
performed by exploiting the ICI, which is about 0.5-2 s for 
the sperm whale and about 0.1 s for striped dolphin. The 
problem appears when clicks are missing or when different 
click sequences overlap, making estimation of the ICI very 
complicated. The local classification approach applied to a 
sequence of clicks can be considered as a pre-processing 
step to the global classification approach (support for the 
ICI estimation).

In this paper, we give results of the recognition 
obtained on sperm whale regular clicks (called Pma clicks) 
and striped dolphin nacchere clicks (called Sco clicks). We 
discuss the performance and present perspectives.

2. MATERIAL AND METHODS

Sperm whale clicks were recorded in the canyon of Toulon 
(Mediterranean Sea, France) (42°58’N, 5°51’E, 42°39’N, 
5°43’E, 42°39’N, 6°30’E, 42°58’N, 6°27’E) in August 
2004 [8]. The recordings of striped dolphin clicks were 
made in the Ligurian Sea in 2002 [6]. Both recordings were 
performed with the omnidirectional hydrophone (0-30 kHz) 
towed at a depth of about 50-100 m. The acoustic signals 
were recorded with a 44.1 kHz sample rate and 16 bit 
resolution via a commercial audio PC card.

2.1 Adaptive Schur Algorithm

The adaptive Schur-like parameterization [9,10] was 
proposed for the recognition of the bio-acoustic clicks 
emitted by sperm whales and striped dolphins. More 
detailed discussion of this technique as applied to short-term 
stochastic signal processing is given in [7].

The adaptive Schur algorithm, also called the 
innovations filter or whitening filter, is in fact an optimal 
orthogonal linear prediction filter. At every time-instant the 
filter calculates an optimal value of the signal at instant t 
taking into account all its past values. The solution of the 
prediction is calculated from the orthogonal projection of 
the current signal on its past samples. The forgetting factor 
is introduced to weigh the past samples [7]. The filter is
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always stable numerically because all the signals within the PC: processor 1.6 GHz, RAM memory 1 GB). This relation 
filter are normalized to unity. is given in fig.2.

Table 1 -  Mathematical complexity of the algorithm (number 
and weight of mathematical operations for time and order

Figure 1. Adaptive orthogonal Schur filter

The ladder-form orthogonal filter is adaptive (in time) 
and recursive (in order) (fig.1, eq. (1)-(2)). The filter is 
composed of N  identical sections 0n(t) (the number defines 
the filter order) which are completely defined with second- 
order statistics by the time-varying Schur coefficients pn(t) 
(also called the reflection coefficients). The adaptive Schur 
algorithm is defined by the three following equations:

p[n  + 1, t) = p (n  + 1, t - 1 )AB -  e (n, t )r  (n, t - 1 ) 

e[n + 1,t) = CB_1 \Le (n ,t) + p[n  + 1,t )r  (n ,t - 1 (1)

r (n + 1, t) = CA~l [p (n  + 1, t )e (n, t ) + r (n, t - 1 )]

where A, B and C are as follows:

A = 1̂ -  e2 (n, t ^

= (1 -  r 2 (n, t - 1))V2 (2)

C = (1 V  (n + 1, t ))^V2

B =

The variables p(n,t), e(n,t) and r(n,t) denote respectively the 
time-varying Schur coefficient, the normalized forward 
prediction error and the normalized backward prediction 
error on the nth section at the time t. The requisite number 
of sections depends on the signal type. This is closely 
linked to the signal energy distribution on the filter 
sections. As it was demonstrated in [7], the energy on the 
filter sections globally decreases as the number of sections 
increases. In practice the order of the filter is chosen 
between 10 and 20.

The signal y(t)te{i,...T} input to the filter is transformed

into the 2D matrix 0  NxT = [01,.. e n ] (see fig.1):

P(1,1) P(1,2) 

p(2,1) p(2,2)

p(N,1) p(N,2)

P(1,T)

P(2,T)

P(N,T)_

(3)

The matrix columns represent time and the rows 
represent order. In our work real-time processing is 
essential. Therefore we present the mathematical 
complexity of the algorithm in table 1. We also estimated 
the algorithm processing time for a 1 second signal sampled 
at 44.1 kHz as a function of the filter order (commercial

loo ps)
Operation Number of cycles 

According to IEEE 
Standard 754

Number of 
operations 

Order loop n

Number of 
operations 
Time loop t

+ or - 1 6 3
* 2 12 5
V 5 3 1
/ 5 3 1

The adaptive Schur algorithm has two loops: the major 
loop in time t and the minor loop in order n . The 
mathematical complexity of the algorithm for the minor 
loop is O(N) and for the major loop is O(T*N). Due to 
recursive and adaptive processing the complexity is linear, 
which is very attractive for practical implementation.

Complexity of the algorithm

5 ID 15 253 25 30
Order of the filter

Figure 2. Computational complexity of the technique

This signal analysis is based on the matrix of time- 
varying Schur coefficients:

@(n,t) = j/?(n,t): n e{1,...,N }, t e{1,...,T }j (4)

which reflect the second-order statistics of the filtered 
signal. They gravitate towards their optimal values when 
the signal is (quasi) stationary. When there is an important 
variation in the signal covariance, the time-varying Schur 
coefficients reflect these changes.

2.2 Recognition of click-type signals

Processing of the click-type signal is especially challenging 
due to its short duration and wide bandwidth. Classical 
methods for click-type signals analysis have difficulty 
capturing the signal’s intrinsic information. There is a need 
for new techniques that are better suited for this task. Here, 
our method is appropriate for transient signal recognition. 
The analysis is based on the 2D Schur-like representation 
i.e. the set of time-varying Schur coefficients.

Figure 3. Generation of 2D orthogonal (Schur-like) signature
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The recognition problem posed in this work is 
supervised, i.e. we use a specific set of click-type signal 
representatives for each class (sperm whale regular clicks 
(“clicks Pma”) and striped dolphin nacchere clicks (“clicks 
Sco”)). The proposed signature (pattern ScTV -  Schur time- 
variant) of the click-type signal based on time-varying 
Schur coefficients is successful for discrimination (high 
inter-class variance) and invariance (low intra-class 
variance).

The signatures ScTV for both classes are calculated 
according to the method presented in fig.3 and are shown in 
fig.4. A random set of clicks for each class (sperm whale 
and striped dolphin) input to the adaptive Schur filter results 
in a set of the time-varying Schur coefficients (2D 
representation, see eq. (3) and fig.4). The signature ScTV is 
calculated as the mean of a set of patterns for that class. In 
our study we used 50 clicks chosen randomly from datasets. 
These sets are used for determining the most discriminating 
K  Schur coefficients. First, for the two classes Pma and Sco, 
we calculate the vector of discrimination H1xN :

V H in  (0 = 11 Ppma - p ? co\\ (5)
i= 1 . . .N  H II

and with:

H (1) >... > H (j )  >... > H (N ) chmce >max(H )1xk (6)
]

For comparison purposes we decided to also evaluate 
the performance of a widely used classical recognition 
technique based on the Fourier technique. The Fourier 
signature is given as a set of 32 Fourier coefficients. The 
number of Fourier coefficients was chosen to capture the 
global spectral structure of the signal, and not local changes, 
which can be influenced by noise or propagation effects.

The signal description (recognition) aims to obtain the 
signature (pattern) that most effectively represents the 
signal. Ipso facto, it is expected to reach a high 
discrimination between classes and a high invariance of the 
signature within each class. In this work we proposed two 
supervised classification approaches:

- template matching,
- statistical.

For the first approach we use four different dissimilarity 
metrics: correlation coefficients, and Euclidian (dE), 
Chebyshev (dCh) and Minkowski (dM) distances, which are 
defined as follows (for two signals x and y):

dCh = max| x i -  y \  (8)

1/m

• (9)
I p

d M  = j^Xi - y)

Finally, we conserve K  of the most unlike (between 
classes) Schur coefficients, which guarantee very good class 
separability. The signatures ScTV are calculated for three 
different frequency bands: low (LF, 1-4kHz), medium (MF, 
7-10 kHz) and high frequency (HF, 12-16 kHz) bands. The 
signatures ScTV for sperm whale regular clicks (Pma) and 
striped dolphin nacchere clicks (Sco) for each of the three 
bandwidths are presented in fig.4.

Signature S c-. of Pma dick Signature Sc- of Pma dck Signature Scr. of Pma ckk

Signature Sc-. of Sco dck Signature S o . of Sco ckk Signature Scr. of Sco dck

Figure 4. Signatures Sctv (2D) o f Pma and Sco clicks 
First line is for Pma clicks and second line is for Sco clicks 

The signature Sctv is given for three different frequency bands (in 
columns): LF (1-4 kHz), MF (7-10 kHz) and HF (12-16 kHz)

In the statistical approach, we proposed three 
parameters (variables u1, u2 and o3) calculated from the 2D 
Schur representations (fig.4):

=P2 (T )~P3 (T ) (10)

^  = Z  Y t Z i p"j ( 0 ,  p *i= p j ~ m n i p j ^ )) (11)
je{7,8,9}lv i=1 )

N  T

°3=VnZẐ j2(i) (12) 
j =1 i=1

These variables allow an almost perfect discrimination 
between sperm whale regular clicks and striped dolphin 
nacchere clicks. They were chosen a posteriori based on 
our two datasets.

3. RESULTS AND COMMENTS

The performance of the click-type signal recognition is 
obtained from two odontocete calls: sperm whale regular 
clicks and striped dolphin nacchere clicks. We present the 
similarities between these two categories of clicks in time 
and frequency domains for LF, MF and HF bandwidths (see 
table 2).
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Table 2 -  Correlation results between sperm whale (Pma) 
clicks and striped dolphin (Sco) clicks in time and frequency 
domains for four LF (1-4 kHz), MF (7-10 kHz), HF (12-16

| LF band | MF band | HF band | Wideband
Correlation : click Pma — click Pma

Time 0.421±0.12 0.411±0.10 0.391±0.12 0.264±0.09
Frequency 0.709±0.13 0.744±0.11 0.722±0.11 0.642±0.16

Correlation : click Sco — click Sco
Time 0.459±0.14 0.316±0.7 0.29±0.08 0.368±0.12
Frequency 0.740±0.15 0.671±0.14 0.684±0.10 0.741±0.15

Correlation : click Pma — click Sco
Time 0.311±0.09 0.320±0.07 0.318±0.07 0.201±0.06
Frequency 0.573±0.14 0.660±0.13 0.694±0.11 0.501±0.10

We note that neither in time nor frequency domains is it 
possible to propose a threshold for distinguishing these 
classes. First, this is due to the fact that both clicks classes 
have high variance within-class (we obtain low values of 
the correlation between clicks of the same species). This 
diversity results from the natural intrinsic richness of the 
clicks and from propagation effects. Secondly, the Pma and 
Sco clicks are very similar in duration and frequency band, 
and thus the values of the correlation between clicks of the 
two species are significant.
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Figure 5. Classification performance for Pma and Sco clicks 
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The results are given for LF band (Template Matching)

The performance of classification by the template 
matching approach is given in fig.5-6. The patterns of each 
class are compared to the signatures Pma and Sco. The 
mean values of these intra-class and inter-class distances 
are given in fig. 5. These values are normalized for each 
class to 0 dB for the intra-class distances. This means also 
that the inter-class and intra-class distances should be 
minimal. The distribution of values of the inter-class and 
intra-class distances is given in fig.6 (for the Minkowski 
metric). We note that the proposed signature Scw  ensures 
lower intra-class distances and higher inter-class distances, 
which results in a much improved discrimination 
performance. When compared to the performance of the

Fourier based recognition technique, the proposed method 
is four times more efficient for inter-class distances, and 
twice as efficient for intra-class distances (see fig.6). The 
separability of clicks, which was impossible in the time and 
frequency domain, becomes attainable in the space of the 
time-varying Schur coefficients.
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Figure 6. Histogram of intra- and inter- class distances for the 
Minkowski metric (Template Matching)

The parameters proposed in eq. (10)—(12) allow the 
accurate discrimination between sperm whale regular clicks 
and striped dolphin nacchere clicks (see fig.7). However, 
we note that these variables for sperm whale clicks (black 
in fig.7) are somehow correlated. This can be attributed to 
different diving phases of sperm whales. The classification 
results depend also from the performance of the data 
acquisition. This requires further research and analysis.

Statistical classification
tesod on Sc tv reprostfitaoon Projection on C perarneCw

Parameter B Parameter A
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•It
Parameter A 

Protection on B parameter

Figure 7. Statistical classification of Pma (black) and Sco 
clicks (red) in 3D representation space (parameters A, B and 

C correspond to variables o 1, o 2 and u 3)

The correlation results shown in table 2 and the 
classification results based on the Fourier signatures (fig. 5) 
compared to the performance of the recognition method
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proposed in this paper let conclude that the two proposed 
recognition approaches, i.e. the template matching and the 
statistical classification based on the 2D orthogonal Schur- 
like representation, are very efficient and robust for 
underwater click-type signal analysis.

4. CONCLUSION

In this paper we presented a novel click-type signal 
recognition method based on the time-variant Schur 
algorithm. This orthogonal technique appears well suited 
for underwater signal processing. The adaptive and 
recursive nature of the proposed algorithm is very attractive 
for real-time processing. We proposed an efficient 2D 
signature for click-type signals. We evaluated our 
recognition method on sperm whale (Physeter 
macrocephalus) regular clicks and stripped dolphin 
(Stenella coeruleoalba) nacchere clicks. These two species 
clicks present some common characteristics that make 
classification quite challenging, especially for the classifier 
based on the Fourier transform. The recognition results 
showed that concerning classification performance and 
resistance to noise, the 2D Schur signature is considerably 
more efficient than the classical Fourier descriptor. 
Moreover, this signature is more compact and is 
characterized by a lower variability. Motivated by very 
promising results obtained from this study, we would like 
to investigate the proposed recognition approach on other 
marine mammal click-type and chirp-type calls. We are 
currently working on the issue of independence of the 
recognition algorithm from acquisition system set-up.
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a b s t r a c t

The Southwest Fisheries Science Center has been conducting shipboard visual line-transect cetacean 
surveys for over 30 years, and combined visual and acoustic surveys for seven years. Full incorporation of 
passive acoustics as a tool for population assessment requires an understanding of the acoustic behavior of 
cetaceans as well as the limitations of the methods used in these surveys. Our research summarizes data 
collected during seven years of combined visual and acoustic surveys throughout the central and eastern 
North Pacific Ocean, ranging from the Aleutian Island chain in the north, to Peru in the south. Phonations 
from 2,034 dolphin schools were examined to better understand the acoustic behavior of cetaceans. Equally 
important are the cetacean schools that were seen but not heard, and this analysis includes an examination 
of these groups by species, group size, geographic location, and time of day. The results of this analysis 
allow us to take the first steps to incorporate passive acoustics into line-transect cetacean surveys.

RÉSUMÉ

Le Southwest Fisheries Science Center a étudié les cétacés à bord de navires en utilisant des transects 
linéaires pour des données visuelles depuis plus de 30 ans, et une combinaison des méthodes visuelles et 
acoustiques depuis seulement sept ans. L ’incorporation complète de l ’acoustique passif comme outil 
d'évaluation de la population exige une bonne compréhension du comportement vocal des cétacés, ainsi que 
de connaître les limites des méthodes utilisées dans ces études. La présente recherche résume les données 
provenant de sept années d'études visuelles et acoustiques tout au long de la partie centrale et orientale du 
Pacifique Nord, depuis les îles septentrionales d’Aleutian, jusqu’au Pérou, au sud. Les vocalisations des 
dauphins, à partir de 2034 groupes suivis, ont été examinées afin de mieux comprendre le comportement 
vocal des cétacés. Les groupes de cétacés qui ont été vus mais non entendus, sont également importants ; 
cette analyse examine ces groupes par espèce, taille du groupe, position géographique et heure du jour. Les 
résultats nous permettent de prendre en compte les premières mesures pour incorporer l ’acoustique passif 
dans un transect linéaire dans l’étude des cétacés.

1. INTRODUCTION

Population studies of cetaceans in offshore waters have 
typically relied on shipboard visual observations, which are 
limited to daylight hours and must be suspended when poor 
weather conditions prohibit reasonable visual detection of 
animals. In recent years, passive acoustic detection of 
cetacean phonations using towed hydrophone arrays has 
been used to complement visual shipboard surveys (Thomas 
et al. 1986, Gordon et al. 2000, Oswald et al. 2007a).
Acoustic detection of cetacean phonations is not limited by 
time of day, nor is it affected by most weather conditions.
The primary limitation of acoustic methods is that the 
animals must be producing sounds within the frequency 
range of the equipment.

Dolphin phonations have been grouped into three 
categories: whistles, burst pulses, and echolocation clicks.
Whistles are tonal, frequency-modulated signals used for 
communication (Janik and Slater 1998, Herzing 2000,
Lammers et al. 2003). Most dolphin species produce

whistles, which typically have fundamental frequencies 
between 2 and 30 kHz (Lammers et al. 2003, Oswald et al. 
2004). Burst pulses are broadband click trains that have 
very short inter-pulse intervals. These sounds are also 
thought to be used for communication, although they may 
also be for echolocation (Herzing 2000). Echolocation 
clicks are short, broadband, pulsed sounds used for 
navigation and object detection. Echolocation clicks have 
peak frequencies ranging from tens of kilohertz to well over 
100 kHz (Au 1980, Au 1993). Basic descriptions of 
acoustic repertoire exist for many species; however, little is 
known of the acoustic behavior of most species in their 
natural habitat.

The Southwest Fisheries Science Center (SWFSC) has 
been conducting visual observations of cetaceans during 
shipboard line-transect surveys for over thirty years. In 
2000-2006, a towed hydrophone array was added to 
examine the potential for the use of passive acoustics during 
these surveys. In this paper we present a preliminary 
examination of the acoustic behavior of dolphins in the
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Pacific Ocean and our ability to detect their phonations 
using a towed hydrophone array with a limited bandwidth (2 
- 24 kHz).

2. METHODS

We conducted cetacean surveys in the Pacific Ocean from 
2000 to 2006 using simultaneous visual and acoustic line- 
transect methods. The acoustic effort during these surveys 
is shown in Figure 1. The dates, study area, and effort for 
each survey varied, and a summary of this information is 
given in Table 1.

Visual observation methods followed standard SWFSC 
protocol that has been used since the 1980s (Kinzey et al. 
2000). A team of three experienced visual observers rotated
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Figure 1. Map o f survey area and tracklines with passive 
acoustic effort using a towed hydrophone array shown as 

dashed lines.

between two ‘big-eye’ 25x150 binoculars and one data- 
recording position. Visual observation occurred during 
day light hours in Beaufort sea states 0-5. When animals 
were sighted by the visual observation team, they were 
approached for species identification and group size 
estimation.

A towed hydrophone array was used for acoustic 
detection of cetacean phonations. The array was typically 
towed 200-300 m behind the ship during daylight hours and 
in sea states less than Beaufort 7. Several array 
configurations were used, each with its own specifications. 
The five-element ‘Sonatech’ array (Sonatech, Inc., Santa 
Barbara) had a flat frequency response from 2 kHz to 45 
kHz (± 4 dB at -132 dB re 1 V/^Pa), the three-element high- 
frequency ‘HF’ array (Sonatech, Inc., Santa Barbara) had a 
flat frequency response from 2 kHz to 120 kHz (± 3 dB at - 
164 dB re 1V/^Pa), and the ‘SWFSC’ array had a flat 
frequency response from 500 Hz to 30 kHz (± 5 dB at -155 
dB re 1V/^Pa). The specific arrays used during each survey 
are shown in Table 1.

Signals from the array were equalized using a Mackie 
CR1604-VLZ mixer and recorded using a Tascam DA-38 
eight-channel digital recorder (sample rate 48 kHz). Sounds 
were monitored by an acoustic technician both aurally, 
using headphones, and visually, using real-time scrolling 
spectrographic software (ISHMAEL, Mellinger 2001). 
Acoustic localization of dolphin schools was performed 
based on the convergence of bearing angles plotted on 
Whaltrak, a custom-written plotting program. Bearing 
angles to phonating dolphin schools were calculated using 
the phone-pair bearing algorithm in ISHMAEL (Mellinger 
2001). All data presented here are based on monitoring 
within the limitations of the hydrophones and recording 
equipment; only sounds detected between 2 kHz and 24 kHz 
were included in the analyses.

Table 1. Summary information for seven cetacean surveys conducted by the Southwest Fisheries Science Center, including the 
cruise name, dates, region surveyed, survey vessel, hydrophone arrays used, and the number o f acoustic detections. Three surveys

were conducted in the eastern tropical Pacific Ocean (ETP).

Region #
Cruise Name__________ Dates_____________Surveyed_____ Survey Vessel_________Array________Detections

STAR 28 July - 9 Dec, 2000 ETP McArthur Sonatech, HF 374
ORCAWALE 30 July - 9 Nov, 2001 US West Coast Jordan Sonatech, HF 132

HICEAS 27 July - 8 Dec, 2002 Hawai'i Jordan SWFSC 273
STAR 6 Oct - 9 Dec, 2003 ETP McArthur II SWFSC 260

SPLASH 29 June - 20 Oct, 2004 Alaska McArthur II SWFSC 35
PICEAS 29 July - 14 Nov, 2005 Pacific Islands McArthur II SWFSC 229

STAR 30 July - 6 Dec, 2006 ETP McArthur II SWFSC 731

Acoustic activity (presence/absence of phonations) 
within the limits o f our monitoring bandwidth was 
compared among species. The acoustic detection distance, 
or the greatest distance at which phonations could be 
confidently matched to a known dolphin sighting, was 
compared for each species. Variation in acoustic activity 
Canadian Acoustics / Acoustique canadienne

was examined using Classification and Regression Tree 
analysis (CART) to determine which factors influenced the 
detection of dolphin schools (latitude, longitude, group size, 
sea state).
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3. RESULTS

This analysis includes 2,034 acoustic detections of dolphin 
schools made during seven years of combined visual- 
acoustic line-transect surveys of cetaceans in the Pacific 
Ocean. A total of 971 single species schools were identified 
to species by experienced visual observers and included: 
Stenella attenuata, S. coeruleoalba, S. longirostris, 
Delphinus spp., Tursiops truncatus, Steno bredanensis, 
Pseudorca crassidens, Globicephala spp., Lagenorhynchus 
obliquidens, L. obscurus, Lissodelphis borealis, Grampus 
griseus, Orcinus orca, Berardius bairdii, and Feresa 
attenuata. Phonations produced by Delphinus delphis and 
Delphinus capensis were grouped together as Delphinus 
spp., as were detections produced by Globicephala 
macrorhynchus and Globicephala melas (Globicephala 
spp.). In addition, mixed-species schools of S. attenuata 
and S. longirostris were included in some analyses.

Overall, 73% of sighted dolphin schools were also 
detected acoustically. The percentage of sighted schools 
that were detected both visually and acoustically ranged 
from 28% for Berardius bairdii to 100% for Pseudorca 
crassidens (Table 2). Dolphin species that had a high 
acoustic detection rate (> 80% of schools) were found in 
significantly larger schools than species with a low acoustic 
detection rate (Mann-Whitney U, p<0.001). The mean 
group size of schools detected acoustically was significantly 
(Mann-Whitney U, a  = 0.05) greater than the mean group 
size of schools not detected acoustically for most species 
(Table 2). The CART analysis showed that group size was 
the most important factor associated with the acoustic 
detection of dolphin schools, both overall and for each 
species individually.

Most dolphin species found in our study areas are 
known to produce whistles within the acoustic detection 
bandwidth of the equipment used during these surveys 
(Table 3). Whistles were evident in 93% of the 2,034 
acoustic detections; however, not all species produced 
whistles. No whistles were detected from schools of 
Lissodelphis borealis, Lagenorhynchus obliquidens, L. 
obscurus, or Berardius bairdii. Maximum acoustic 
detection distance varied from 1.5 nmi for Lissodephis 
borealis to 10 nmi for Stenella coeruleoalba (Table 3). 
Dolphin species in which most schools were found to 
produce whistles were generally detected at greater 
distances (Table 3).

Many dolphin groups were detected and localized using 
acoustic methods but were not seen by visual observers. 
Species was not known with certainty for groups that were 
not seen. These data were not examined for this study.

4. DISCUSSION

This study provides the largest dataset of simultaneous 
visual and acoustic observations of cetaceans during 
shipboard line-transect surveys published to date. The 
limited frequency bandwidth of our acoustic system did not 
allow for an examination of the full frequency range of 
dolphin phonations, however, for the purposes of population
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surveys, detection of the school is of greater importance 
than detection of the full acoustic repertoire.

Nearly two-thirds of sighted dolphin schools were 
detected acoustically; however, acoustic detection of 
dolphin schools was not equal among species. Of the 
variables included in the analysis, group size was found to 
be the single most important factor influencing the acoustic 
detection of dolphin schools, both among and within 
species. Most dolphin schools that were not detected by the 
acoustic team contained fewer than 20 animals. Species that 
were consistently detected acoustically had large mean 
group sizes. For example, 85% of S. attenuata schools were 
detected acoustically and this species had an average school 
size of 93.1. There are exceptions to this trend, however. 
All P. crassidens schools and 96.8% of Steno bredanensis 
schools were detected acoustically, but these species had 
small mean group sizes (10.7 and 15.3, respectively). In the 
case of P. crassidens, individual group sizes were small, but 
encounters included a large number of these small groups 
spread out over large areas. Steno bredanensis, on the other 
hand, are found in small isolated groups, and there is no 
clear explanation for their high level of acoustic activity.

For some species, fewer than 70% of sighted schools 
were detected using acoustic methods, including: G. griseus, 
Lagenorhynchus spp., O. orca, Lissodelphis borealis, F. 
attenuata, and B. bairdii. With the exception of three 
sightings of Lagenorhynchus obscurus, all of these were 
relatively small schools. Also, with the exception of F. 
attenuata, whistles were detected from fewer than half of 
the schools of these species. It is possible that these species 
mainly produce high frequency clicks and that the limited 
bandwidth of our equipment prevented the detection of 
these sounds.

Given that 93% of the groups that were detected 
acoustically produced whistles, the use of whistle sounds for 
detection would allow most schools to be picked up. 
Whistles tend to be lower in frequency than most click 
sounds, and can therefore be detected using less expensive, 
lower bandwidth systems than would be necessary for click 
detection and identification. In addition, lower frequencies 
propagate further than higher frequencies, suggesting that 
whistles can be detected over greater distances than clicks. 
It is possible that whistles play an important role in 
communication over the large areas occupied by these 
groups.

From our analysis of the acoustic detection of dolphin 
schools during these surveys, we define two detection 
categories: dolphin species with a high rate of acoustic 
detection (>80%) and dolphin species with a low rate of 
acoustic detection (<80%). Dolphin species with a high rate 
of acoustic detection were typically found in large schools 
and frequently produced whistles. Most of these species 
were found in the tropical study areas (Hawai’i, Pacific 
Islands, eastern Tropical Pacific Ocean). The species with a 
low rate of acoustic detection were typically found in 
smaller schools and produced few, if any, whistles. These 
species were more common in the temperate study areas off 
the west coast of the United States, Canada, and Alaska.
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Table 2. Mean group size for dolphin schools detected (1) both visually and acoustically, and (2) only visually. For all detections, 
the percent vocal indicates the percentage of sighted schools that were detected using acoustic methods. For acoustic detections, 
the percentage of detections that included whistles is given. Species are arranged according to the percentage of schools detected 

acoustically (percent vocal). A statistical comparison was made of the group sizes for acoustic/visual detections and for visual-only
detections (Mann-Whitney U test).

Acoustic/Visual Visual-Only Mann-Whitney All Acoustic All
Detections Detections U Test Detections Detections

Species Sample Size Group Size Sample Size Group Size Significance % with whistles % vocal

P. crassidens 19 10.7 - - - 100.0% 100.0%
S. bredanensis 30 15.3 1 7.3 0.434 90.3% 96.8%

S. attenuata, S. longirostris 71 351.5 4 131.5 0.122 100.0% 94.7%
Delphinus spp. 134 192 23 62 0.001 98.5% 85.4%

S. attenuata 81 93.1 14 41.9 0.012 97.4% 85.3%
T. truncatus 62 78.1 13 10.1 0.020 96.7% 82.7%

S. longirostris 37 116.4 9 38.1 0.008 100.0% 80.4%
S. coeruleoalba 149 60.4 37 48.3 0.047 100.0% 80.1%

Globicephala spp. 55 21.2 21 14.4 0.064 92.6% 72.4%
L. obscurus 3 280 2 9.5 0.083 0.0% 60.0%

G. griseus 28 21.2 30 9.8 0.021 44.8% 48.3%
L. obliquidens 4 19.5 5 11.5 0.712 0.0% 44.4%

O. orca 21 11.9 28 5.6 0.011 50.0% 42.9%
L. borealis 7 27.3 13 7.8 0.021 0.0% 35.0%

F. attenuata 2 23.9 4 7.9 0.064 100.0% 33.3%
B. bairdii 2 16 5 7.6 0.245 0.0% 28.6%

In general, the limited bandwidth of the acoustic equipment spp., Stenella spp., T. truncatus). Further examination of 
used during these surveys was sufficient for the detection of the data may provide a better understanding of why some 
dolphin schools encountered in tropical and sub-tropical tropical dolphin schools were not detected using these 
study areas (P. crassidens, Steno bredanensis, Delphinus acoustic methods.

Table 3. Acoustic detection distance and whistle frequency range for each species. The maximum acoustic detection distance (nmi) 
provides the range at which our equipment detected sounds from each species. Frequency ranges (kHz) of whistles were obtained 

from the literature, and all fall within the 2-24 kHz detection range of our equipment (note: the authors have detected whistles in 

the presence of F. attenuata, but there are no published descriptions of whistles for this species). Species are labeled from highest

Species

acoustic detection rate to the least (Table 2).

Detection Distance Whistle Range

Mean 

(St. Dev) Maximum

Low

Frequency

High

Frequency Reference

P. crassidens 2.87 (1.64) 6 1.8 18 Oswald et al . (2007b)

S. bredanensis 1.53 (1.19) 4.5 4 9.5 Oswald et al . (2007b)
Delphinus spp. 2.22 (1.6) 6 3.5 23.5 Oswald et al . (2007b)

S. attenuata 1.88 (1.54) 6 3 21 Oswald et al . (2007b)

T. truncatus 1.75 (1.31) 6 1.9 21.6 Ding, et a l . (1995)

S. longirostris 2.57 (1.56) 6 4 25 Oswald et al . (2007b)

S. coeruleoalba 2.61 (1.83) 10 1 23 Oswald et al . (2007b)
Globicephala spp. 2.58 (1.79) 8.5 0.3 23.6 Oswald et al . (2007b)

L. obscurus 0.98 (1.33) 2.5 1 27 Ding, et a l . (1995)

G. griseus 0.93 (0.7) 2.3 2 24 Rendell et al . (1999)

L. obliquidens 0.71 (0.87) 2 2 20 Caldwell and Caldwell (1971)
L. hosei 2 2 4.3 24 Oswald et a l . (2007a)

O. orca 0.73 (0.71) 2.3 1.5 18 Thomsen et a l . (2001)

L. borealis 0.58 (0.67) 1.5 - - Rankin, et a l . (2007)

F. attenuata 1 (1.05) 1.75 - - *

B. bairdii 1.1 (0.84) 1.7 4 8 Dawson, et a l . (1998)

Many of the species encountered in the temperate study Lissodelphis borealis, and B. bairdii) had low rates of 
areas (Lagenorhynhus spp., G. griseus, O. orca, acoustic detection. It is possible that the limited bandwidth
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of our acoustic equipment prevented the detection of many 
of these dolphin schools. Acoustic studies conducted in 
these areas should be carried out using broadband 
equipment to guarantee the detection of higher-frequency 
click sounds produced by these species. An increased 
bandwidth (over 100 kHz) for cetacean studies in the 
temperate regions would also allow for detection of 
porpoise species, which could not be included in this study. 
Despite our bandwidth limitations, we detected both clicks 
and click bursts from many groups and were able to 
describe the sounds produced by L. borealis (Rankin et al. 
2007).

5. CONCLUSION

The Southwest Fisheries Science Center has been using a 
standard protocol for combined visual and acoustic 
shipboard line-transect cetacean surveys for seven years. 
Using this standard protocol, we have been able to detect 
and localize odontocete groups in situations in which the 
visual team was unable to work due to weather or darkness. 
Our ability to detect dolphin schools varies by species, 
group size, and acoustic behavior. These results highlight 
the variation in acoustic behavior within and among species, 
and the need for a more rigorous examination of the 
acoustic behavior of each species. Nonetheless, the high 
rate of acoustic detection of dolphin schools in the tropical 
and sub-tropical Pacific Ocean justifies the use of acoustic 
methods for the detection of most dolphin schools within 
these areas.
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a b s t r a c t

This paper deals with the automatic detection of low-frequency Antarctic (Balaenptera musculus interme
dia) and Pygmy (B. m. brevicauda) blue whale sounds produced in the Southwestern Indian Ocean. A new 
detection method based on a matched filter is introduced. Four original match templates are presented and 
tested against original blue whale subspecies calls. The mathematical formulas of these templates, defined 
by Gaussian curve models, are provided. The detection threshold is based on the correlation coefficients. 
The threshold was set to reduce false detections obtained on simulated signals at various signal-to-noise 
ratios. We focus our work on the true detections of whale calls. Moreover, to obtain a real-time system, we 
decrease the computational time by decimating the recorded signal (Fs=250Hz). We show that this new 

method enables us to effectively detect both subspecies in various ambient noises, in the Southern Ocean.

RESUME

Dans ce papier, les sons de basses fréquences émis par les baleines bleues Antarctique (Balaenoptera muscu
lus intermedia) et pygmées (B. m. brevicauda) dans le secteur sud -  ouest de l ’Océan Indien ont été détecté au
tomatiquement à partir d ’une technique de filtrage adapté. Pour ce faire, des signaux synthétiques ont été créés 
à partir de signaux originaux en modélisant leurs équations mathématiques à partir de courbes gaussiennes. 
La détection se fait alors par la corrélation entre le signal entrant et le modèle calculé (template). Le seuil de 
détection a été choisi au préalable en simulant une série de signaux dans des rapports signal sur bruit différents. 
Au final, un seuil de détection élevé a été choisi pour minimiser les fausses alarmes au risque d’augmenter 
les détections manquées. Pour diminuer le temps de calcul, le signal original (Fe=250Hz) a été décimé. Cette 
méthode originale c ’est révélée très efficace pour détecter les sons émis par ces deux sous espèces de baleines 
bleues dans des niveaux de bruit ambiant très variés comme c ’est le cas dans cette partie de l’Océan Indien.

1. in t r o d u c t io n

Knowledge of marine mammal sounds, and in particular ba
leen whale sounds, has been largely enhanced thanks to new 
acoustic data available from a wide variety of instruments 
that were originally designed to monitor the seismicity of the 
earth or for defence purposes. Instruments designed to moni
tor low frequency earthquakes (Watkins, 1981; Nishimura & 
Colon, 1994; Nieukirk et al., 2004), record seismic-acoustic 
signals and underwater seismicity (Stafford et al., 2004; Re
bull et al., 2006), and listen to Soviet submarines during the 
cold war via the Navy SOSUS arrays (Costa, 1993; Gagnon 
& Clark, 1993; Clark & Mellinger, 1994; Mellinger & Clark, 
2003) recorded a great variety of calls in the lower frequency 
range. These calls included Blue (Balaenoptera musculus), 
Fin (B. physalus), and Humpback (Megaptera novaeanglia) 
whales over long periods. Recordings of baleen whale calls 
document the seasonal distributions, the relative abundance, 
and the acoustic behaviour of particular species. Moreover, 
they have also been useful in tracking animals in their natu
ral habitat (Mellinger & Clark, 2003; Stafford et al., 2001,
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2003, 2004; Sirovic et al., 2004; McDonald et al., 2006).
The hydroacoustic stations of the International Monitor

ing System (IMS) were primarily designed to continuously 
record natural and artificial sounds in the oceans, particu
larly sounds generated by man-made explosions in support 
of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) 
(Roueff et al., 2004). Between May 2003 and April 2004 
six IMS stations, provided by the Commissariat à l’Énergie 
Atomique (CEA) were deployed off the coast of Possession 
Island (Crozet archipelagos in the French Indian Ocean Ter
ritory). The low frequency hydrophones (1-100 Hz) have 
enabled recordings of a large variety of signals: time-vari
ant ambient underwater noise, biological signals includ
ing large baleen whales calls, and anthropogenic sounds.

Our aim is to detect the Antarctic blue whale calls (B. 
m. intermedia) and the Pygmy blue whale calls “Mada
gascar-type” (B. m. brevicauda) in the CEA dataset. Using 
spectrograms, our first analysis identifies the presence of 2 
subspecies calls in the approximately 40,000 hour-long data
set. These calls contain some uniform patterns with one or 
more units, high acoustic intensity (above 180 dB re 1^Pa at
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1m), very low frequency range ([28-35 Hz]) and are repeti
tive (Clark, 1990; Ljungblad et al., 1998; Mellinger & Clark, 
2003; Sirovic et al., 2004, 2007; Stafford et al., 2004; Rankin 
et al., 2005; McDonald et al., 2006).

Manually detecting each specific blue whale call among 
a large amount of data would require many hours of effort to 
scan the spectrograms visually and to listen to the recordings 
(Stafford et al., 2007). In this context, automatic processes to 
identify the location, the characteristics, and the abundance 
of the calls in the dataset are necessary. Moreover, automated 
detection methods provide objective criteria to detect and 
count a known sound in a year-long dataset within hours or 
days. An automated, fast, real-time detection method for blue 
whale calls was used to analyze the dataset obtained from 
permanent acoustic stations.

Recently, a variety of methods have been developed and 
used for automatic recognition of marine mammal sounds. 
The classical technique is based on the spectrogram matched 
filter, i.e. the cross-correlation between the spectrograms 
of the signal of reference (template) and the recorded sig
nal. This cost minimisation matching technique constitutes 
the basis of the dynamic time-warping (DTW) developed in 
human speech recognition (Silverman & Morgan, 1990). In 
this case, the recorded signal could be compressed or dilat
ed before being compared to the template. A variant of this 
approach, called crosswords reference templates (CWRTs), 
consists of comparing the recorded signal with a great variety 
of templates (Abdulla, 2003). Another approach is based on 
the use of templates defined in the frequency domain. The 
cross-correlation templates are obtained from the shapes of 
the known recorded signal spectrograms (Mellinger & Clark, 
2000); this method has been used successfully to classify
ing right whale calls (Eubalaena japonica) (Munger et al., 
2005). An edge detector has also been tried directly on the 
spectrogram (Gillepsie, 2004). The choice of referent spec
trograms from real recordings determines the performance of 
the detector. Moreover, the performance may depend on the 
dataset, in which case it is difficult to generalize the results to 
other datasets. The referent call contains features of a single 
individual. If these features are not close to those of other in
dividuals (of the same subspecies) referent spectrograms be
come non exhaustive. Recently, new methods were proposed 
including Hidden Markov Modeling (HMM) associated with 
Artificial Neural Networks (ANN) techniques (Trentin & 
Gori, 2003), and methods based on time-frequency or time- 
scale representation such as wavelets. The main disadvantage 
of these methods is their computational complexity as com
pared to the matched filter.

The signal conditioner and template definition are key 
to the successful implementation of the matched filter. To 
optimize performance detection, we have not chosen to ex
tract one call randomly from the dataset and to use it as the 
referent signal. It is also important to spend time on the sig
nal pre-treatment, especially the filtering process. This step 
contributes to improving performance of the detector. In our 
application, the signal-to-noise ratio varies with each hydro
phone for the duration of the dataset. The use of multiple
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templates improves detector performance due to variation 
and distortion among blue whale calls (Munger et al., 2005; 
Mellinger, 2004).

In this paper, we provide details on the pre-processing 
of the signal and we describe the mathematical formulas of 
the different synthetic waveforms used for the detection of 
both blue whale subspecies calls. Our work is based on the 
analysis of the CEA dataset and on the knowledge of the blue 
whale calls (Stafford et al., 2004, 2005; Rankin et al., 2005; 
Sirovic et al., 2004, 2007; Mc Donald et al., 2006). The re
sults obtained for different cross-correlation thresholds and 
different signal-to-noise ratios (SNR) are presented. It should 
be noted that our work was aimed at minimizing computa
tional complexity. Before concluding, we present results of 
true and false detections on real signals.

2. MATERIALS AND METHODS

2.1 Dataset and blue whale calls

This IMS dataset has been made available for the analysis 
of South Indian Ocean biological signals. In May 2003, six 
autonomous stations were moored on the northern (H04N1, 
H04N2, and H04N3) and southern coasts (H04S1, H04S2, 
H04S3) of Possession Island (Crozet archipelagos in the 
French Indian Ocean Territory) in the Indian Ocean between 
46009’S-46051’S and 51048’E-51053’E. Each station con
sisted of an anchor, a buoy and a hydrophone, called an Un
derwater Monitoring Unit (UMU).

The optical fiber cable and the converter transmitter con
stitute the digital communication link, once the analog-to- 
digital conversion (performed in the UMU) has been carried 
out. The digital acquisition and storage system perform data 
format changes without affecting the sampling rate and sam
ple values. The data are dated by a 1ms precision absolute 
clock synchronized by GPS. Data are transmitted in real time 
via satellite link to the International Data Center to be analy
sed at the CEA / DIF / DASE - Bruyères-le-Châtel FRANCE. 
These instruments are moored to the seafloor between 1100 
and 1500 meter depths. Sensors are suspended near the sound 
channel axis (SOFAR) at a depth of approximately 300m. 
They were deployed in a triangular configuration (triad) far 
from the northern and southern coasts of the island with ap
proximately 2 km spacing between moorings and 60 km be
tween two triads. Acoustic data for H04N2, H04N3, H04S1 
and H04S3 were available for the entire recording period; 
data for H04S2 were available from May 2003 to December 
2003; and no data were available for H04N1 due to instru
ment failures.

The UMU contains the sensor, the analog signal condi
tioning circuits, and the analog-to-digital converter. These in
struments monitored sound continuously, at a sampling rate 
of 250 Hz, coded by 24 bits (S/N: 126.5 dB), and a flat (±3 
dB) frequency response of 1.2-102.5 Hz. Note that the ambi
ent underwater noise is time-variant for the duration of the 
dataset. For example, during a given month (March 2004), 
the mean acoustic pressures recording by the hydrophones
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are different between the northern network (92.6±2.5 dBrms) 
and the southern network (109.5±6.4 dBrms) (Table 1). 
Inourpreliminary study, we focus ontwo types ofeasily recogniz
able calls: the Antarcticblue whale call (BMi) andthe Pygmyblue 
whale call (BMb) “Madagascar type” (bandwith [15-35 Hz]).

Antarctic blue whale calls

Spectrograms of the first category of detected calls are simi
lar to those of typical Antarctic blue whale calls (Ljungblad 
et al., 1998; Sirovic et al., 2004; Stafford et al., 2004; Rankin 
et al., 2005). These calls consist of three tonal units repeated 
in patterned sequences every 40-50 seconds over a period of 
a few minutes or hours (Figure 1).

Figure 1: Spectrogram of Antarctic blue whale calls 
recorded off Crozet Island (Spectrogram parameters: 1024 

points FFT length, 90% overlap, 250 Hz sample rate, 
Hanning, for a filter bandpass between 18 and 28 

Hz)

The first component is a constant frequency tone cen
tered at 28 Hz followed by a short frequency-modulated 
(FM) down-sweep from 28 Hz to 20 Hz ending with the third 
component, a slightly modulated tone (20-18 Hz). This call 
lasts approximately 26 seconds but sometimes only the first 
one or two components are present. This degree of variability 
in the presence of the three individual components was pre
viously reported (Stafford et al., 2004; Rankin et al., 2005). 
In the dataset, the calls have variable amplitudes (from 84.3 
to 117.8 dB re 1^Pa at 1m) depending on the distance of the 
whales to the hydrophones and the original amplitude of their 
sounds (Table 1).

Pygmy blue whale calls

Since the first pygmy blue whale call description established 
by Ljungblad (1998), information regarding the content of 
these calls has been scarce. These low frequency calls were 
often present in the dataset. Like Antarctic blue whale calls, 
these signals occur in patterned sequences of long tonal calls 
every 90-100 seconds over the course of a few minutes or 
hours (Figure 2).

Each sequence is composed of two long units that re
peat themselves. The first component is primarily a constant 
frequency tone at 35 Hz lasting 15-20 seconds. A silence

Figure 2: Spectrogram of pygmy blue whale calls 
“Madagascar type” recorded off Crozet Island (Spectrogram  

parameters: 1024 points FFT length, 90% overlap, 250 Hz 
sample rate, Hanning, for a filter bandpass between 12 and 

40 Hz).
(approximately 20 sec) separates the two-part phrase. The 
second component starts with a 1-2 second 15-28 Hz FM 
down-sweep that ends with a long (20 sec) slightly modulat
ed tone. Each component has strong associated harmonics. In 
the dataset, the signal-to-noise ratio is time-variant and could 
have a negative value.

2.2 Automatic detection methods

We present the specific synthetic waveforms, the process for 
the matched filter and our approach for choosing the detec
tion threshold.

Definition of the templates

In both cases (BMi and BMb), we follow the approach de
scribed in Figure 3. The first step is to condition the origi
nal signal. As previously mentioned, the sample frequency 
is 250 Hz. We applied first a high-pass filter then a low- 
pass filter on the dataset. We used Butterworth filters which 
present a frequency maximally flat response. Since the fre
quency bandwidths vary for the 2 subspecies whale calls, 
different filters for the BMi and the BMb whales are nec
essary. For the BMi (resp. BMb), the order of the filter is 
10 (resp. 12) and the cut-off frequencies are 13 Hz (resp. 17 
Hz) and 30 Hz (resp. 50 Hz). The signal is decimated by 2.

The second step allows the extraction of the common 
features of the parts of the signal with high energy in this 
bandwidth. This first detection method is based on the energy 
with non-overlapping sliding windows of 24.6 sec. The noise 
is reduced when using the average method. Our first choice is 
to use the recordings with the higher signal-to-noise ratio but 
we obtain similar results with the complete dataset (Table 2).

The objective of the third step is to synchronize each part 
of the signal that contains the call. To that effect, we calculate 
the cross-correlation between the dataset and the averaged 
signal obtained at the end of Step 2. The averaged signal is 
used to define the model of the template. Finally both subspe
cies calls are modelled using Gaussian curves to obtain the 
equations of the templates. Step 4 will be described in the 
following section.
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Step 1

Step 2

Step 3

Step 4

The mathematical formula for the BMi call template is:

Figure 3: Algorithm for the definition of the call templates. 
This algorithm is applied first to the BMi calls and after to 

the BMb calls.
Step 1: Conditioning the original recorded signal. 

Step 2: Search for common features 
Step 3: Time-synchronization of each part of the original 

signal
Step 4: Template obtained with the Gaussian model

Definition of the Antarctic blue whale calls template

For the Antarctic blue whale (BMi) the equation of the syn
chronized averaged signals is modelled in 2 different parts. 
For part 1 of the signal, the main frequency is 28 Hz and 
the spectrum amplitude is modelled using a single Gaussian 
curve. For the second part, the main frequency is 19 Hz and 
the spectrum amplitude is modelled using 4 Gaussian curves 
(Figure 4).

Figure 4: Modelling the spectrum with Gaussian curves 
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k - K

x s i n ( 2 ; / 0BM! l k  )

k-bB
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x  s in (2 ^ /0 BM2k )

(1)

PART 2

with k=1...3000 and

/ 0BMn = 27.53Hz , f 0BMl2 = 19.36Hz . 

The parameters are:

Part 1:

a B M n =  10 .9 , b0BMi1 = 2 3 7 8 ,  cBM1 = 372.40̂ 

Part 2:
BMi 2

BM i1 
c0

a0 = 0 .4648  , b0BM 2 = 2288 , c0BM i2 = 420

BMi 2 BMi 2 BMi 2a1 = 2 .6 5 9 ,  b1 = 3 3 5 3 ,  C1 = 148.5

BMi 2 BMi 2 BMi 2
a 0 = 2.265 , b0 = 3070 , c 0 = 169.42

BMi 2 = 1 .081 , b3BMi2 = 3730 , c 3BMi2 = 261.2

Equation 1 allows for the reconstructing of the template 
sample by sample. The time representation of the BMi call 
template is shown in Figure 5. The duration of this template 
is 24 seconds. To validate our template, we apply the model
ling process on the 1-hour length signal having the highest 
signal-to-noise ratio and on the complete dataset. We obtain 
two similar templates. The frequencies of the 2 parts of these 
templates are presented in Table 2. The correlation coeffi
cients obtained between an unknown signal and these two 
templates are similar because of the similitude of the two 
templates.

e
lat
rel
edtud

Time (s)

Figure 5: The template of BMi calls

Definition of the Pygmy blue whale calls tem plate

For the Pygmy blue whale (BMb), the equation of the syn
chronized signals is more complex. We distinguish three
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parts. The durations of part 1, part 2 and part 3 are 22.3 sec
onds, 20 seconds and 26.7 seconds respectively. Note that 
we consider the second part as a silence between part 1 and 
part 3. Employing the same approach as described before, 
we obtain the model of the spectrum using Gaussian curves 
(Figure 6).

Figure 6: Modelling the spectrum using Gaussian curves 

The equations of the 3 parts of the template are:

Part 1:
( f

D

tplBM& [k] = X
BMb. ,

t  B M b  UBMHk„ ~b„
2 A

>0
(2)

With k=1.. .2790 and the frequencies are

f B r n i  = 35.03 Hz , fB M b i = 14.13 Hz ,

/ 2BMb1 = 21.11 Hz , / 3BMbl = 22.72 Hz .

The duration and the parameters of each Gaussian curve are 
respectively reported in Table 3 and Table 4.

Part 2:

tp lBMb2 [k] = 0 (3)

With k = 2791.5295; 

Part 3:
( (

1
z
j=0

, BMB3 u BMb3
k i j ~ b i j

2 "N

sin(2 /̂iBMb3k) (4)

With k  = 5296.8639  and the frequencies are

/ 0BMb3 = 24.96 Hz , / jBMb3 = 26.05 Hz ,

f M  = 23.96 Hz , / 3BMb3 = 27.15 H z , f 4BMb3 = 33.0 Hz

The parameters of the Gaussian curves are reported in Table 
5 and Table 6. The time-representation of the complete tem
plate is given in Figure 7.

Presentation of our detector based on the matched filter

Our preliminary analysis of the CEA dataset regularly shows 
incomplete calls for the 2 subspecies of blue whales. For the 
Antarctic blue whale, this observation is well documented 
Canadian Acoustics / Acoustique canadienne

Time (s)

Figure 7: The template o f BMb calls

(Stafford et al., 2004; Rankin et al., 2005). However, for the 
sounds emitted by the Pygmy blue whale, there are few refer
ences available. To our knowledge, no study has reported such 
incomplete calls. We define 2 new templates corresponding 
to these incomplete calls. These templates are deduced from 
the previous templates: each new template is composed of the 
first part of the calls only. We respectively note that BMie and 
BMbe are the incomplete calls for BMi and BMb.

tphrne [k ]= tPlBMn[k  ] 

tPhMbe [k ]= fPlBMb1 [k ]

(5)

(6)

The algorithm is based on the cross-correlation of the dataset 
and these 4 templates (Figure 8):

R xy =
T F - j x  X Y  * )

(7)

where X is the dataset spectrum and Y the template spectrum. 
Note that spectrums for the 4 templates are calculated be
fore starting the detection process to reduce the computation 
time. The results list the occurrence of the calls for the 2 blue 
whale subspecies and some features are saved, like the name 
of the station, the time of the beginning and the end of the 
call (year, month, day, hour, minute and second), the signal 
intensity (Peak and RMS), and the value of the correlation 
coefficient.

3 RESULTS A N D  C O M M EN T S

3.1 Selected threshold for the cross-correlation

The objective of the signal detection method is to validate 
one of these 2 hypotheses (Harvey, 1992):

H  0 : x = n  

H 1 : x = s  + n
(8)

with x, s, n respectively the observation, the signal that we 
have to detect, and the noise.
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Whatever the detector, a threshold can be used to dis
tinguish both hypotheses. The performance of the detector 
is based on the choice of the threshold. We have selected the 
value of the threshold from the analysis of simulated signals. 
These synthetic signals are composed of 100 BMi templates 
corrupted with a white Gaussian noise. We can assume that 
the white Gaussian noise properties are close to those of the 
underwater noise on the specific narrow bandwidth of our ap
plication ([20-40Hz]). The distribution of the templates is co
herent with a real recorded blue whale signal (same rhythm). 
We change the signal-to-noise ratio from -30 to 25 dB (range 
5 dB). The goal is to assess the value of the threshold for 
the efficiency of the detection method. Results of the total 
number of detections, correct detections and false alarms are 
shown in Table 7. Note that we consider the detection correct 
when the call is localized at ±1 sec.

First, the number of the total detections decreases with 
the SNR and increases when the threshold value decreases. 
For Gaussian white noise only, no call was detected. Second, 
the rate of the correct detections is 100% for SNR higher than 
-15 dB, showing the resistance of this approach to noise. This 
rate decreases dramatically when the SNR is less than -20 dB.

Canadian Acoustics / Acoustique canadienne

The number of false alarms increases significantly when the 
threshold decreases. For example, when the SNR is 25 dB, 
the false alarm rate varies from 0 to 66 when the threshold 
value varies from 0.19 to 0.1. On the other hand, the false 
alarm rate increases proportionally as the SNR decreases and 
reaches a maximum value for SNR=-30 dB. Table 7 shows 
that when the threshold is superior to 0.17, the number of 
total detections and the correct detection are 100%, except 
when the SNR<-15 dB.

The same method was applied for BMie, BMb, and 
BMbe in choosing the threshold. The selected thresholds 
were respectively 0.17 and 0.15 for the complete and incom
plete Antarctic blue whale calls. For both pygmy blue whale 
calls, the threshold is 0.14. Nevertheless, our margin for er
ror allowed for an occasional missed call because the calls 
are produced very regularly and the main objective in this 
process is to decipher whether calls are present or not, and 
not to determine the exact number of calls. Figure 9 is plotted 
from data of table 7. The ROC curves are calculated with 6 
different SNRs from -25 to 25 (range 10 dB). We deduce the 
threshold for BMi (0.17 in bold in Fig.9). Note that the sig- 
nal-to-noise ratios are different in the northern and southern 
acoustic stations involving more false alarms in the south.

0 13 0.14 0.15 0.16 0 .1 7  0.18 0.19

False positive rate 

Figure 9: ROC curves from Table 7 value for BMi threshold.

3.2 Performance comparison for matched filter be
tween templates and real referent calls

To validate the templates, we compare the results obtained 
from the matched filter using our templates and the matched 
filter using real blue whale calls. We used 4 different calls, 2 
by subspecies. For each subspecies, we first extract from the 
dataset the call with the best shape and with a high signal- 
to-noise ratio. Second, we choose another call with a low 
signal-to-noise ratio. The correlation coefficient between the 
real calls with high (low) SNR and our templates gives 0.58 
(0.17) for BMi and 0.35 (0.14) for BMb. For matched filters 
we use these 4 calls as templates and we apply the same de
tection thresholds. The results are given in Table 8.
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The matched filter using high SNR correctly detects 47% 
(15%) of BMi (BMb) calls for the northern network dataset. 
These results decrease dramatically (to reach just less than 
1%) for matched filters based on low SNR real calls. The 
performance is comparable for the southern network. These 
results show the benefit of using the templates in the matched 
filter.

The synthetic signals are not representative of a single 
individual but rather contain features common to calls of oth
er individuals. We note too, a better resistance to the presence 
of the non-stationary underwater noise.

3.3 Detection of real blue whale calls

The number of calls detected for each blue whale subspecies 
reflects the appearance of the species, i.e. the vocal activity or 
the migration pattern of both subspecies (Sirovic et al., 2004; 
Stafford et al., 2004; McDonald et al. 2006). The number of 
blue whale calls detected in a given month (March 2004) is 
shown in Table 9. We choose March 2004 because the 2 sub
species are present during this month of the year and, sec
ondly, the dataset is almost complete (98% on the 744 hours 
of the month).

The variation in the number of calls depends on the local
ization of the calling whales relative to each network and to 
the signal-to-noise ratio (recording conditions, ambient noise 
in the recording area). The correlation coefficients are pro
portional to the quality of the blue whale signals received at 
the hydrophones. Correlation coefficients vary between 0.17 
and 0.72 for BMi calls and between 0.14 and 0.55 for BMb 
calls (Table 9). Note that the minimum values correspond to 
our thresholds (see §3.1).
For both whale subspecies, the number of detected calls is 
higher for the northern network dataset compared to the south
ern network dataset. This could be justified if the whales were 
constantly present in the north. This is true for BMb whales. 
But catches of Antarctic whales show that BMi whales were 
localized south of Crozet Island (Branch et al., 2007). The 
reason is that the noise level is higher on the hydrophones in 
the southern stations (Table 1). As seen in the previous sec
tion, our method detects fewer calls when the signal-to-noise 
ratio is less than -15 dB.

This presupposes that the detected calls are reliable blue 
whale calls. This result is reinforced by the correlation coef
ficient means superior to 0.2 for each whale and each network 
(Table 7).

3.4 Computation time

One of our objectives is to develop a method for real-time 
application. We attach great importance to computation time. 
Taking this constraint into account, we do not consider meth
ods based on time-frequency representation. Moreover, we 
reduce the computation time by decimating the original signal 
by 2 and implementing the matched filter in the time domain. 
The algorithm code (Figure 8) is developed with Mathworks 
Matlab 7.04 and processed on Dell Pentium 4 CPU 2.4 GHz

(1 Go RAM). Note that we take into account the load of the 
recorded signal and the saved results. For the 2 subspecies 
and the 4 types of calls, the computation time is 3382.04 sec
onds for analysis of the entire March 2004 dataset. The ratio 
is approximately 1/1000.

This result allows us to consider real-time application. 
Computation time could be decreased by using machine code 
in place of Matlab. Moreover, most of the time is dedicated 
to the uploading and the conversion of the dataset. This is a 
drawback of post-processing analysis. This step is avoided 
for real-time application.

4 CONCLUSION

In this paper, we investigated the performance of matched 
filters dedicated to the automatic detection of the calls of 2 
blue whale subspecies in long-term acoustic recordings in the 
Southwestern Indian Ocean. We presented the definition of 
4 templates corresponding to the complete and incomplete 
calls of these whales. We provided the mathematical formu
las for Antarctic blue whale and pygmy blue whale call tem
plates. Our automatic detection is based on the cross-correla
tion method; we optimized the process to be time-efficient in 
analysing such long recordings.

This automated detection method was useful in detecting 
blue whale calls in the whole dataset. The limited range of 
variability in the Antarctic blue whale and pygmy blue whale 
calls allowed us to create the synthetic waveforms for both 
calls. Four templates were used for the matched filter. The 
choice of the detection threshold was based on minimizing 
the false alarms.

Compared to alternative automated detection methods 
where the perfomance can be modified by the length of the 
dataset, the acoustic characteristics of the call, the behav
iour of the calling whale, the properties of the water, and the 
physical environment of the recording location, the pattern 
chosen here is efficient in detecting all Antarctic and pygmy 
blue whale calls present in a given recording. It is also human 
and dataset independent. Moreover, this automated detection 
method could evolve by completing the current library with 
other baleen whale calls.

We intend to test the method on another training set of 
blue whale calls recorded in the northern and eastern parts 
of the Indian Ocean. Our first perspective is to use certain 
specific features, in particular, rhythm of the whale calls, for 
increasing detection reliability. As an end goal, we will use 
this detector for extracting the time of arrival of calls on each 
hydrophone to localize the whales.
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Northern network Southern network

Ambient noise
level BMi BMb

Ambient noise 
level

BMi BMb

Min 85.9(97.7) 84.3(94.6) 89.3(101.5) 100.1(113.8) 99.8(111.6) 104.4(116.6)

Max 106.2(121.0) 107.1(132.0) 119.4(133.2) 133.4(145.3) 117.8(137.6) 120.0(139.9)

Mean 92.6(104.5) 91.1(103.9) 97.2(111.3) 109.5(120.7) 103.9(115.4) 109.3(122.9)

SD 2.5(3.2) 3.2(4.2) 3.4(4.0) 6.4(6.6) 1.3(1.9) 3.2(3.9)
Table 1: Acoustic intensities (rms (peak) re 1pPa at 1m) (calculated on 1 month)

One hour
,. All dataset 

recording _________
1st frequency (Hz) 27.57 27.53 
2nd frequency (Hz)_____ 19.35_______19.36

Table 2: Difference between the templates modelling from 1-hour recordings and from the whole dataset.

,B M b1
V

=0 i=1 i=2 i=3

V=0 1...679 1 .6 9 1 1 .6 7 9 1 .2 7 9 0

V=1 68...1572 6 9 2 .1 6 8 6 6 8 0 .1 4 6 4 0
V=2 157 3 .2 0 3 5 6 9 2 .1 6 8 6 146 5 .1 9 8 9 0
J=3 157 3 .2 0 3 5 1 6 8 7 .2 7 9 0 199 0 .2 7 9 0 0

V=4 2 0 3 6 .2 7 9 0 0 0 0

Table 3: Duration o f each Gaussian curve (0 for k £ k BM bl ) for the part1
v

BMb1 ,BMb1 BMb\
aiv biv CiV

i=0 i=1 i=2 i=3 I=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3
j=0 2.944 3.153 3.309 7.63 385.2 398.8 464.2 484.8 211.6 270.7 198.9 147.8
j=1 12.02 4.215 3.001 0 956.8 920.9 946 0 210.5 189.7 268.8 0
j=2 7.359 2.08 0.7191 0 1335 1251 1706 0 189.3 324 218.3 0
j=3 6.306 1.148 1.262 0 1790 2135 2272 0 203.1 404.6 169 0

V=4 3.97 0 0 0 2295 0 0 0 203.1 0 0 0

Table 4: Parameters o f the Gaussian curves for the BMb call part 1

k BMb3
k V

i=0 i=1 i=2 i=3 i=4
=0 5296 . .8639 5296. 6173 5296. 7090 5296. 6692 5296. 5745

v=1 5296 . .8639 6174. ..8639 7091. ..8639 6693. ..8639 5746. ..8639

Table 5: Duration o f each Gaussian curve (0 for k £  k BMb3 ) for the part 3v
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BMb3
V

,BMb3
bV

c BMb3

c i

i=0 i=1 i=2 i=3 i=4 i=0 i=1 i=2 i=3 i=4 i=0 i=1 i=2 i=3 i=4

v=0 5.15 33.1 4.2 5.21 5.24 1537 590 940.9 714 338.3 1591 144.7 694.7 527.3 78.5

V=1 42.5 5.25 6.54 1.53 1.76 1010 1840 2640 2189 1289 242.8 949 516.2 757.9 917.1

Table 6: Param eters of the Gaussians for the BMb call part 3

0.10 0.11 0.12 0.13 0.14

25 166(100,66) 143(100,43) 121(100,21) 110(100,10) 103(100,3)

20 167(100,67) 135(100,35) 121(100,21) 108(100,8) 101(100,1)

15 171(100,71) 148(100,48) 122(100,22) 107(100,7) 104(100,4)

10 169(100,69) 144(100,44) 121(100,21) 110(100,10) 104(100,4)

5 179(100,79) 146(100,46) 128(100,28) 109(100,9) 104(100,4)

0 167(100,67) 137(100,37) 122(100,22) 110(100,10) 105(100,5)

-5 156(100,56) 135(100,35) 119(100,19) 109(100,9) 105(100,5)

-10 175(100,75) 145(100,45) 127(100,27) 109(100,9) 105(100,5)

-15 165(96,69) 135(96,39) 119(96,23) 105(96,9) 102(96,6)

-20 170(87,83) 146(87,59) 128(87,41) 117(87,30) 112(87,25)

-25 157(72,85) 131(72,59) 117(70,47) 102(68,34) 96(65,31)

-30 155(27,133) 119(22,97) 81(18,63) 50(15,37) 30(11,19)

(a)

0.15 0.16 0.17 0.18 0.19

25 101(100,1) 101(100,1) 100(100,0) 100(100,0) 100(100,0)

20 101(100,1) 101(100,1) 100(100,0) 100(100,0) 100(100,0)

15 102(100,2) 100(100,0) 100(100,0) 100(100,0) 100(100,0)

10 103(100,3) 101(100,1) 101(100,1) 100(100,0) 100(100,0)

5 102(100,2) 101(100,1) 100(100,0) 100(100,0) 100(100,0)

0 102(100,2) 100(100,0) 100(100,0) 100(100,0) 100(100,0)

-5 103(100,3) 100(100,0) 100(100,0) 100(100,0) 100(100,0)

-10 101(100,1) 101(100,1) 100(100,0) 100(100,0) 100(100,0)

-15 101(96,5) 100(96,4) 100(96,4) 100(96,4) 100(96,4)

-20 105(87,18) 101(87,14) 101(87,14) 100(87,13) 99(86,13)

-25 84(62,22) 67(50,17) 50(55,15) 38(25,13) 25(17,8)

-30 15(9,6) 11(7,4) 5(4,1) 3(5,0) 2(2,0)

(b)

Table 7: Evaluation of the detection threshold value (lines show the threshold values and columns show SNR (dB)). 
Num ber of total detections (correct detections, false alarms)

Northern Southern
network_________ network

Matched filter used BMi BMb BM i BMb
7 4 9 5  2856 717

1116 2082 93 

130 461 28

Table 8: Num ber of calls detected by using template and real call in various SNR for matched filter (calculated on 1 month)

Template 6313

Real call with high 2971
SNR 2971 

Real call with low
SNR 148
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Northern Southern
network network

BMi BMb BMi BMb
Number of calls 

detected
6313 7 495 2856 717

Min 0.17 0.14 0.17 0.14
Max 0.72 0.55 0.49 0.45

Mean 0.23 0.23 0.19 0.20
SD 0.07 0.07 0.02 0.06

Table 9: Number of calls detected and correlation coefficient (calculated on 1 month)
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a b s t r a c t

The feasibility of using passive acoustic methods (PAM) to monitor time-space distribution of fin and blue 
whales in the Saguenay-St. Lawrence Marine Park was explored using large-aperture sparse hydrophone 
arrays. The arrays were deployed during summers 2003 to 2005 at the head of the 300-m deep Laurentian 
Channel. They were composed of 5 AURAL autonomous hydrophones moored at mid-water depths, near 
the summer sound channel. A small coastal array complemented the deployment in 2003. The apertures 
were from 20 to 40 km and the configurations were changed from year to year. The most frequent calls 
recorded were blue and fin whale signature infrasounds. Noise from transiting ships on the busy St. 
Lawrence Seaway often masked the calls on the nearest hydrophones. Sometimes this resulted in an 
insufficient number of receivers for localizing the whales using time difference of arrival (TDoA) methods.
The technical characteristics of the arrays and data processing are presented, with an example of call 
detection and localization. Despite the difficulties inherent to this environment, PAM can be effectively 
implemented there, eventually for real-time operations.

r é s u m é

La faisabilité d’utiliser la technologie de monitorage acoustique passif (PAM) pour suivre la distribution 
spatio-temporelle des rorquals bleus et communs dans le Parc Marin Saguenay-Saint-Laurent a été 
explorée à l’aide de réseaux d’hydrophones à maille lâche couvrant de grandes distances. Les réseaux ont 
été déployés pendant les étés 2003 à 2005 à la tête du chenal Laurentien, profond de 300 m. Ils étaient 
composés de 5 hydrophones autonomes AURAL mouillés à mi-profondeur, près du couloir de son estival.
Un petit réseau côtier de faible ouverture complétait le déploiement en 2003. Les ouvertures des réseaux 
étaient de 20 à 40 km et leurs configurations étaient changées à chaque année. Les vocalisations les plus 
fréquentes étaient les infrasons identitaires des rorquals bleus et communs. Le bruit de navires transitant 
dans la Voie Maritime achalandée du Saint-Laurent masquait souvent les vocalisations sur les 
hydrophones les plus proches, ce qui parfois résultait en un nombre insuffisant de récepteurs pour localiser 
les baleines à l’aide de méthodes utilisant les différences de temps d’arrivée (TDoA). Les caractéristiques 
techniques des réseaux et du traitement des données sont présentées avec un exemple de détection et de 
localisation. Malgré les difficultés inhérentes à cet environnement, la technologie PAM peut y être 
efficacement implémentée, éventuellement pour des opérations en temps réel.

1. i n t r o d u c t i o n

The development of the methodology for localising whales 
from their sounds in their habitats was initiated by Watkins 
and Schevill (1972) in the 1970s. It was then rapidly applied 
to tracking whales over large distances (e.g. Cummings and 
Holliday 1985, Clark et al. 1986). Advances in electronics, 
computers and numerical analysis now make this PAM 
technology more accessible and affordable to small research 
budgets. Various systems have been used, including shore- 
cabled and radio-linked systems, drifting buoys, and arrays 
of autonomous recorders for versatile and long-term 
deployments (e.g. Janik et al. 2000, Hayes at al. 2000,

Watkins et al. 2000, Tiemann and Porter 2004, Simard et al. 
2004, Sirovic et al. 2007, Stafford et al. 2007). The goal of 
such PAM systems, is the continuous mapping of presence 
and distribution of whales over ocean basins (e.g. Greene et 
al. 2004, Simard et al. 2004, Sirovic et al. 2007, Stafford et 
al. 2007) and assessing their densities, (e.g. Ko et al. 1986, 
McDonald and Fox 1999, Clark and Ellison 2000), 
sometimes in quasi real-time (e.g. Thiemann and Porter 
2004). Their performance in effectively accomplishing these 
tasks, depends on the characteristics of the targeted whale 
calls, the environment, the type of equipment used, its 
deployment and configuration. This performance may 
significantly vary from case to case.
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Figure 1. a) Study area at the head o f the Laurentian channel in the Saguenay-St. Lawrence Marine Park, with bathymetry and 
typical summer sound speed profile. b) Configurations o f the hydrophone arrays deployed in 2003-2005.

PAM’s success first depends on the capacity to isolate 
the targeted calls from the rest of the acoustic signal in 
which they are imbedded, especially for distant sources and 
low signal to noise ratios (SNR). Call source level (SL), 
propagation loss, and the local “ocean noise” level 
determine detection ranges (c.f. Sirovic et al. 2007, Stafford 
et al. 2007). Whale calls’ SLs vary considerably among 
species and within a species’ vocal repertoire (e.g. 
Kuperman and Roux 2007, p. 199.). Ocean noise level also 
exhibits considerable variability in space and time, in 
response to fluctuating natural sources, such as wind, ice, 
rain, sounds produced by various organisms, and 
anthropogenic sources such as shipping (c.f. review NRC 
2003). When a series of hydrophones are available at each 
node of the larger PAM array, beamforming and matched- 
field processing (c.f. Jensen et al. chap. 10) can improve 
signal detection by SNR enhancement. Signal processing 
can improve detection of some calls by exploiting their 
distinctiveness in time-frequency space compared to noise 
(e.g. Mellinger and Clark 2000). Sound speed structures 
over the water column can focus sounds from distant 
sources into sound channels, thereby reducing propagation 
loss from multiple interactions with absorptive and 
scattering surface and bottom interfaces. This is true for 
both the signal and the noise sources. The signal with the 
lowest transmission loss depends on the 3D spatial 
arrangements of the sources and the local propagation 
characteristics. The spatial arrangement, horizontal distance 
between the hydrophones, and their depth relative to the 
sound channel are relevant to the PAM problem. . The 
optimal configuration could be explored from simulation 
models.

SNR not only affects the detection of calls, but also the 
capacity to precisely estimate their TDoAs on the 
hydrophone array (Clark and Ellison 2000, Buaka Muanke 
and Niezrecki 2007). High precision is essential for precise 
localisation (Spiesberger and Wahlberg 2002, Spiesberger 
2004, 2005). Precise estimation of the TDoAs is hindered 
by low SNR and multipath propagation conditions where 
reflected and refracted signals overlap. TDoA accuracy also 
depends on proper synchronisation of the array, which is 
often problematic with the multiple independent clocks of 
autonomous hydrophone arrays (e.g. Thode at al. 2006, 
Sirovic et al. 2007).

Additional constraints for operational PAM setups 
include minimizing interfering noise from the hydrophone 
deployment accessories such as strumming from the 
mooring. Low-frequency vibration and flow noise (Haddle 
and Skudrzyk 1969) can arise due to strong currents often 
encountered on continental shelf habitats where whales 
vocalizing at low frequencies forage on aggregated preys 
(e.g. Simard and Lavoie 1999).

Examples of PAM applications used to non-intrusively 
study whales in their large-scale habitat from a sparse array 
of distant omnidirectionnal hydrophones are expanding 
around the world. Details of experiments from several case 
studies in different environments should help improve the 
development, efficient use, and robustness of this new 
methodology. The present paper contributes to this effort by 
presenting an example for blue and fin whale localization in 
the Saguenay-St. Lawrence Marine Park (SSLMP) located 
at the head of the Laurentian Channel in the Lower St. 
Lawrence Estuary (Fig. 1).
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2. MATERIAL AND METHODS

Study site
For centuries, North-West Atlantic baleen whales have 

migrated to the head of the 300-m deep Laurentian Channel 
during summer for feeding on prey concentrated along its 
bordering steep slopes by strong tidal upwelling processes 
(Simard and Lavoie 1999, Lavoie et al. 2000, Simard et al. 
2002, Cotté and Simard 2005). The summer water column 
in this part of the North-West Atlantic is characterized by a 
prominent Cold Intermediate Layer (CIL) centered around 
60 m, creating a well defined sound channel at these depths 
(Fig. 1a). The bottom is composed of more than 200 m of 
silt overlying the bedrock in the trough with sand and gravel 
on the surrounding shallow areas. The high tidal energy of 
this environment generates fronts, semidiurnal upwelling at 
the channel head, and propagating internal tide and high- 
frequency internal waves, moving the CIL depth by up to 
100 m (c.f. Saucier and Chassé 2000). These processes 
modify the propagation conditions in time and space, 
notably by swinging the sound channel up and down. 
Shipping noise from St. Lawrence Seaway traffic is high. 
Levels in the 18-22.6 Hz and 35.6-89.8 Hz targeted call 
bands can reach 130 dB re 1 ^Parms and exceed 102 dB re 1 
^Parms more than 50% of the time (Simard et al., 
unpublished results from 15960 h of recordings).

Equipment
The PAM arrays were deployed in the study area during 

summers of 2003 to 2005 (Fig. 1b). They were made up of 5 
AURAL autonomous hydrophones (Multi-Electronique Inc, 
Rimouski, Qc, Canada) programmed for 16-bit continuous 
sampling (M1-mode) after 17 or 23 dB amplification. The 
AURALs also recorded the ambient temperature and depth. 
The temperature compensated crystal oscillators of their 
clocks minimized temperature effects on clock drifts. The 
instruments were anchored with typical oceanographic

1000

5 0 0 -

0- \ I r 
3:00 4:00 5:00
Time (h) EDT 2004/09/23

Figure 3. Spectrograms showing typical non-synchronized 
noise patterns while ship transits throughout the study 

area from upstream (M1) to dowstream (M6) with their 
reporting time at the pilot station, 10 km upstream of M4.

Period corresponding to Fig. 4 is pointed on X axis.

moorings, taking special care to minimize the noise from the 
mooring components (Fig. 2). All hydrophones were HTI 
96-min (High Tech Inc., Gulport, Ms, USA) with a nominal 
receiving sensitivity (RS) in the low frequency band (< 2 
kHz) of -164 dB re 1 V/^Pa, confirmed by calibration at the 
Defense Research Development Canada (Dartmouth, NS, 
Canada) facility. The hydrophones were placed at 
intermediate depths in the water column near the summer 
sound channel axis (Fig. 1a). After the first deployment in 
2003, the hydrophones were deployed in deeper water 
farther from the channel slopes in order to avoid local 
maximum tidal currents (c.f. Lavoie et al. 2000, Saucier and 
Chassé 2000) that were generating vibrations of the mooring 
and flow noise. In 2003, a coastal array of 6 HTI 96-min 
hydrophones with an aperture of ~650 m was also deployed 
along a cape in the middle of the study area (Fig. 1b). The 
acquisition system consisted of a 16-bit ChicoPlus Servo-16 
data acquisition board (Innovative Integration, Simi Valley, 
CA, U.S.A.) connected to a PC. The exact locations of these 
hydrophones on the bottom were determined from 
hyperbolic fixing (receiver and sources inverted) by sending 
series of 8-kHz pulses from the IXSea Oceano acoustic 
release transmitter (Marly-le-Roy, France) from a network 
of surrounding stations surveyed by the R/V Coriolis II. 
CTD profiles (SBE 19, Seabird Electronics, Bellevue, Wa., 
USA) from the study area were used to compute sound 
speed profiles.

Synchronization
The synchronization of the autonomous hydrophones 

exploited a combination of means: starting and stopping the 
AURALs with a PPS (pulse per second) impulse from a 
GPS receiver, simultaneous recording of same acoustic
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Figure 4. Blue and fin whale calls series detected on the hydrophone array during the period pointed on Fig. 3. The bar marks the 

1-min sequence used for the localization shown in Figs. 5, the hyperbole traces and isodiachron clouds o f Fig. 6.

signals on all units, cross-checking with the coastal array 
clock, and linear interpolations assuming constant drift of 
the internal M1-mode clocks over the deployment periods. 
This drift was quite stable from one instrument to the other 
and estimated to 4.1 ± 0.1 s d-1. The relative drift for 
estimating the TDoAs at the hydrophones was < 0.2 s d-1. It 
was also consistent over years, and therefore seems to be a 
characteristic of the particular instrument’s clock. Other 
synchronization approaches could be tested. (see 
Discussion).

Data analysis
Call detection requires initial SNR enhancement by de

trending the spectrogram as the first noise filtration step 
(details in Mellinger 2004, Mouy 2007). Fixed-template 
time-frequency call detection algorithms (e.g. Mellinger and 
Clark 2000) then generally performed well for the 
stereotyped infrasound calls of blue (A and B calls) and fin 
(20-Hz pulse) whales (Mouy 2007). A time-frequency 
contour detection algorithm combined with DTW (dynamic 
time warping) classification algorithm (ibid.) was used for 
the variable blue whale D call (Berchok et al. 2006). TDoA 
estimation was generally easier using spectrogram cross
coincidence (i.e. computing the time lag required to best 
match the call blueprint on the binary images of the 
spectrograms at hydrophone pairs from a logical AND on 
the pixel values of 0 or 1, e.g. Simard et al. 2004, Fig. 5) 
than by cross-correlating the filtered signal in time domain 
because of noise interference. Localization was performed 
by hyperbolic fixing (Spiesberger and Fristup 1990), 
isodiachrons and Monte-Carlo simulations (Spiesberger and 
Whalberg 2002, Spiesberger 2004), and by an acoustic 
propagation model (Tiemann and Porter 2004) (details in 
Roy et al. 2008).

3. R E S U L T S

Ships transiting in both directions along the study area 
increased noise over the whole spectrum for 0.5-1 h around 
the ships’ closest point of approach to the hydrophones (Fig. 
3). During ships’ ~ 3-h transits, their intense noise 
successively polluted the hydrophones of the array along 
their route. At times, strong currents induced strumming and 
flow noise that polluted the calls’ band at tidal peaks, thus 
negatively impacting the hydrophones located in the 
maximum flow.

Call time series for the 80-min period marked on Fig. 3 
show a 26-min sequence where 3 hydrophones detected 20- 
Hz fin whale calls (Fig. 4, 4h19 to 4h45). This call series 
comprised two ~15-min bouts separated by 3 min. The calls 
are repeated at ~11-s intervals, but occasional calls, named 
backbeats, lag their preceding call by ~17-s (Fig. 5; c,f, 
Samaran 2004), a characteristic that can help confirm 
adequate time alignments. TDoAs were estimated from 
spectrogram cross-coincidence for 21 1-min sequences (e.g. 
Fig. 5). The whale was found to be close to M4 hydrophone 
on the northern slope of the Channel; the locations on land 
allowed easy removal of ambiguous localizations (Fig. 6). 
The whale showed slight displacements (< 0.5 km from 
hyperbolic fixing) during this 26-min period from both 
localization methods. The localization uncertainty was ~1.2 
km from the radius of the isodiachron Monte-Carlo 
localization cloud (4000 simulations taking into account an 
error of 20-m in hydrophone position, 0.5 s in TDoAs, and 5 
m s-1 in effective sound speed). The mean distance between 
the locations of the peak density of the isodiachron Monte- 
Carlo simulations for each of the 21 sequences of 1 min and 
the hyperbolic fixing solutions was 100 m (SD = 32 m).
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Figure 5. Example o f signal processing for TDoA estimation for the 1-min segment pointed on Fig 4.: a) Spectrograms o f the calls 
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trimmed out. c) Binary images o f b) retaining only the strongest 5%  intensities. d) Cross-coincidence o f images in c) resulting 

from a logical AND operation using M3 hydrophone as reference to estimate TDoAs from peak values.

4. DISCUSSION

Despite the difficulty of applying PAM to track whales 
in a highly-fluctuating and noisy environment such as the 
head of the Laurentian Channel, the results show that it is 
feasible for a significant proportion of the time, using a 
sparse array of hydrophones. Even though detection and 
localization was not always possible because of masking 
noise, the frequent vocalisations and the low displacement 
rate of the whales allowed their mapping with a reasonably 
good resolution in time and space. With a good knowledge 
of the oceanographic, propagation and noise characteristics 
of the study area, it is possible to effectively implement 
PAM technologies to monitor whales in this meso-scale 
basin over long periods from a sparse array of autonomous 
hydrophones.

Further attention should be given to determining the 
optimal hydrophone density and 3D spatial arrangement, 
regular clock synchronisation, and minimization of masking 
from mooring strumming, vibrations and flow noise. 
Covering the hydrophone with open-cell foam or 
membranes might reduce flow noise for short-term 
deployments, but bio-fouling negates their long-term use. 
Choosing the hydrophone location after considering 
currents’ 3D spatial structure helped to reduce the problem. 
Hydrophones less sensitive to vibrations and flow noise, but 
still affordable to limited research budgets, would be 
desirable. Directional sensors (e.g. Greene et al. 2004) able 
to simply and accurately determine the source direction 
under noise conditions should also help improving PAM 
efficiency.

Our simple synchronization approach was successful 
but other more elaborated methods could be explored. 
Spiesberger (2005) proposed a Monte-Carlo method to
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Figure 6. Localization of the 20-Hz call series shown in Fig. 4. 
Hyperbolic localizations every 1-min intervals between 4h19 
and 4h45 (white line). The solution at 4h28 is shown with 
hyperboles and the isodiachron clouds of possible localizations 
(in gray), whose peak density is 54 m away from the 
hyperbolic solution.

assess probability distributions of all localization variables, 
including TDoAs. This approach could be adapted to track 
relative clock drifts at different times from the differences 
between the observed and estimated TDoAs of a series of 
independent sources recorded by the array. Thodes et al. 
(2006) proposed a matched-field modeling approach for 
synchronizing a small line array of autonomous 
hydrophones by simultaneous geoacoustic inversions for 
both whale localizations and clock offsets, combined with 
cross-correlation of diffuse background noise.

To choose the optimal array configuration for the study 
area, propagation modeling could be used to provide 
detection and localization probability maps under the 
observed local noise probability density function in the call 
bands and published SLs for the targeted signature calls. 
Augmenting the hydrophone density of the array to 
minimize masking by shipping noise, which depends on the 
relative distance between the ship and whale and their SLs 
difference (c.f. Simard et al. 2006a), appears the simplest 
way of enhancing the detection and localisation probability 
over the whole study area.

Efficient signal processing algorithms are required to 
minimise noise and multipath interferences in detecting and 
identifying the calls. Time-frequency domain algorithms 
with adequate resolution proved to be effective at this task 
as well as for reasonably estimating TDoAs. Localization 
error will never be eliminated due to imprecision associated 
with the input variables. Isodiachronic Monte-Carlo 
localization proved helpful to assess the extent of this 
localization uncertainty, but robust error estimation methods 
need further research (Roy et al. 2008). Tracking of a fixed 
sound source emitting at regular intervals appears highly

109 - Vol. 36 No. 1 (2008)

suitable to accurately monitor the localization error, 
especially under such variable environments.

PAM information was not available in real-time but 
only after the recovery of the array at the end of the 
observation period. Real-time PAM (e.g. Tiemann and 
Porter 2004) is often required for management and 
protection purposes, mitigation of anthropogenic activities, 
and implementation of early warning systems. Such low- 
cost telecommunicating real-time detection, classification 
and localization systems are presently in development and 
experimentation (Simard et al. 2006b) and could eventually 
become versatile alternatives to cabled real-time PAM 
systems.
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a b s t r a c t

The problem of detection and recognition of contact calls produced by North Atlantic right whales, 
Eubalaena glacialis, is considered. A proposed solution is based on a multiple-stage hypothesis-testing 
technique involving a spectrogram-based detector, spectrogram testing, and feature vector testing 
algorithms. Results show that the proposed technique is able to detect over 80% of the contact calls 
detected by a human operator and to produce about 26 false alarms per 24 h of observation.

s o m m a i r e

Un problème de détection et reconnaissance des baleines noires, Eubaleana glacialis, en présence de bruit 
ambiant est étudié. Une solution proposée est basée sur une technique de test d’hypothèses en plusieurs 
étapes, impliquant le détecteur, des tests de spectrogramme et des algorithmes testant des vecteurs de traits. 
Les résultats des tests montrent que la technique proposée est capable de détecter plus de 80% des appels 
de contact détectés par les opérateurs humains et de produire environ 26 fausses alarmes par 24 h 
d’observation.

1. i n t r o d u c t i o n

Continuous monitoring of North Atlantic right whales 
(NARW) presence in large areas can be accomplished by 
passive acoustical methods using data recordings obtained 
from distributed autonomous hydrophone systems [1-4]. 
Such systems yield enormous data sets totaling many years 
of potential listening time, presenting an analytical 
challenge. Using human operators to visually and aurally 
evaluate data spectrograms is impractical in projects that 
collect huge amounts of data. Apart from this, the human 
operators often provide subjective and inaccurate estimates 
[5] so the design of effective, automated detection 
techniques is of critical importance.

To reduce subjectivity and to decrease the labor costs, 
various NARW detection methods known from the literature 
can be used (see e.g., [6-11]). These methods can potentially 
improve the detection efficiency by rejecting a huge portion 
of the data that contains no signal. However, as test results 
demonstrate, known methods do not provide the required 
trade-off between the probabilities of detection and false 
alarm. In particular, for the detection probability of 0.8, the 
lowest level of false alarm probability provided by the 
spectrogram-based detector is from 10-2 to 10-3, depending 
on the impulsive noise rate [11]. For the NARW contact 
calls with the typical duration of 1 s, the range of probability 
of false alarm corresponds to 100-1000 false detections per 
24 h of observation. Since all the detection events should be

evaluated by a human operator, the labor costs are 
significant.

The goal of the research presented in this paper is to reduce 
the probability of false alarm in spectrogram-based detectors 
without negatively affecting the detection probability. The 
proposed technique is reduced to a multiple-stage 
hypotheses-testing process. In the initial stage, the 
spectrogram-based detector [11] is applied. The data 
segments accepted as signals in the initial stage are 
recognized using the proposed recognition technique. The 
hypothesis that the detected segment belongs to the known 
types of impulsive noise is tested in the second stage. If this 
hypothesis is rejected, a feature vector (FV) is extracted and 
tested in the final stage. Test results obtained using real data 
recordings are presented.

2. d a t a  m o d e l  a n d  p r o b l e m  
f o r m u l a t i o n

We use the data model similar to that considered in [11]. 
The NARW contact calls are modeled as polynomial-phase 
signals (PPS). Ambient noise is represented as a Gaussian 
process contaminated by unknown impulsive processes. A 
typical spectrogram of the input data containing a NARW 
contact call, background noise, impulsive noise and self
noise is shown in Fig. 1 (top frame).

We assume that the spectrogram-based detector is applied to 
the input data in the initial stage. For each 1 s data segment
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x(t), the detector tests the hypotheses H0 (“ambient noise is 
present”) and H  (“signal and ambient noise are present”). 
The decision-making process is reduced to computing the 
statistic z(t) = z (x(f )) as a function of the tested data 

segment x(t). The statistic z(t) is compared with a threshold 

CD and the hypothesis H  is accepted if z(t) > CD . The 

detector consists of a bank of P linear 2-dimensional (2D) 
FIR filters with frequency responses specified by the 
frequency modulation of NARW contact calls [11]. The 
frequency responses of the FIR filters maximizing the 
statistics z(t) are shown in Fig 1 (top frame) by the red

Detector Recognizer

Input i 

Data !

------M
Stage 1:

i I
H  l Stage 2: H„ Stage 3: Decision

Signal 1 s Filtering the •v. Testing the i

detection 1 -p  

:
i i 
i i

spectrogram feature vector i >
i
i

-------------------- 1

Fig. 2. A  Block diagram o f the proposed technique.

Fig. 1. A  spectrogram of the input data (top frame) and the 
values o f the statistic calculated by the spectrogram-based 

detector (bottom frame).

lines. The values z(t) calculated from the detector output

are represented in Fig. 1 (bottom frame) by green lines.

The threshold is determined by applying an optimality 
criterion, which is introduced based on the management 
goals of the detector as well as on apriori information. We 
use the Neyman-Pearson criterion, which makes it possible 
to minimize a false alarm probability for a given probability 
of detection. In practice, the threshold is set up to 
automatically detect 80% or more of the NARW contact 
calls visually detected by the human operators. The problem 
of choosing the threshold is beyond the scope of this paper. 
Instead, we focus our attention on the problem of optimizing 
the structure of the recognizer used in the following stages.

The data segments for which the hypothesis H 0 is accepted 
do not require any actions. If for a given x(t) the hypothesis 

H  is accepted, this segment is recognized in the next stages. 
Only these data segments are considered hereafter (For the 
sake of simplicity, the time index associated with those 
segments is omitted). Due to the presence of impulsive 
noise, many segments detected in the first stage may contain 
no signals except noise transients. As a result, the following 
hypothesis can be introduced:

H S : X  = S  + W , H l : X  = Q + W (1)

where X , S , Q and W  are the matrixes representing the 
spectrograms of the data segment x (t), signal, impulsive 
noise, and background noise, correspondingly.

The problem can be formulated as follows: using X , accept 
or reject the hypothesis H S . We propose a solution based 

on a two-stage recognition technique. In the first stage, the 
hypothesis H l is divided into the M  sub-hypothesis 

H lm,m = 1,...,M. For each H lm, a parametric model of 

noise is used. The models are based on the spectral 
properties of typical kinds of impulsive noise observed in 
the empirical data. Based on that model, a spectrogram- 
based algorithm that tests the hypothesis H S against H lm 

is designed. If the hypothesis H S is accepted, the 

corresponding data segment is tested in the final stage. In 
this stage, a feature vector testing algorithm is applied. A 
block diagram of the proposed technique is shown in Fig. 2. 
The signal recognition algorithms are designed in Section 3.

3. SIG NAL R E C O G N IT IO N

Since typical noise conditions can differ for different 
locations, we restrict our investigations to the data
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recordings collected at Cape Cod Bay, a primary habitat 
area for NARW. Data analysis shows that many noise 
transients have spectrogram-based images that are similar to 
the locally narrowband down-sweep and harmonic impulses 
as well as to wideband transients; see Fig. 3. Based on these 
observations, we introduce the following classes of 
impulsive processes: Gt - upsweep transient, G2 - 

downsweep transient, G3 - constant frequency tone 

transient and G4 - wideband transient. The class Gt

represents the signals and the classes G2 

impulsive noise.

G4 represent

To design a spectrogram-testing algorithm, we use a 
strategy similar to the generalized likelihood ratio test. For 
each class Gm, the statistic w{m,X) , m = t,...,4  is 

computed. If w(t,X)<  w {k,X ) , k  = 2,3,4, then the 

hypothesis H  is accepted and the testing procedure is 

terminated for a given data segment. Otherwise the data 
segment is tested in the final stage.

The spectrogram testing scheme is shown in Fig. 3. It is 
similar to the spectrogram-based detector in the sense that it 
consists of a bank of 4 linear 2D FIR filters. The impulsive 
responses of the filters are specified by the phase structure 
of the typical impulsive processes, Fig. 3.

A FV is tested in the final stage. Features being used should 
contribute most to discrimination between signals and noise 
and should be easy to extract. Because of the lack of a priori

information regarding variability of NARW contact calls, 
feature selection is a difficult problem. In this paper, we use 
features similar to those used by human operators when 
visually analyzing the spectrogram. Let the symbol

v = (vt ,...,vKY denote the K-dimensional feature vector. 

We introduce the feature space with the dimension of K = 
t t  and with the features represented in Table I. The 
spectrogram of a NARW contact call and some features 
extracted from the spectrogram are also displayed in Fig. 5.

To design the FV recognition algorithm, the following 
approach has been used. For most of the NARW contact

Fig. 5. Features extracted from the NARW  contact call.
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calls, the FV belongs to some subspace of the K- 
dimensional feature space. For example, it is known that for 
the typical NARW contact calls, the minimum frequency is 
50 < v4 < 150 Hz and the maximum bandwidth is 

20 < v3 < 170 Hz . Based on the empirical observations, 

similar one-dimensional sets can be introduced for each 
element of the feature vector so that the signal subspace can 
be defined as:

V v  =  iv v  <  v  <  v  iS y \  imin — i — imax’ = 1,2 , . . . ,K  }c - .E K (2)

imin, v imax are the scalars defining the bounds of thewhere v

ith feature. As a measure of discrimination between any 
particular FV v = v (X ) and VS , we introduce the following 

discriminant function:

where

h (v i )  =

h ( v  ) = £  h ( v i ) 
i=1

0 if v < v < vi min i imax

A  ■ (v  — v  )2if v  < viminy i imin; i im

A (v  — v  )2if v  > vi max\ i i max/ i i t

(3)

(4)

A imin and A imax are the scalars. The value h ( v ) is 

compared with a threshold C R and the hypothesis H S  is 

accepted if h ( v ) < C R . Otherwise the hypothesis H S is 

rejected. The FV testing scheme is displayed in Fig. 6. The

i min i max n and A i max specifying the FV
testing algorithm are shown in Table I.

i max’ A i min a n dIn practice, the unknown parameters v imin, v  

A imax can be determined using the training data set. It is 

worth noting that although the proposed FV testing 
algorithm is heuristic, it uses the statistical properties of 
signals and noise. As a result, the algorithm can provide 
high recognition performance.

4. TEST RESULTS

Since the signal recognition technique considered here 
involves a two-stage decision-making process, it is difficult 
to estimate the recognition performance in terms of 
conventional receiver operating characteristics. Therefore, 
the performance has been evaluated using the empirical 
probabilities of signal recognition and false alarm.

The empirical probability of recognition has been evaluated 
using NARW contact calls detected by the human operators 
from different testing data sets. (The testing data sets were 
different from the training data set.) The detector and 
recognizer thresholds were selected as C D = 0.35 and C R = 
1, respectively. Under these values of the threshold, the 
probability of signals recognition is close to 0.8. The actual 
probabilities of recognition obtained for different data sets 
are shown in Table II.

The empirical probability of false alarm has been estimated 
using a data set CCB04 collected in Cape Cod Bay from 
December 18, 2002, to January 18, 2003. Since the ambient 
noise conditions may change dramatically with time, the 
false alarm probability was computed for chunks of data 24
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Table I  Parameters of the feature space

Feature Parameters

v i min vi max A ■ ■i min A .i max

Signal duration, vj 0.5 s 1.5 s 2.5 1

M ean  value o f  the 

in term ediate bandw idth , V2

0 15 Hz 0 0.03

Start-end bandw idth , v 3 20 Hz 170 Hz 0.025 0.015

M in im um  frequency, V4 65 Hz 170 Hz 0.055 0.025

M ax im um  bandw idth , v 5 20 Hz 170 Hz 0.05 0.015

D uration  o f  upsw eep  pa rt o f  

the  signal, v6

0.3 s 1.5 s 4 2

Segm entation  threshold , v 7 4 10 0.3 0

Local noise level, v8 0 0.02 0 4

Percentage o f  holes in  the 

object, v 9

0 0 0 3

Percentage o f  dow nsw eeps in

the IF, vjo

0 0 0 4

Percentage o f  harm onicas in

the IF, vjj

0 0.3 0 3

h in length each. The results of this test are depicted in Fig. 
7. The total number of false alarms produced by the 
proposed technique was 826.

Test results demonstrate that the use of the proposed 
recognition technique essentially reduces the false alarm 
probability from the spectrogram-based detector [11]. In 
particular, the CCB04 data set contains 1,331 NARW 
contact calls detected by human operators (see Table II). 
The spectrogram-based detector was able to detect 1,289 
signals so that the detection probability on the detector 
output was PD = 0.97 . The total number of false positives 

provided by the spectrogram-based detector was 113,341. 
The proposed recognizer was able to recognize 1,092 out of 
1,289 signals so that the total decrease in probability of 
detection was rd = 1289/1092 = 1.18. The corresponding 

decrease in probability of false alarm was 
rfa = 113341/826 = 137.2.

5. DISCUSSION

For the threshold values applied, the probability of 
recognition of NARW contact calls ranged from 0.79 to

Table II  Probability of recognition

Data set Observation
time

Number of 
tested 
signals

Probability
of

recognition

C CB 00 08/03/2001 -  

10/04/2001

14394 0.88

C CB 02 28/03/2002 -  

31/05/2002

1475 0.81

C CB 03 21/11/2002 -  

18/12/2002

67 0.79

C C B 04 18/12/2002 -  

18/01/2003

1331 0.83

C CB 05 18/01/2003 -  

04/03/2003

1792 0.85

C CB 06 04/03/2003 -  

21/04/2003

313 0.8

C CB 09 28/02 /2004  -  

17/04/2004

2220 0.86

Total 21592 0.87

0.88 (see Table II). The decrease in the probability of 
recognition can be explained by the influence of the 
following factors. First, a certain number of selected calls 
were hardly visible on the spectrogram and hence had 
relatively low SNR. Although investigation of the influence 
of the SNR on the recognition probability was not within the 
scope of this work, test results demonstrate that the 
recognition probability decreases as the SNR goes down. 
Moreover, as the results reported in [5] show, when 
detecting the signals with low SNR, the human operators 
may select up to 85 data segments with no signals on them 
per 24 h of observed data. The operators can also make false 
selections because of the similarity between contact calls 
and some kinds of impulsive noise. In our testing data, a 
certain number of selections made by the operator are 
questionable and are not approved by other operators. The a 
priori uncertainty regarding a signal parameter is a 
fundamental problem in passive bioacoustics. The actual 
range of signal variability is unknown to the observers. As a 
result, there is a nonzero probability that the selection made 
by the human operator is actually noise. Hence, the actual 
probability of recognition can be higher than that 
represented in Table II.
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Fig. 7. The number of false alarms provided by the proposed technique. Data collected at Cape Cod Bay from December 18, 2002,
to January 18, 2003.

Another factor decreasing the recognition probability is that 
a certain percentage of the selected NARW contact calls 
overlapped with transients or other calls. The proposed 
technique was not designed to operate under such 
conditions. Therefore, the problem of distinguishing partly 
overlapped signals should be a topic of future research.

Using the proposed technique for analyzing a long data 
recording, the human operator only has to inspect the 
automatically detected clips, thereby reducing the amount of 
time necessary. As test results show, an average of 26 false 
alarms per 24 h of observation is generated by the proposed 
technique. (For the duration of the false data segment equal 
to 1.024 s, the 26 false alarms per 24 h of observation 
corresponds to the false alarm probability of 3.08x10-4.) 
Testing 26 data segments requires about 1 min per operator 
whereas a complete browsing of one day’s worth of data by 
visual analysis of the spectrogram and by listening to the 
data requires 2-8 h per operator. Different data sets will 
likely have higher or lower numbers of false alarms on the 
recognizer output. However, practical use of the proposed 
technique in the Bioacoustics Research Program at the 
Cornell Laboratory of Ornithology shows that, on average, 
the human effort needed to detect more then 80% of NARW 
contact calls can be reduced by more than 20 times as 
compared with the data analysis performed by a human 
operator alone

6. CONCLUSION

In the presence of a high impulsive noise rate, the 
probability of false alarm provided by the spectrogram- 
based detector can increase dramatically. To decrease false 
alarm probability without negatively affecting the 
probability of detection, a new technique proposed in this 
paper can be used. This technique is based on a multiple- 
stage decision-making process involving the spectrogram 
and feature vector testing algorithms.

Test results demonstrate that applying the proposed signal 
recognition technique to the spectrogram-based detector 
makes it possible to reduce the false alarm probability by 
more than 100 times when decreasing the probability of 
detection by 1.2 times as compared with the spectrogram- 
based detector. Correspondingly, the hours that humans 
need to detect 80% and more of NARW contact calls can be 
reduced by more than 20 times as compared with the data 
analysis performed by a human operator alone.
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ABSTRACT

This paper describes a technique for the automated detection of leopard seal (Hydrurga leptonyx) 
vocalizations. Automatic detection of leopard seal calls within the Antarctic underwater soundscape is 
difficult because (a) the calls are frequently of low amplitude (b) the call duration is highly variable and 
(c) the frequency band overlaps with those of many other marine mammal vocalizations. However, 
humans easily distinguish leopard seal vocalizations from those of other marine mammals because of the 
calls’ distinctive sound, which is a result of the pulsed structure of the leopard seal vocalizations. To 
exploit the unique temporal evolution of the pulse repetition rate (PRR) in high (HDT) and low (LDT) 
double trills, the Envelope-Spectrogram Technique (tEST) was developed. The extracted PRR feature 
allows detection of the target vocalizations even against a background of other marine mammal 
vocalizations. To handle the high variability of the calls’ duration, the tEST algorithm was combined with 
a Hidden Markov Model (HMM) which is particularly well adapted to handle temporal variability. The 
developed HMM based detection algorithm worked rather reliably. The detection rate over a 4 day test 
period was high (72 %) although the signal to noise ratio (SNR) was low (< 10 dB). The number of false 
positive detections (12 %) was tolerable. Most of the false positives occurred during the period when 
R/V Polarstern was approaching the recording station and the SNR was temporarily < 0 dB. The detector 
worked 3 times faster than real-time and is therefore suitable for both off line biological research and time 
critical in-the-field applications, such as the detection of the presence of leopard seals in the context of 
human diver operations.

SOMMAIRE

Cet article décrit une technique de détection automatique des vocalisations du Léopard de Mer (Hydrurga 
leptonyx). La détection des sons émis par le Léopard de Mer à travers le bruit de fond sous marin est 
difficile parce que (a) les émissions sont fréquemment de basse amplitude (b) la durée des émissions est 
hautement variable et (c) les vocalisations sont dans la même bande que celle utilisée par de nombreux 
autres mammifères marins. Cependant, l'homme est facilement en mesure d'identifier les vocalisations 
émises par le Léopard de Mer de celles des autres mammifères, grâce à la pulsation particulière de ces 
émissions. Pour exploiter cette caractéristique unique de l’évolution temporelle du taux de répétition des 
pulsations (PRR) des doubles trilles hauts (HDT) et graves (LDT), la technique du spectrogramme de 
l’enveloppe (tEST) a été développée. Les caractéristiques PRR du signal permettent la détection des 
vocalisations recherchées même en présence de celles d'autres mammifères marins. Pour résoudre les 
problèmes dus à la haute variabilité des durées d'émission, l’algorithme tEST a été combiné avec le 
modèle des chaines de Markov (HMM), particulièrement bien adapté pour appréhender les variations 
temporelles. Cet algorithme de détection basé sur les HMM s’est révélé relativement performant. Le 
taux de détection sur une période d'essai de quatre jours a été élevé (72 %) malgré un faible rapport signal 
sur bruit (SNR) (< 10 dB). Le nombre de détections positives erronées (12 %) était tolérable. La plupart 
des détections erronées se sont produites lorsque le navire de recherche R/V Polarstern s'est approché de 
la station d'enregistrement, diminuant ainsi le SNR (< 0 dB). Le détecteur travaillant trois fois plus vite 
que le temps réel, il est de fait utilisable aussi bien pour les analyses de données post récolte, que pour une 
utilisation directe sur le terrain, comme par exemple la détection de la présence de Léopards de Mer lors 
d'opérations de plongée sous-marine.
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1. INTRODUCTION

The leopard seal (Hydrurga leptonyx) represents one of 
three Antarctic pack ice seal species. Leopard seals are 
solitary living animals, feeding on krill, squid, fish, 
penguins and other seal species (Reeves et al., 2002). As a 
top predator of circumpolar distribution, the leopard seal 
plays an important role in the Antarctic ecosystem. The 
population size is estimated at around 200000 animals 
(Reeves et al., 2002). Research on this species is restricted 
due to the Antarctic pack ice region being accessible for 
humans usually only during the short austral summer 
period.

Figure 1: Leopard seal (Hydrurga leptonyx) on floating sea ice.

Underwater, leopard seals are known to be rather vocal - at 
least during polar summer when most of the research was 
conducted. Stirling and Siniff (1979) described high 
vocalization rates of male leopard seals during the breeding 
season (November to January). Females show above
average vocalization rates during sexual receptivity (Rogers 
et al., 1996). Hence, passive acoustic monitoring offers the 
unique possibility to investigate the species without a need 
of direct access. PALAOA - the Perennial Acoustic 
Observatory in the Antarctic Ocean, (Boebel et al., 2006) is 
an autonomous recording station operated by the Alfred 
Wegener Institute (AWI), Germany, on the Ekstrom Ice 
Shelf close to the German Neumayer Base, providing 
underwater recordings from the Atlantic sector of the 
Southern Ocean. Since January 2006, PALAOA records the 
Antarctic underwater soundscape quasi-continuously. The 
station’s audio system allows broadband data acquisition 
with sampling rates of up to 192 kHz and 24 bit resolution. 
So far more than 6400 hours of acoustic data (as at 
September 2007) were accumulated. The recorded sounds 
are transmitted in real-time to the AWI in Germany, 
allowing real-time access and analysis of the acoustic data.

Extracting the signals of interest - in this case the leopard 
seal vocalizations - from the resulting 2.5 TBytes of data, is 
challenging. Obviously, human “observers” will not be able 
to manage this task, but rather, numerical detection 
algorithms need to be developed to perform an automated, 
computer based search. The resulting time series of calls 
will then form the data base for ecological studies with 
focus on diel patterns, diurnal and seasonal variability and 
their interrelation with the changing physical environment.

Apart from these scientific applications, the development of 
detection algorithms for leopard seal vocalizations can also 
help to increase the safeness of research divers in the 
Southern Ocean. Several encounters between human divers 
and leopard seals have been reported throughout the last 
decades (Muir et al., 2006). The most serious incident 
occurred in July 2003 at the British Rothera Station, located 
at the Antarctic Peninsula, when a scientist was killed by a 
leopard seal. As a consequence of this accident, acoustic 
monitoring prior to and during diving activities are used by 
AWI as risk mitigation method for diving activities. To this 
end, robust and fast (at least real-time) detection algorithms 
are needed to screen the hydro-acoustic recordings.

2. THE ACOUSTIC ENVIRONMENT

The Southern Ocean is among the regions least disturbed by 
anthropogenic noise. However, PALAOA records reveal a 
high degree of abiotic and biotic acoustic activity in the 
Southern Ocean. During austral summer in particular, the 
Antarctic underwater soundscape is dominated by the 
vocalizations of Weddell seals (Leptonychotes weddellii), 
Ross seals (Ommatophoca rossii), crabeater seals (Lobodon 
carcinophaga), leopard seals (Hydrurga leptonyx) and 
various baleen (Mysticeti) and toothed (Odontoceti) whale 
species.

10 kHzj

Figure 2: Spectrogram of a PALAOA sound file.

Figure 2 shows a spectrogram of a typical sound file as 
recorded at the PALAOA Station in austral summer. 
Overlapping vocalizations from different animals/species 
significantly complicate the detection of specific
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vocalization “targets.” However, human listeners can easily 
distinguish leopard seal vocalizations from those of other 
marine mammals because of their distinctive sound. It is 
believed that this distinctive sound is a result of the pulsed 
structure of the leopard seal vocalizations. To develop a 
detection algorithm for leopard seal calls, this publication 
exploits in detail the temporal structure of the pulse 
repetition rate (PRR) throughout the calls. The PRR feature 
is exclusively linked to leopard seal vocalizations (at least in 
the vicinity of the PALAOA Station) and seems to be a 
robust feature for the detection while other marine mammal 
vocalizations are present.

3. LEOPARD SEAL VOCALIZATIONS

3.1 State of knowledge

A first (partial) spectrogram of a leopard seal vocalization 
was published by Ray (1970) while Stirling and Siniff 
(1979) described four different leopard seal call types 
quantitatively. A comprehensive description of the vocal 
repertoire of leopard seals was published by Rogers et al. 
(1995). Rogers identified twelve different call types by 
analyzing recordings of captive and free living animals 
(Prydz Bay, Antarctica). The frequency span of the analyzed 
call types ranges between 65 Hz and 4800 Hz. Thomas et al. 
(1983) recorded ultrasonic vocalizations with frequencies up 
to 164 kHz of leopard seals in captivity during hunting 
activity. However, ultrasonic vocalizations have so far not 
been reported from field studies.

By far the most frequent vocalizations of leopard seals are 
the so called high double trill (HDT -  see Figure 3) and the 
low double trill (LDT). In the PAL AO A recordings, the 
HDT (frequency range: 2.5 - 4.5 kHz) and the LDT call type 
(frequency range: 230 - 470 Hz) represent more than 70 % 
of all leopard seal vocalizations while Rogers et al. (1995) 
reported 79 % of such calls for their data set.

Due to its distinct Signal to Noise ratio (SNR) this paper 
focuses on the analysis and detection of HDTs.

3.2 The high double trill (HDT)

Figure 3 (top) depicts the waveform and spectrogram of a 
high double trill. The waveform clearly shows that the call 
is separated into two segments which consist of a series of 
short pulses. These pulses cause an amplitude modulation of 
the main signal. This modulation generates so called 
sidebands, which are revealed in the spectrogram in 
Figure 3 (bottom). The frequency difference between the 
sidebands equals the frequency of the PRR. This implies 
that an increasing (decreasing) PRR is causing increasing 
(decreasing) frequency differences between the sidebands. 
In general the number of sidebands is determined by the 
type of amplitude modulation. For sinusoidal modulation, 
only two sidebands are generated while the primary

frequency is rendered invisible in the spectrogram. By 
contrast, triangular or rectangular modulations cause 
multiple (> 2) sidebands. The type of amplitude modulation 
of the HDT is in-between a sinusoidal and triangular 
modulation (see Figure 5).

part 1

A
part 2

A

Os [2 s |4s

Figure 3: Waveform and spectrogram o f a HDT call.

A total of 150 HDTs were analyzed to gain information 
about the temporal structure and the frequency 
characteristics of this call type (Table 1). The HDTs feature 
a high variability of the call duration, ranging from 1.9 s - 
9.0 s. The calls cover a frequency range between 2500 Hz 
and 4450 Hz.

Table 1: Acoustic features o f the HDTs recorded at PALAOA.

Min Max Mean Stdv
Call duration 1.9 s 9.0 s 4.5 s 1.6 s
Frequency 2500 Hz 4450 Hz --- ---

4. THE ENVELOPE-SPECTROGRAM 
TECHNIQUE (tEST)

So far, HDT and LDT descriptions regarded the PRR as 
constant for the duration of the call (Rogers, 2007; Rogers 
et al., 1995). By contrast, spectrograms of calls recorded by 
PALAOA reveal varying side-band distances over the 
duration of HDT and LDT calls, suggesting a variation of 
the PRR in the course of the call.
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To accurately analyse the temporal structure of the PRR, a 
Matlab based algorithm was developed. The respective 
sound snippet was first band pass filtered with the frequency 
range of the target signal (HDT: 2.5 - 3.5 kHz). The 
envelope of the absolute values of a band passed waveform 
was calculated by detecting all maxima values (peaks) in the 
waveform and interpolating (1-D) the detected points. The 
resulting waveform was then down-sampled to a sampling 
rate of 1000 Hz and transformed into the frequency domain 
by means of a Fast Fourier Transformation (FFT- 
Parameters: Hamming window 256 points; 50 % overlap).

This algorithm, named tEST (the Envelope-Spectrogram 
Technique) hereinafter, provides the spectrogram of the 
envelope, i.e. the frequency-evolution of the PRR. If the 
SNR over the frequency range of the target signal is low 
(< 6 dB), it can be helpful to use a narrower filter which 
covers only the frequency range of the signal of the highest 
energy.

4.1 Applying tEST on HDT calls

Figure 4 shows the result of tEST applied on a HDT. The 
signal was processed as described in the former paragraph.

part 1

A
part 2

A

zoom in on band passed waveform1 
and calculated envelope2

spectrogram of envelope
12.5 s  S.O s

Figure 4: Results o f tEST applied on a HDT.

The result of the FFT of the envelope signal is displayed in 
the lower part of Figure 4. For the selected sample, the pulse 
repetition rate of the envelope varies between 52 Hz and 
72 Hz (20 Hz bandwidth @ 2 Hz resolution). The first part 
of the call is characterized by descending rates. In the 
second part the pulse repetition rate is ascending.

The same 150 HDTs as used for the spectral description 
were analysed with tEST. All vocalizations showed 
descending repetition rates in the first part of the call and 
ascending rates in the second part. The observed frequencies 
ranged between 45 Hz and 75 Hz.

5. DETECTION OF LEOPARD SEAL 
VOCALIZATIONS

5.1 Introduction

In summary, the previous sections showed:

(a) The analysis of the acoustic environment (Section 2) 
confirmed that vocalization of various whale and seal 
species occur simultaneously within the frequency bands of 
the target vocalizations. Thus the likelihood of false positive 
detections will be high using detection methods such as 
energy summation or comparing energies in different 
frequency bands.

(b) The call durations of the HDT calls vary widely 
(Section 3) which renders detection algorithms based on 
matched filter/spectrogram correlation difficult. Further 
more the detection performance of these methods is linked 
to the representativeness of available examples of the target 
vocalization. 150 calls are probably not enough samples to 
create an effective filter.

(c) Leopard seal calls exhibit temporal modulation of the 
PRR throughout HDTs providing a unique feature of this 
leopard seal call type (Section 4). Other marine mammal 
vocalizations in frequency bands overlapping with those of 
the target vocalizations are likely not to pass as “false 
positives” if the detection algorithm is to exploit this rather 
unique feature.

For the detection of the HDTs based on the PRR feature a 
Hidden Markov Model (HMM) was applied. The next 
paragraphs will give a short introduction to HMMs and how 
they are used for the detection.

5.2 Hidden Markov Models (HMM)

Hidden Markov Models (HMM) are statistical models for 
the detection and classification of transient patterns, 
representing state of the art tools in human speech
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recognition (Rabiner, 1993). HMMs are particularly well 
adapted to this call type of variable duration, as they allow 
detection of temporally changing structures. For leopard 
seal vocalizations this implies that the detection probability 
is high irrespectively of the calls duration, as long as the 
envelope follows the specific temporal evolution (see 
Figure 6). A short introduction and description on how to 
build a Hidden Markov Model are given in the following 
paragraphs. Unfortunately, the scope of this paper only 
allows an abbreviated, qualitative description of Hidden 
Markov Models. For detailed information see Rabiner, 1993 
and Deller et al. 2000. All model parameters used in this 
study are available on request.

(a) Feature extraction: To extract the call type’s typical 
features, it is recommended to choose the best available 
samples. Consequently the best 100 samples (high SNR) 
were selected out of the available 150 samples for this 
process. The features are extracted by means of a time
frame based analysis (frame length: 256 ms) of the envelope 
signal of the 100 sample files of variable duration (2 - 9 s, 
depending on call duration). For each time frame, a feature 
vector is calculated (see Figure 5), representing the 
respective energy distribution as a function of frequency.

:OHz

>5Hz

iOHz

All feature vectors (n = duration of sample file / 256 ms) of 
one sample file comprise the so called observation vector 
(which actually is a matrix - see Figure 7). Hence, 100 sets 
of spectral vectors from the spectrograms of the envelopes 
are extracted.

(b) Information reduction: To condense the numerous 
ensuing feature vectors to a set of ‘most significant feature 
vectors, a “k-mean (squared Euclidean distance)” cluster 
algorithm (Deller et al., 2000) was applied to the training 
set. This creates the so called codebook of 10 (number 
empirically chosen) codebook vectors representing the 
target vocalization’s most significant (sub-)set of 10 feature 
vectors. For each feature vector of an observation vector the 
best matching (minimal distant) codebook vector is 
determined, which results in an observation sequence. Each 
of these consists of a series of integers, representing the

(solid line)
O s  |2.5 s |5.0 s

Figure 5: Feature vector (enclosed by solid box) and 
observation vector (enclosed by dashed box) o f a HDT.

sequence of IDs of the best fitting codebook vectors. Thus, 
each set of the 100 spectral vectors is quantized to a one 
dimensional array of integers. The resulting set of 100 
quantized vectors represents the quantized training set.

(c) Generate the HMM: Evaluating model parameters 
describing the quantized training set best. A Hidden Markov 
Model is a quintuple, comprising (a) the number of (hidden) 
states S; (b) the state transition matrix A (transition 
probabilities between the states); (c) the observation 
probability matrix B; (d) the state probability vector at time 
t=1, ^(1); and (e) the number of observable outputs Y 
(number of codebook vectors), or in short:

HMM={S, rc(1), A, B, Y}.

The number of states (S) was assigned to 5. The number of 
10 observable outputs (Y) is given by the size of the 
codebook. The state transition matrix (A), the observation 
probability matrix (B) and the state probability vector at 
time=1 (ïï(1)) were determined by applying the 
forward/backward algorithm (Deller et al., 2000) on the 
quantized data set.

In the first step, the model parameters A, B and ^(1) are 
initialized (see below) and the algorithm calculates the 
match between the model and the training set. In the second 
step the algorithm starts to modify the model parameters. 
The algorithm guarantees that every iteration has a matching 
likelihood that is >= to the previous one. Once the matching 
likelihood converges, training is done.

Critical to this process is the initial guess of the model 
parameters. In the case of the described target signals, 
meaningful parameters were unknown. If the initial guess is 
too far away from the optimal parameters, then the 
algorithm will only find a local maximum but not the global 
one. For this reason the initial parameters were randomized 
and the resulting HMMs used to analyse one sample file 
including a known number of target signals repeatedly. The 
best fitting model parameters (giving the highest detection 
probability for the target signals) were then chosen for the 
further process.

5.3 Detection of HDTs using the HMM

To detect HDTs with the optimized HMM (5 states), a 6-s 
window is continuously slid in steps of 1.0 s (~ 83 % 
overlap) over the data stream: the respective window 
content is first band pass filtered (2500 Hz - 3500 Hz). The 
resulting waveform is then used to calculate the envelope, 
which is used to derive the observation sequence as 
described in section 5.2. In a final step the probability of the 
observation sequence of each window under the assumption 
of the model P(wmdow|modei) is calculated. In Figure 6 an
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example for the output of the HMM detection algorithm is 
given. The spectrogram shows four signals - two HDTs (c) 
of different duration, an artificial signal (b) and a Weddell 
seal call (a). The detector output is shown in the lower part 
of Figure 6. The detection threshold is set automatically by 
the algorithm depending on the overall SNR. If the detector 
output reaches the detection threshold, a call is “detected”. 
In this sample the HDT calls are clearly detected by the 
system but not the Weddell seal call or the artificial signal 
present in the same frequency band.

A subset of data was selected (2 min of data every 10 min) 
to create a reference data set, which was used to evaluate the 
detection algorithm. The result of the test run is presented in 
Figure 7. The light line represents the manually detected 
calls; the dark line represents the automatically detected 
calls. The total number of manually detected calls in the 
selected files was 1527 and the detection rate of the system 
72 %. The overall temporal evolution of the two curves 
shows a high degree of similarity. Analysing all files over 
the period the HMM based algorithm detected 7548 HDTs.

spectrogram 7.5 sec 3.0 sec

^ (c )*fee*

(a) Weddell seal ca]

(b) Artificial signal

" r /w\ o u r \T

Figure 6: Detector output for a Weddell seal call, an artificial 
signal and two HDT calls of different duration.

5.4 Results of the detection system running over a 
test data set

To test the detection algorithm, independent data (i.e. not 
including the 100 calls used to develop the HMM) from a 
4 day period of variable SNR was selected and analysed. 
The period started out with a good bandwidth related SNR 
of 10 dB (between 2.5 kHz and 3.5 kHz), which deteriorated 
to SNR < 0 dB during the last day of the period when 
R/V Polarstern approached the recording station. To deal 
with the low SNR the spectrogram of the envelope was 
manipulated using a wavelet based denoising technique 
(Kovesi, 2000 and Kovesi, 1999). Also an anisotropic 
diffusion was performed on the spectrogram to enhance the 
contrast at sharp intensity gradients (Kovesi, 2000). The use 
of the denoising and the anisotropic diffusion algorithm 
increased significantly the detection performance. Thus, the 
algorithms were directly integrated into the system.
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Figure 7: Results of a test run over a four day period.

Most of the false positives (in total 12 %) occurred during 
the period when R/V Polarstern was approaching - 
especially when the vessel was close to the recording station 
(second half of day 24.12.2003). A detailed error analysis 
will be included in upcoming studies, to determine the exact 
cause of these false detections.

The detection algorithm is rather fast. Analysing a sound 
file of 2 minutes duration (48 kHz - 16 bit) takes about 
40 seconds (Desktop PC with single Intel Pentium IV 
3.4 kHz processor and 2GB RAM). Thus the HMM based 
detection system is suitable for real-time applications.

6. DISCUSSION AND OUTLOOK

The tEST algorithm which was developed in the course of 
this study is a useful tool for analysing the temporal 
evolution of pulse repetition rates in animal calls. The 
analysis of the high double trill (HDT) of the leopard seal 
revealed for the first time a temporal variation in the 
repetition rate of the pulses.

First results of the analysis on low double trills (LDT) of the 
leopard seal showed also a temporal variation in the pulse 
repetition rate throughout this call type. The frequency 
range of the PRR is compared to the HDT around 4 times
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lower (bandwidth between 13 Hz and 20 Hz). Future work 
will concentrate on the detection of LDTs using the PRR 
feature in combination with a Hidden Markov Model.

However, the specific PRR modulation is exclusively linked 
to leopard seal vocalizations (at least in the vicinity of 
PALAOA Station), facilitating the development of a HMM 
based detection system to detect the target vocalizations in a 
data set which was entirely overlaid by vocalizations of 
other marine mammals.

A problem of detection algorithms is often their validation - 
especially when working with huge data sets. HMM based 
detection systems provide the “matching probability” 
between the signal and the used model for each call 
detected. Analysing this probability over time can help to 
identify regions where the “matching probability” is low 
and a validation is necessary in particular.

In summary, it is noted that the Hidden Markov Model 
worked rather reliably. The detection rate over the 4 day test 
period was high (72 %) although the SNR was unfavourable 
(< 10 dB). The number of false positive detections (12 %) 
was tolerable, because most of the false positives occurred 
during the period when R/V Polarstern was approaching the 
recording station when the SNR was temporarily < 0 dB. 
The detector worked 3 times faster than real-time and is 
therefore suitable for time critical applications.
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a b s t r a c t

In this paper we consider the joint problems of separating and localizing sperm whale click trains. Click 
train separation is the single-sensor problem of grouping the clicks from each animal together when the 
clicks of more than one animal are present at a given sensor. Localization is the problem of localizing the 
animals based on the measurement of time delays of the same click events at multiple sensors. The two 
problems are inherently connected. We first consider the two problems independently using novel 
applications of statistical signal processing methods. For separation, we employ an algorithm inspired by 
the Viterbi algorithm from dynamic programming. For localization, we employ an algorithm inspired by 
the expectation-maximization (EM) algorithm. Finally, we use the two algorithms to “assist” each other in 
a joint localization/separation solution. We demonstrate the algorithm on real data.

s o m m a ir e

En cet article nous considérons les problèmes communs de séparer et de localiser des trains de clic de 
cachalot. La separation de train de clic est le problème de simple-hydrophone de grouper les clics de 
chaque animal ensemble quand les clics de plus d’un animal sont présents à une hydrophone donnée. La 
localisation est le problème de localiser les animaux basés sur la mesure du temps retarde des mêmes 
événements de clic aux sondes multiples. Le problème deux sont en soi relies. Nous considérons d’abord 
les deux problèmes employant indépendamment des applications de nouveaux des méthodes statistiques de 
traitement des signaux. Pour la séparation, nous utilisons un algorithme inspireé par l ’algorithme de Viterbi 
de la programmation dynamique. Pour la localisation, nous utilisons un algorithme inspireé par 
l ’algorithme de E-M. En conclusion, nous employons les deux algorithmes pour nous aider dans une 
solution du joint localization/séparation. Nous démontrons l ’algorithme sur de vraies données.

1 c l ic k  TRAIN SEPARATION 

1.1 Introduction and Problem Definition

When recorded at a single hydrophone, multiple sperm 
whale vocalizations are difficult to separate into the click- 
trains of the individual whales. Previous work has 
utilized various clues including spectral and temporal 
features and inter-click correlation as well as multi-sensor 
time-delay [1],[2],[3]. Based on the structure of the problem, 
involving many interrelated clues spread over time, we 
believe there is significant room for improvement through 
the application of dynamic programming. With dynamic 
programming, a globally best solution can be approximated 
through efficient time-recursive processing. Let us assume 
that a series of clicks has been received at a sensor. For the 
purpose of this discussion we define an arbitrary error metric 
Ei,j as the result of comparing clicks i and j. It is not 
important for the discussion how the clicks are compared. 
We can assume that information about the time duration, 
amplitude, and spectral content plus a measure of inter-click 
correlation has been used to develop this error metric. 
The goal is to arrange clicks into groups or chains. If the 
inter-click error is measured only between adjacent clicks 
within a chain, then the total error is minimized when 
the clicks are properly grouped. Of course there must be a 
penalty for creating a new chain. Otherwise, one could

place each click in a separate chain to minimize the errors. 
The total error for a complete grouping is the sum of the 
inter-click errors in each group plus the penalty value. The 
solution could be found by brute-force evaluation of all 
possible groupings, but in general this is computationally 
prohibitive. To obtain an efficient algorithm, we employ 
dynamic programming.

1.2 Dynamic Programming Algorithm

Dynamic program m ing is a means of solving 
problems, whose complexity would grow at an 
exponential rate with time if solved brute-force, 
recursively with linearly increasing complexity. For details, 
we refer the reader to the classic book by Bellman [4]. 
Although the problem we try to solve does not meet the 
requirements to be solved by dynamic programming, we 
use an algorithm inspired by dynamic programming. The 
goal of the algorithm is to group together clicks at a single 
sensor that come from a given whale and a given 
propagation path. Before we describe the algorithm, let us 
define the following terms. Chain: a set of associated 
sequential clicks. Over-Complete Grouping: a set of 
chains that make up a complete set including all clicks, but 
with duplicates. com plete Grouping: a set of chains 
that make up a complete set including all clicks with no 
duplicates. Best complete Grouping: the complete
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grouping with the minimum error of all complete groupings.
The algorithm operates on the clicks received at a single 

sensor. Assume the algorithm has processed all clicks up 
to index n -  1 and has an over-complete grouping list of 
candidate chains and chain error values. To terminate the 
algorithm, it would be necessary to search the list for the best 
complete grouping. If the list of chains is not very large, and 
since the error metrics have already been computed and the 
totaled up for each chain, the problem is not computationally 
prohibitive (since we still have additional clicks to 
process, we are not going to terminate). We now process the 
remaining clicks.

To add click n, we do the following. First, we assume 
that detection n may not be a member of any existing 
chain so we add it as a “chain of one” with error value P and 
retain all existing chains. Second, we assume detection n 
may append to an existing chain. We copy all existing 
chains, thereby doubling the number of chains, and 
append click n to the end of each copy (subject to limits on 
click period). Having added click n, we then proceed to 
click n + 1. The list of chains can grow substantially with 
each added detection, in fact it grows exponentially. Before 
the number of chains gets too large to manage, it is necessary 
to pare down the list. The act of paring down the list we call a 
collapsing search because it collapses the list down to the 
best complete grouping. Note that there is no guarantee that 
the collapsing search performed on clicks up to n won’t lose 
a chain that is part of the best complete grouping of clicks up 
to n + 1. To minimize the chance of losing such chains, we 
do two things. First, the collapsing search is performed at 
intervals of T click updates. Second, a set of parallel lists are 
maintained that perform the collapsing search also at 
intervals of T click updates, but a different time offset 
(phase). The use of multiple list phases is illustrated in 
figure 1.

13
N

C/3 
‘m  

_ l

Time
Fig. 1. I llustration  o f  a m ultip le  search phases.

The list size of each list phase grows exponentially until 
the collapsing search is performed (every T updates).

We performed an experiment to see the reduction in 
error rate as T increased. We performed a collapsing 
search at an interval of length T, and kept T phase lists, 
so one list was performing a search at each update. We used 
two test problems: (a) a benign problem with a single high- 
SNR whale with a direct and a reflected propagation path, 
and (b) a difficult case with up to three whales at low 
SNR. In each trial, we selected at random 12 consecutive 
click detections. Then we located the best complete grouping 
by brute-force search. We then ran the recursive algorithm, 
with the inter-click error metric described below, with 
collapsing search every T updates (and kept T phase lists). 
We considered it an error if the best complete grouping 
was lost. The error rate was the fraction of the trials in
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which the best complete grouping was lost. The results are 
shown in figure 2. In the benign problem the error rate 
dropped exponentially as T increased until no errors were 
found above a value of T = 2 . In the difficult problem, the 
error rate decreased less rapidly and never reached the 
point where no errors were found. This is expected 
because the globally minimum solution is probably not 
“truth” in any case. In other words, solutions found using 
the recursive algorithm did not appear any better to the eye 
as the global best solution.

Search  Period T

Fig. 2. Error rate as a function of search interval T. The 
benign case is the lower trace. There were no errors at T = 3 

and higher.

1.3 Inter-Click Error Metric

We used a probabilistic inter-click error metric. This was 
accomplished by extracting 10 features from the click 
pair to be tested. Features included measures of 
spectral and temporal closeness, correlation measures, etc. 
We considered the binary decision: associated (H 1) 
versus not associated (Ho). For training, feature 
samples of H 1 were obtained from adjacent clicks from 
hand validated groupings, while feature samples of H 0 

were obtained from random click pairs. A Gaussian 
mixture probability density function (PDF) estimate [5] 
was used to estimate the distribution under Ho and H 1 . 
The probabilistic error metric was obtained from the 
log likelihood ratio using the log likelihood ratio Ey = 
- log{p(x|H 1 )/p(x|Ho)}. This is the n eg a tiv e  o f the 
log-likelihood of the probabilistic test for H 1 vs. H0 . We 
used a new chain penalty value of -8 in all our experiments.

2 MULTI-SENSOR LOCALIZATION

We now describe a model-based whale localization 
algorithm. It is distinguished from existing algorithms 
in its use of the expectation-maximization (EM) algorithm 
and use of probabilistic “soft” association of click-pairs.

2.1 Introduction

The problem of localizing sperm whales using click-trains 
received at multiple sensors works primarily by measuring 
time delays between the click vocalizations received at 
multiple sensors and comparing with a propagation 
model. The task is made difficult by the problem of
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associating clicks, that is, knowing if clicks received at 
separate sensors are actually from the same click 
vocalization. This is made even more difficult by the 
existence o f multiple propagation paths and the existence 
of multiple whales. While existing approaches solve the 
association problem by correlating click trains [6], [7], [8], 
[9], we seek to employ the E-M  algorithm  to sort out the 
association problem. We explore the advantages and 
disadvantages of the approach and test it using real data.

2.2 Algorithm Description

The EM algorithm [10] has been successfully applied to 
many problems where there is inherent association ambiguity. 
In the application of the EM algorithm to such problems, the 
problem can be regarded as a mixture density and the 
algorithm takes a particular form [5]. There is a fixed 
number N of data samples, and a fixed number M  of 
probabilistic “models”.

In  our problem , a model is a potential whale location 
and a data sample is a measured 2-sensor inter-click time 
delay. Each data sample (inter-click time delay) is regarded 
as a possible statistical realization of one of the M solutions. 
Let there be set o f NM  click association probabilities, 
denoted by wi,j, and representing the probability that data 
sample i is a realization of model j. The EM algorithm 
consists o f 2 steps:

1) The “E”-step: G iven the loca liza tion  solu tions, e s ti
mate the click pair association probabilities wi,j, and 
solution weights aj. The solution weights are a measure 
of validity of each solution.

2) The “M” step: G iv en  the  c lic k  a s so c ia tio n  p ro b a 
bilities, estimate the parameters of each localization 
solution. Parameters include position and time delay 
variance.

The “E” and “M” steps are repeated until convergence. 
Solutions with low aj are pruned. Notice that rather than 
associating one click to another, we associate measured click 
pairs to a source solution hypothesis. We allow all click pairs 
to ex ist even i f  they are false pairings. We add a special 
“error” localization solution located at the center of the sensor 
field and with a high location variance (q 2). The algorithm 
should associate invalid click pairs to the “error” solution. The 
EM algorithm uses “soft” association - a solution is 
associated w ith a click pair w ith certain probability. It 
may have nonzero association with all click-pairs. The 
concept is illustrated in figure 3.

2.3 Algorithm Details

2.3.1 Solution Probabilistic Model

We assum e th a t □  is a G aussian  random  variab le  

w ith  mean T (z ., si, ri ) and variance j  Let □  i be the time

delay m easurem ent fo r c lick  p a ir i. L et Li,j be the 
lik e lihood  function value for click pair i and solution j

Fig. 3. Illustration of main concepts of 
EM algorithm.

On the left is the click-pair association probability matrix (CPAPM) 
represented as an intensity image. The Y-axis is the index of the click pair 
and the X-axis is index of the solution. On the right is a geographical 
representation of the sensors and solutions. The three solutions, A, B, and C 
are represented on the right in geographical position and on the left as 
columns of the CPAPM. The additional Error solution is shown as the first 
column. Each horizontal row of the CPAPM is the probability of a 
given click pair having been generated by a whale at each of the 
solutions, and sums to 1 over all solutions. Each vertical column can be 
regarded as a given solution’s probability of ownership for the click pair. 
Those solutions with the largest column sums are associated with more 
click pairs, and are therefore more important. The EM algorithm 
alternatively updates solutions based on the weighted click pairs, and then 
updates the CPAPM.

defined by,

L i,j = ~ r = r  e x p { -  \fi -  T ( z ; , si , r  ) ]2 /(2  a j  ) }

where Cj2 is the time delay error variance for solution j , z 
is the curren t position  vecto r fo r solu tion  j , (si, ri) is 
the sensor pair from  w hich click pair i has been 
obtained, and T (zj , si , r j  is the model time delay.

2.3.2 Initialization

We detect individual clicks at each sensor, then create 
“click pairs” from every two-sensor pair o f clicks (that can 
reasonably be associated with each other given the 
dimensions of the search area, the maximum range of 
reception, and the spacing of the hydrophones). Let there be 
M  initial location solutions obtained by a grid-search using 
any model-based localization procedure. A  large number 
o f initial solutions can be used. The solution variances Cj2 
can be initialized based on the grid-search quantization size. 
We include an “error” solution, located at the center w ith 
wide variance. Let rç, 1 < j < M  be the solution weights for 
the M solutions. They can be initialized to 1/M.

2.3.3 Solution weights and Click Pair Association Prob
ability Matrix (CPAPM) Update (E-step)

The CPAPM is estimated as follows. The un-normalized 

CPAPM  is com puted as wi . =  a  ■ Li . where i indexes‘, J J *, J
the click pairs and j indexes the solutions. Normalization is 

then perform ed so tha t fo r each  i, ^  , w{ j =  1.
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Solution weights, rç, are obtained by summing the CPAPM 
along each column (fixed j) to determine the effective 
number of click pairs associated with solution j, then 
normalizing so the solution weights sum to 1.

2.3.4 Solution Estim ation Procedure (M-step)

The parameters of each solution include the time delay error 
variance q 2 and the position vector zj. These parameters 
are estimated by weighted maximum likelihood (ML) by 
maximizing

N

Q < z  j  , c t ,2 ) = Ë  w i j  lo g  h , < z , , c t ,2 )
i=1

over the parameters z  , q 2 . Space does not permit a detailed 
description of the maximization procedure, however, ML is a 
well-studied method [11].

2.3.5 Solution E rror E llipse

A well-known property of ML is that the statistical random 
error of the parameter estimates approximates Cramer-Rao 
lower bound matrix [11]. This is useful for drawing solution 
error bound ellipses on the geographical solution plot. Let C  

be the 4-by-4 error covariance matrix for the 4-dimensional 
param eter set 0 = {z1 , z2 , z3, q 2} for a general location 
solution. The Cramer-Rao lower bound [11] matrix is

given by C  =  [  1 where

[pq =  -  e \s  Q f f ) /  dpBq\
where p and q represent components of 0. The solution error 
ellipses are contours of constant value of the inner product
0'I0.

2.3.6 Recursion

The algorithm repeats the E-step and M-step until 
convergence. Solutions with very low solution weights are 
removed.

2.4 Algorithm Modifications

The algorithm as described above is a special case of the E-M 
algorithm for mixture densities. Some modifications may be 
necessary, however, which deviate from the E-M 
algorithm. In difficult problems, the majority of click 
pairs may be “invalid”, that is they are time delays 
measured between two clicks that are not both from the same 
acoustic click event. Normally, these should get assigned to 
the “error” solution. Nevertheless, because they often have 
time delays matching a given model solution by chance, 
their existence causes significant problems in the 
convergence of the algorithm. The algorithm can be 
modified to effectively deal with the problem. First, by 
using a power in the exponent of (1) higher than 2, the 
distribution is no longer Gaussian, but the effect of outlier 
time delays is minimized. Second, we use click-based solution 
weights. In the unmodified algorithm, the solution weights 
are click-pa ir based. They are proportional to the effective 
number of click-pairs assigned to each solution since they 
are derived from the CPAPM. To remove the influence of

invalid click pairs, we create click-based solution weights, 
based on a click detection association probability matrix 
(CDAPM). Let Pk, j be the probability that detection k is 
assigned to solution j. We estimate Pk, j by approximating the 
number of click pairs assigned to solution j containing

click k. More precisely, J3k , = ^  Li , where [ k is the

lG[k
set of click pairs containing click k. We then normalize Pk, j 
in the same way as wi, j . We estimate the solution weights a 
j from Pk, instead of wi, j .

3 C O M B IN IN G  SING LE A N D  M U L T I
SE N SO R  A L G O R I T H M S

3.1 Assisting single-sensor separation with multi
sensor information

One way to assist the click-train separation is to develop a 
measure of the probability that two clicks, received at 
the same sensor, are from the same animal and same 
propagation path. This requires “support” from two 
additional clicks. Let clicks A 1 and B 1 be received at one 
sensor. If A 1 and B 1 are indeed from the same animal, 
then it is possible that these same two clicks have been 
received at another sensor. Denoting these two clicks as 
A2 and B2 , we would find that the time delays (A 1 to A2 ) 
and (B1 to B 2) should match to a high degree of accuracy. 
With this in mind, we create the match measure

’I,  = Z  e ‘T,m ~Tj," )!/<2CT'! ) , (3)

where Ti,m is the time delay between click detections i and 
m and cx2 is a time delay error variance parameter. Indexes 
i, j represent A1 and B 1. Indexes m, n represent all potential 
pairs A2 and B2 . The search is limited to likely candidates 
for A2 and B2 based on time delay limits. An example of 
matrix ri,j is shown in figure 4. The information is utilized in 
click train separation by adding - lo g  r̂  to the error metric
a  j.

Detection 1

Fig. 4. Example of single-sensor inter-click error metric rij 
based on multi-sensor information. Darker shades indicate 

good match. Even numbered clicks associate with even clicks 
and odd with odd. This is a situation where there is one animal 

and each direct-path click detection is followed by a 
reverberation detection. Use of ry prevents association of 

reverberation and direct-path clicks.

m,n
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Fig. 5. Example of the sperm whale click train separation. Shown is the first 18 seconds o f data from sensor 1 of 6. The lowest 
trace shows all clicks (log amplitude vs time). Separated click trains are displayed with vertical and/or horizontal separation. The 

presence of two nearby clicks of different amplitude gives the appearance of “crooked” clicks.

3.2 Assisting localization with single-sensor infor
mation

Going back to the exam ple above, if  c lick pair (Â i,Â 2) is 
a valid pairing, then it stands to reason, there exists another 
p a ir  (B 1,B 2) such that (a) A 1 and B 1 be long  to the 
sam e click train, (b) A2 and B 2 belong to the same click 
train, (c) pairs (A 1,A 2) and (B 1,B 2) have the same time 
delay. W ith this in mind, we create the click pair quality 
measure

-(r.- T  ) 2/(20-r2)
q  =  Z e r , (4)

ji

w here J  i is the set o f  c lick  pairs tha t are from  the same 
single-sensor click train as pair i. Click pairs with low values 
of qi can be eliminated.

4 ALGORITHM  SUMMARY

1) Make click detections on each sensor.

2) D evelop a list o f potential inter-sensor click pairings 
with time delay ü subject to constraints on time delay.

3) For each sensor:
a) For every pair of clicks (i, j).

i) calculate single-sensor inter-click error metric 
Ei,j (section 1.3).

ii) calculate inter-click match metric based on 
multi-sensor time delays (rij in equation 3). 
A d d  -  log r i , j Ei,j.

b) Run the click separation algorithm described in
section 1.

4) From the single-sensor separation results, develop the
click pair metric qi in equation (4).

5) Run the localization algorithm described in section 2.3:
a) Use a grid-search to find a set of potential whale

locations zj. Initialize the solution variances

cr;2 to reflect the time-delay variance

corresponding to the grid-search quantization. 
Initialize the solution v a lid ity  m easures % to 
a co n stan t % = 1 /M  where M is the number of 
solutions.

b) Compute CDAPM Pk,j and validity 
probabilities a, (section 2.4). Eliminate locations 
with low Oj.

c) F o r each  j ,  m axim ize (2) over c r;2 and zj

and compute the Cramer-Rao lower bound 
covariance for zj from which the error ellipses 
can be drawn. Go to step 5-b, repeat.

5 EXPERIMENTAL RESULTS

We utilized sperm whale data from bottom mounted 
sensors from the Monaco 2005 workshop. The data 
consisted of two sets which can be described as “easy” 
and “difficult” . Data set 2 (easy), was a 25-minute run 
where a single whale was present with high SNR. This data 
set was used to produce figure 4 and the lower trace in 
figure 2. Data set 1 (difficult) was a 20 m inute run w ith 
two and possibly three whales. This data set was used 
to produce figures 5, through 9 and the upper trace in 
figure 2.

5.1 Cl ick Separat ion Results

U sing “difficult” data set, we obtained single sensor 
click-train separation results using the described 
recursive algorithm assisted by multi-sensor information 
using (3). Results from the first 18 seconds of sensor 1 are 
typical and are shown in figure 5. A total o f 70 click events 
were grouped into 11 chains ranging from 2 to 17 clicks in 
length. From the first 18 seconds of data from 6 sensors, the 
single-sensor groupings were used to calculate qi (equation
4). A total of 9564 multi-sensor click pairs and associated
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time-delays were created. By setting  a low er bound of 
qi = 0 .8 , it was possible to eliminate 8643 of the 9564 
click pairs. An initial set of 287 initial solutions were found 
by looking for local minima in the x -  y -  z grid-search. Using 
the “easy” data set, the algorithm provided two very strong 
and tight solutions, the direct path.

1 1.2 1.4 16 1.8 2

X position (meters x 104 )
Fig. 6. In itia l set o f 287 solutions on a geographica l plot. 

Initial solutions were local maxima of the function 1 searched 
over z1, z2, z3 in a grid. Image intensity was maximized over 

depth (z3).

5  10 15

Fig. 7. Solution weights after 100 iterations. Solutions 3, 6, and 7 
have appreciable weight.

5.2 Localization Results

The first 18 seconds of the “difficult” data set provides a 
good illustration of algorithm behavior. The data of figure 
5 was one of six sensor inputs provided to the localization 
algorithm. The algorithm was able to positively identify 
the locations of two whales in the sensor range. After 100 
iterations, the solution weights were as shown in figure 
7. Solutions 3, 6, and 7 have appreciable weight. 
Solutions 6 and 7 were clearly whales and solution 3 was a 
potential whale, although the solution was ambiguous. The 
solution error ellipses are shown in figure 8. Error ellipses 
were obtained from the CR bound analysis of equation 
(2). The error ellipse for solution 3 resembles a line, an
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indication that click pairs from only two sensors are 
available, or the positioning is unfavorable for exact 
localization. Ellipses for the valid whale solutions 6 and 7 
are very tight. The clicks associated with each solution 
can be determined using the CDAPM. In Figure 9 we show 
all clicks, those associated with whale 1, and those 
associated with whale 2. The clicks have been time- 
aligned in accordance with the time delay from each sensor 
to each solution’s position.

8000

& 7000 

E.

g 6000 

0 5

§- 5000 
>

4000

1.3 1.4 1.5 1.6 1.7 
X position (meters x 104)

Fig. 8. S o lu tion  error e llip ses. T he d ia go n a l line is 
actually an ellipse for solution 3 indicating wide error in one 

direction probably due to having information from just 2 
sensors.

5.3 General comments and future work

The click separation algorithm worked perfectly in all 18- 
second segments of the “easy” data set, separating the 
direct from the m ulti-path chains. In the “difficult” 
data set, it appeared to work very well although it is 
difficult to validate the results without positive localization 
solutions for all clicks. By comparing localization and 
separation results from the first 18-seconds (i.e including 
figures 5 and 9) we were able to find no clear cases where 
clicks were improperly grouped together, but many cases 
where click trains were separated into smaller pieces. 
Much of this behavior can be controlled by the “new 
chain penalty” P.

The localization algorithm performed very well provided 
good initialization solutions are provided. A fine grid 
search was necessary causing the algorithm to be very slow, 
requiring up to five minutes to process the solution for 18 
seconds of input data. However, as the number of 
solutions is reduced to a handful, a single E-M iteration 
requires only a fraction of a second. In the “difficult” data 
set, good whale locations were obtained in most of the 18- 
second intervals, and whales could be tracked throughout 
most of the data set, but it was not uncommon that invalid 
solutions dominated. It was clear that additional work was 
needed to eliminate these invalid solutions, possibly by 
using information from the separation algorithm.

Vol. 36 No. 1 (2008) - 130



[5]

Fig. 9. Example of the sperm whale localization. Log- 
am plitude on the X -axis and time on the Y-axis.

For clarity, the clicks from various sensors are separated horizontally by 
artificially adding a different bias to the X-axis value o f each sensor. Left 
panel: the clicks with high  CDA PM  value for solution 7 are shown. 
Sensors time axes have been time aligned with according to the respective 
solution to align the clicks. Right panel: clicks with high CDAPM value for 
solution 6 are shown. These two solutions represent less than half o f  the 
available clicks. The rest were associated w ith the error solution or a 
variety o f  invalid solutions, some o f which appear in figure 8.

ambiguities exist.
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6 CONCLUSIONS

We have provided a snapshot of our research effort directed 
toward joint localization and separation of sperm whale click 
trains. We have presented two novel algorithms, one for 
separation, and one for localization, and demonstrated 
them on real data. The click-train separation algorithm uses 
an approach inspired by dynamic programming and 
efficiently seeks the globally best click grouping. The 
localization algorithm uses the EM algorithm to do “soft” 
association of click pairs to solutions. The algorithms are 
loosely tied together by (a) utilizing multi-sensor time delay 
information to assist the separation algorithm and (b) 
eliminating false click pairings in the localization algorithm 
by the use of information from the click separation 
algorithm. Because the localization algorithm uses the EM 
algorithm to make “soft” click and click-pair assignments, it 
may prove superior to existing approaches in many 
situations, such as when a large number of solution
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a b s t r a c t

We developed a model-based localization method called pair-wise spectrogram (PWS) processing to track 
marine mammals using widely spaced hydrophone arrays [Nosal & Frazer, IEEE J. Ocean. Eng., in press]. 
Here we use PWS to track the sperm whale from the dataset provided for the 2005 Workshop on detection 
and localization o f  marine mammals using passive acoustics (Monaco). This dataset provides a good 
opportunity to validate and explore the properties of the PWS processor. We demonstrate the relationship 
between pair-wise processing and a time-of-arrival method for a simple case. We also show how varying 
the size of windows used to create spectrograms optimizes the tradeoff between processor resolution and 
robustness, and how these parameters can be adjusted according to grid spacing. PWS position estimates 
are within tens of meters of those obtained using a careful time-of-arrival method applied to individual 
clicks.

r é s u m é

Nous avons développé une méthode de localisation basée sur un modèle de propagation du son, appelée 
traitement de spectrogramme par paires (PWS : pair-wise spectrogram), pour déterminer les trajectoires de 
mammifères marins à l’aide de réseaux d’hydrophones très espacés [Nosal & Frazer, IEEE J. Ocean. Eng., 
in press]. Nous présentons une application de cette méthode visant à déterminer la trajectoire d’un cachalot 
à partir du jeu de données fourni par l ’Atelier 2005 sur la détection et la localisation des mammifères 
marines à l ’aide du repérage acoustique passif (Monaco). Ce jeu constitue une bonne occasion de valider 
et d ’explorer les propriétés du PWS. Nous démontrons la relation entre le traitement par paire et la méthode 
des temps d’arrivée pour ce cas simple. Nous montrons aussi comment la modification de la taille des 
fenêtres utilisées pour créer les spectrogrammes permet d’optimiser le compromis entre la résolution et la 
robustesse du traitement et comment ces paramètre peuvent être ajustés en fonction de la taille de la grille. 
La différence entre les positions estimées avec PWS et celles obtenues en utilisant la méthode des temps 
d’arrivée appliquée aux clicks individuels est de l ’ordre d’une dizaine de mètres.

1 i n t r o d u c t i o n

The most commonly used methods for tracking marine 
mammals are time difference of arrival (TDOA) methods 
[e.g. Watkins and Schevill 1972; Clark et al. 1986; 
Spiesberger and Fristrup 1990; Janik et al. 2000]. In 
TDOA methods, the difference in time of arrival between 
pairs of hydrophones is estimated, usually via cross
correlation of waveforms or spectrograms. Each receiver 
pair defines a hyperboloid, and the intersection of 
hyperboloids (from various receiver pairs) defines the 
position of the source. Depending on the receiver 
geometry, four or five receivers are required to localize 
the source in three dimensions [Spiesberger 2001]. 
Reflections from the bottom and surface can be treated as 
recordings made by virtual receivers [Urick 1983]. Using 
reflections improves the accuracy of estimated source 
positions [Mohl et al 1990; Wahlberg et al. 2001; Thode 
et al. 2002] and reduces the number of required receivers

[Aubauer et al. 2000; Tiemann et al. 2007; Laplance 
2007].

TDOA methods are usually implemented with an 
isospeed assumption. This has the advantage of providing 
closed-form solutions and rapid run-times. It is acceptable 
in many cases (e.g. nearly isospeed conditions, relatively 
short distance propagation), particularly when care is 
taken to account for the resulting errors [Wahlberg et al. 
2001; Speisberger and Wahlberg 2002]. In other cases, a 
depth-dependent sound speed profile can significantly 
improve position estimates [Chapman 2004; Tiemann et 
al. 2004; Nosal and Frazer 2006]. To remove isospeed 
assumptions, model-based TDOA methods can be 
implemented using a matched field approach [Tiemann et 
al 2004; Nosal and Frazer 2006, 2007]. TDOAs are 
estimated (as before), a 3D grid of candidate source 
location is created, and TDOAs are modeled repeatedly 
for a source at each of the grid points. The modeled
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TDOAs are then compared to the measured TDOAs, and 
the estimated source location is the one that gives the best 
agreement. Therefore, we can regard the TDOA method 
as a matched-field method in which arrival time is the 
only part of the field being “matched.”

Pair-wise spectrogram (PWS) processing [Nosal and 
Frazer in press] extends model-based TDOA methods by 
matching amplitude and phase information in addition to 
arrival times. Simulations have shown [Nosal and Frazer 
in press] that pair-wise processing is a promising passive 
acoustic localization method, but it has yet to be tested on 
real data. In this paper, a single sperm whale dataset is 
used to validate and explore the processor. Since TDOA 
methods give very good position estimates for this 
dataset, they are used to “ground-truth” the PWS position 
estimates.

2 DATA

The dataset was made available by Naval Undersea 
Warfare Center for the 2nd International Workshop on 
Detection and Localization of Marine Mammals Using 
Passive Acoustics [Adam et al. 2006]. It features a single 
sperm whale producing regular clicks (on average 1.06 
clicks/s) for 25 minutes. Recordings are from 5 widely- 
spaced bottom-mounted hydrophones at the Atlantic 
Undersea Test and Evaluation Center in the Tongue of the 
Ocean (off Andros Island, Bahamas). Signal to noise 
ratios vary between receivers, and clicks, and are typically 
between 2 and 30 dB. The sampling rate is 48 kHz. 
Filtering, phone sensitivity, and directivity are unknown. 
Hydrophone positions are given in Table 1. The track of 
this sperm whale has been found using various TDOA 
methods [Nosal and Frazer 2006, 2007; Giraudet et al. 
2006; Morrissey et al. 2006; White et al. 2006].

Table.1. Hydrophone positions provided by NUWC

Phone x-pos (m) y-pos (m) depth (m)

G 10658.04 -14953.63 1530.55

H 12788.99 -11897.12 1556.14

I 14318.86 -16189.18 1553.58
J 8672.59 -18064.35 1361.93
K 12007.50 -19238.87 1522.54

3.1

PWW & PWS processing 

Symbols and notation

5 source waveform (time domain)
S  source waveform (frequency domain)

,  received signal at phone i (time)

Ri received signal at phone i (frequency)

g i modeled impulse response at phone i (time)
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G i modeled impulse response at phone i (frequency)

N  number of samples in a signal
Nr number of receivers
* complex conjugate
a> radian temporal frequency

3.2 Overview

This section gives a brief overview of pair-wise 
processing. Complete details can be found in [Nosal and 
Frazer in press]. A 3D grid of candidate source location is 
created, and at a given candidate source location, the pair
wise waveform (PWW) processor is given by:

N  N r N r

P  pww

Z Z Z H j  ( V ,  ) H , i  K  )
n=1 i=1 j^ i

N  N r N r
(1)

n=1 i=1 j^ i

where H  j  (® n ) =  R i (® n ) G  j  ( o n ) .  This processor is

maximized at the correct source location, since there the 
modeled impulse response is approximately equal to the

true impulse response, i.e. G i «  G i (not exactly equal

because the model is never perfect), so that

S G G  i =  R p  i =  H i

Appendix A.3 shows that if only arrival time is used, pair
wise waveform (PWW) processing is equivalent to 
TDOA methods in a limiting case. Pair-wise processing 
assumes that all hydrophones have the same impulse 
response, but it makes no assumption about the spectrum 
of the source [Frazer and Sun 1998].

PWS processing is similar to PWW processing, except 
that spectrograms are processed instead of waveforms. 
This is useful because spectrograms are less sensitive to 
imperfections in the model due to uncertainties in sound 
speed profiles, receiver positions, and so on (see 
Appendix A.4 for an explanation). The PWS processor is:

N r Nr

' L ' L ' L ' L H ,  '  ( T m , f n  ) H f ( T „, , f  )

m n i=1 i^i . . .

P p w ,  =  ------------------------ N, N ,  ~ 2------------ (2)

Z Z Z Z  \ H ,  ( T m , f n  )
m n i  =1 j  ̂ i

where H ij denotes the spectrogram of Hij and the sums

are over all spectrogram time (Tm) and frequency (fn) 
channels.

In nearly all problems of interest the number of sources is 
unknown, hence the output of ppww and ppws is potentially

Canadian Acoustics / Acoustique canadienne

3



multimodal and should be generated on a grid of 
candidate locations.

3.3 Processing of data

The PWS results presented here used the raw data only 
(no pre-processing) and the Gaussian beam acoustic 
propagation model BELLHOP [Porter and Bucker 1987; 
Porter 2005] was used to model Green’s functions. 
Received signals were split into 30 s segments that 
overlapped by 20 s and each segment was processed 
separately. A 30 s segment length was chosen as an 
optimum after trials with different length segments. 
Shorter segments gave less consistent position estimates, 
possibly because some segments didn’t contain enough 
clicks, and longer segments reduced performance, 
probably due to movement of the animal.

Within each segment, an important parameter is the 
window length used to create spectrograms. Simulations 
have shown [Nosal and Frazer in press] that longer 
window lengths give position estimates that are not as 
sensitive to uncertainties in the bathymetry, sound speed

profile, receiver positions, and so on. With longer 
windows, the peaks of the likelihood surfaces are broader, 
which means that coarser grid spacing can be used. Figure 
1 illustrates this using the first 30 s of the dataset. 
Spectrograms were all created using Hanning windows 
with 50% overlap. With a grid spacing of 200 m, a 
window length of 256 ms gives a good first estimate of 
the animal’s position, while a window length of 32 ms 
does not (the animal is lost somewhere between grid 
points). With finer grid spacing (Fig. 2), spectrogram 
windows can be shortened to get increasingly precise 
position estimates. Trial runs indicated that a good 
window length is the travel time of sound between two 
grid points, i.e. window length should be roughly 2Ad/c 
for a grid spacing of Ad and speed of sound c ~ 1500 m/s.

Larger grid spacing gives faster run-times (with fewer 
points to process) so the tradeoff between robustness and 
resolution can be used to reduce computational 
requirements. Rough position estimates were made by 
running the processor for a large area with 200 m grid 
spacing and spectrogram window lengths of 256 ms.
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Figure 1. Plan view o f the likelihood surface at a single depth o f 685 m (approximately the correct depth o f the animal) for the first 
30 s o f the dataset and a 200 m grid spacing. Receiver positions are indicated by triangles. Spectrograms use Hanning windows 

with 50% overlap and window lengths o f (a) 256 ms, and (b) 32 ms. With such coarse grid spacing, 32 ms windows are too short to 
give a position estimate (unless the animal is near a grid point). The box in (a) indicates the area shown in Figure 2.
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Rough position estimates were refined by processing 
smaller areas (surrounding the most promising grid point 
only) with 50 m grid spacing and spectrogram window 
lengths of 64 ms. Final estimates were obtained by further 
refining these with 10 m grid spacing and 16 ms 
windows. Resulting position estimates are shown in 
Figure 3. They are all within 40 m (and usually within 10 
m) of those obtained with the TDOA method by Nosal 
and Frazer [2007], which have estimated 95% confidence 
interval half-widths of less than 25 m (details of this 
TDOA method are provided in Nosal and Frazer [2007]).

Error estimates were made as in Nosal and Frazer [2007] 
using conditional likelihood functions (CLFs). To get 
error in x at a given time step, y  and z were fixed at the 
estimated source location and the resulting CLF was 
summed across x position to get the cumulative CLF for x 
(this can be thought of as summing along the horizontal 
strip that passes through the brightest point in Figure 2). 
95% confidence intervals (CI) correspond to the distance 
between the x-positions at which the conditional CLF 
attains 2.5% and 97.5%, respectively. CIs for y  and z were 
obtained analogously. For all dimensions, and over the 
whole track, CI half widths were within 45 m.

Note that error estimates cannot be directly compared 
because the TDOA method gave position estimates for 
every click while the PWS estimates are for 30 s intervals. 
It is evident, however, that the TDOA position estimates 
are more accurate for this dataset. On average, the whale 
moved 12, 40, and 9 m in the x, y, and z directions, 
respectively, in 30 s so that CI half widths within 45 m for 
the PWS methods are reasonable and may be partially 
explained by animal movement within a segment.

4 DISCUSSION

When deciding between localization methods, it is 
important to consider the tradeoff between the accuracy 
and power of the processor on one hand, and the 
computational demands and modeling complexity on the 
other hand. For the dataset considered here, with a single 
animal and very clear arrivals, the TDOA method excels 
since it gives better position estimates and is faster and 
easier to implement (to process 23 minutes of data, the 
TDOA method took 20 min while PWS processing took 
43 minutes). Nevertheless, the PWS did successfully track 
the animal, which validates the PWS processor for this 
simple case. Future work will deal with more complicated 
datasets (more noise, multiple animals, shallower water, 
and long-duration calls) for which the PWS processor was 
developed [Nosal and Frazer in press].

One consideration that has not been addressed in PWS 
processing is source directivity. To use amplitudes, PWS 
assumes an omni-directional source; this does not hold for 
most marine mammals. Even though sperm whales clicks 
are highly directional [Mohl et al. 2003], the problem did 
not affect our results for this dataset, probably because 
there was enough information in the arrival times to 
overcome it. One solution for cases where directionality is 
a problem may be to use lower frequencies only, which 
are not as directional as higher frequencies. High 
frequencies might still contribute to the position estimates 
if spectrograms are thresholded to contribute only time of 
arrival information. Another (more difficult, but possibly 
more useful) approach is to include directivity in the 
source model and animal orientation in the search space.
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Figure 3. Whale positions estimated using PWS processing (dots) and TDOA processing (crosses).

APPENDIX 

A.1 Notation

The appendix uses the same symbols and notation as in 
Section 3.1. The following are added:
® convolution:

N

( f  ®  g  ) ( t m )  =  Z  f  ( t n )  g  ( t m ~  t n )

n=1

o cross-correlation:
N

( f  °  g ) ( t m )  =  Z  f  ( t n ) g ( t m +  t n )

n=1

5 ( t n -  r )  unit impulse.

S(fH - T )  =
\ 1 when t = t

0 otherwise

Discrete fourier transform of f  D F T (f  ) ,  is denoted 

using upper case:

f  ( t n  )  ^ D F L ^  F  K  )

N

Inner Product: (f , g )  =  £  f  ( t n ) g  ̂  ( t n )

A.2 Required properties/relationships:

5 { t n - T  )  ®  f  ( t n  )  =  f  ( t n  T )  

S ( $ n - T )  °  f  ( t n  )  =  f  ( t n  +  * )  

f  o g  < DFT > F *G

Power theorem::( f . g  0  = - !{ F .G ')

(P1)

(P2)

(P3)

(P4)

n=1

A.3 TDOA vs PWW for a simple case

This appendix aims to provide some intuition about the 
PWW processor and its relationship to the TDOA 
method. Consider the limiting case of infinitely fine grid 
spacing. Also consider unit impulses for the whale signal 
and the true and modeled impulse responses: respectively,

5 ( t n )  =  5 ( t n -  * o )  ; g ,  ( t n )  =  Ô ( t n ~  T , ^  and

Si(tn)  = &(tn ~ ^ i ) . where t0 is the time at which the

whale produces the impulse. r,- is the true direct arrival

time at receiver i, and T i is the modeled direct arrival time

at receiver i. A delayed impulse is an unrealistic Green’s 
function, but it is useful for gaining insight.
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By (P1) the received signal at receiver i is:

r ( t n ) = s ® g ( t n ) = 5 ( t n ~  T 0 ~  t ,  ) • (A1)

The cross-correlation of the received signals r  and r .  at
i J

hydrophone pair i-j is then (by P2):

r  0 rj (tn ) =  à (tn - * o  - * i ) 0 à (tn -To -  TJ)

=  ô ( t n + T 0  +  T t - T 0  - T j )

=  â ( t n +  T t - T j ) (A2)

Similarly, the cross-correlation of the modeled impulse 

responses g  ( t )and g  ■ ( t ) at hydrophone pair i-j is

g r 0 g  j ( t n ) = ^ (tn + j ) (A3)

In the TDOA method, r. — T, is found as the time that
‘  J

maximizes ri ° r . . The best candidate source location is
‘  J

the one that minimizes the difference between 

T: -  T , and T: — T . .  In our unit impulse case, this is
1 J  1 J

equivalent to finding the source location that maximizes 

the inner product between r  0 r. and g . ° g  ■ since

r 0 rj , g t 0 g  j )  =

N

) = ! .  4 ‘ n +  Ti -  TJ + i i -  * j  )

I1 lf  ^ ~ T J = *i  ' I  J

0 otherwise
(A4)

Since the signals are impulses, the denominator in the 
PWW processor, Eq. (1), for a single receiver pair is N. 
Accordingly, for receiver pair i-j the PWW processor is 
(by P3 and P4):

Pp.-.- =  - 1  Z  f a  ( v .  )< G  J  ( ® .  ) )  R j  ( ® .  )G, ( o .  )
N  n=1

=  - L  j r  ( r  ' , (0 ,  )  R j  k  )  X < j ,  ( ® ,  y o  ’ j  k  ) )

N  n=1

=  - 1 ^D F T ( r  o  r. ) ,  ( D F T ( g t o g . ) '

(r- 0  r j , gi 0  j) (A5)

Compare this to (A4) to see that the TDOA method and 
the PWW processor are equivalent for a single receiver 
pair i-j. In principle, the argument can be extended to 
include surface and bottom reflections and to show that 
TDOA methods that use cross-correlation of spectrograms 
to find TDOAs are equivalent to PWS processing, within 
the limits of the geometrical acoustics approximation to a 
wavefield.

In general, differences between the methods include the 
way in which different receiver pairs are combined.

Moreover, PWW retains amplitude and phase information 
from the signals, while the TDOA method keeps only 
time of arrival information.

A.4 PWW vs PWS processing

The simple example in A.3 illustrates the motivation for 
using spectrograms in pair-wise processing instead of

waveforms. With finite grid spacing, r. —T, is neveri j

exactly equal to î i — Î . . Even for a candidate source

location exactly at the correct source location, the 
environment and model are imperfect, i.e.

Ti — T.  ^  Tj — T j , so by (A4) the processor is always

zero. In a real case with non-unit impulses, the processor 
is not zero but attains only low values. By taking 
spectrograms, arrivals are smeared in time, so they don’t 
need to match as precisely. This gives poorer resolution 
(positions are not found as precisely) but allows for the 
use of coarser grids (see Section 3.3) and makes the PWS 
processor more robust with respect to environmental and 
modeling uncertainties than the PWW processor 
(demonstrated using simulations in Nosal and Frazer [in 
press]).
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a b s t r a c t

This paper provides a real-time passive acoustic method to track multiple vocalizing whales using four or more 
omni-directional widely-spaced bottom-mounted hydrophones. Since the interest in marine mammals has 
increased, robust and real-time systems are required. To meet these demands, a real-time tracking algorithm was 
developed. After non-parametric Teager-Kaiser-Mallat signal filtering, rough Time Delays Of Arrival are 
calculated, selected and filtered, and used to estimate the positions of whales for a constant, linear or estimated 
sound speed profile. The complete algorithm is tested on real data from NUWC1 and AUTEC2. Our model is 
validated by similar results from the US Navy3 and SOEST4 University of Hawaii Laboratory in the case of one 
whale, and by similar results from the Columbia University ROSA5 Laboratory for the case of multiple whales. 
At this time, our tracking method is the only one which provides typical speed and depth estimates for multiple 
vocalizing whales.

r é s u m é

Ce papier propose une méthode temps-réel de trajectographie par acoustique passive de plusieurs cétacés 
émettant simultanément en utilisant un réseau d’au moins 4 hydrophones espacés de quelques centaines de 
mètres. Etant donné l ’intérêt accru pour les mammifères marins, des systèmes temps-réel et robustes sont 
nécessaires. Pour répondre à cette demande, un algorithme temps-réel de trajectographie multiple a été 
développé. Après un filtrage non paramétrique Teager-Kaiser-Mallat du signal, les différences de temps 
d’arrivée aux hydrophones sont estimées, sélectionnées, filtrées, et permettent d ’estimer les positions des 
baleines pour un profil de célérité constant, linéaire ou estimé. L ’algorithme est testé sur des données réelles du 
NUWC1 et de l ’AUTEC2. Notre modèle est validé par des résultats similaires de l ’US Navy3 et du laboratoire 
SOEST4 de l’université d ’Hawaii dans le cas d’émissions simples, et par une estimation du nombre de baleines 
du laboratoire ROSA5 de l ’université de Columbia dans le cas de plusieurs émissions simultanées. 
Actuellement, notre méthode de trajectographie est la seule donnant, dans le cas de plusieurs baleines, des 
vitesses et des profondeurs vraisemblables.

1 i n t r o d u c t i o n

Processing of Marine Mammal (MM) signals for passive 
oceanic acoustic localization is a problem that has recently 
attracted attention in scientific literature and in some 
organizations like AUTEC and NUWC. Motivation for 
processing MM signals stems from increasing interest in the 
behavior of endangered MM. One of the goals of current 
research in this field is to develop tools to localize the 
vocalizing and clicking whale for species monitoring. In this

paper we propose a low cost time-domain tracking algorithm 
based on passive acoustics. The experiments of this paper 
consist of tracking an unknown number of sperm whales 
(Physeter catodon). Clicks are recorded on two datasets of 20 
and 25 minutes on an open-ocean widely-spaced bottom- 
mounted hydrophone array. The output of the method is the 
track(s) of the MM(s) in 3D space and time. This paper deals 
with the 3D tracking of MM using a widely-spaced bottom- 
mounted array in deep water - two main requirements for the 
localization technique presented here. It focuses on sperm

1Naval Undersea Warfare Center o f the US Navy
2Atlantic Undersea Test & Evaluation Center - Bahamas
3NUWC
4School o f  Ocean and Earth Science and Technology
5Recognition and Organization o f  Speech and Audio
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whale clicks; detection and classification are not a concern. 
There were previous algorithms developed in the state of art 
[3, 12, 11] but none are able to have satisfying results for 
multiple tracks. Most of them are far from being real-time. 
The main goal is to build a robust and real-time tracking 
model, despite ocean noise, multiple echoes, imprecise sound 
speed profiles, an unknown number of vocalizing MM, and 
the non-linear time frequency structure of most MM signals 
[7]. Background ocean noise results from the addition of 
several noises: sea state, biological noises, ship noise and 
molecular turbulence. Propagation characteristics from an 
acoustic source to an array of hydrophones include multipath 
effects (and reverberations), which create secondary peaks in 
the Cross-Correlation (CC) function that the generalized CC 
methods cannot eliminate. Here we improve the algorithm 
from [3] to build a robust 3D tracking algorithm. In Section 2 
we propose a time-domain algorithm for MM transient call 
localization. In Section 3 we show and compare results of 
tracks estimates with results from other specialists teams.

2 MATERIAL AND METHOD

The signals are records from the ocean floor near Andros 
Island -  Bahamas6, provided with celerity profiles and 
recorded in March 2002. Datasets are sampled at 48 kHz and 
contain MM clicks, whistles, and background noises like 
distant engine boat noises. Datasetl (D1) is recorded on 
hydrophones 1 to 6 with 20 min length while dataset2 (D2) is 
recorded on hydrophones 7 to 11 with 25 min length. We will 
use a constant sound speed with c = 1500 m s ‘and estimated 

celerity profile, or a linear profile with c(z) = c 0 +gz where z

is the depth, c 0 = 1542ms1 is the sound speed at the surface

and g  = 0.051 s_1 is the gradient. Sound source tracking is 
performed by continuous localization in 3D using Time 
Delays Of Arrival (noted T) estimation from four 
hydrophones.

2.1 Signal filtering

A sperm whale click is a transient increase of signal energy 
lasting about 20 ms (Figure 1-a). Therefore, we use the 
Teager-Kaiser (TK) energy operator on the raw data. The TK 
operator is defined for a discrete time signal as [8]:

where n denotes the sample number. An important property of 
the TK energy operator in Eq.(1) is that it is nearly 
instantaneous given that only three samples are required in the 
energy computation at each time instant. Considering the raw 
signal as:

6 Hydrophones positions (X(m),Y(m),Z(m)) are: H1=(18501,9494,-
1687);H2=(10447,4244,-1677);H3=(14119,3034,-1627);H4=(16179,6294,-
1672);H5=(12557,7471,-1670);H6=(17691,1975,-1633);H7=(10658,-
14953,-1530);H8=(12788,-11897,-1556);H9=(14318,-16189,-
1553);H1=(8672,-18064,-1361);H11=(12007,-19238,-1522)

where s(n) is the raw signal, x(n) is the signal of interest 
(clicks), u(n) is an additive noise defined as a process 
realization considered wide sense stationary (WSS) Gaussian 
during a short time, by applying the TK operator to s(n), 
Y [s (n )]  can be expressed as [9]:

where w(n) is a random gaussian process whose parameters 
are in [9]. The output is dominated by the clicks energy. Then, 
the sampling frequency is reduced to 480 Hz by the mean of 
100 adjacent bins to reduce the variance of the noise and the 
data size. We apply the Mallat algorithm [10] with the 
Daubechies wavelet (order 3). We chose this wavelet for its 
great similarity to the shape of a decimated click [2]. The 
signal is denoised with a soft universal thresholding. This 

thresholding is defined as D(uk, A )  = sgn(uk)max(0, \uk\ - A, ), 

with uk the wavelet coefficients, A  = ̂ (2 lo g e (Q))ctvct~ , and 

Q is the length of the resolution level of the signal to denoise 

[1]. The noise standard deviation <JN is calculated on each 10s 

window on the raw signal with a maximum likelihood 

criterion. cr~ is the standard deviation of the waveletN
coefficients on a resolution level of a generated, reduced and
0-mean Gaussian noise. This filtering step is very fast and 
does not need any parameter. Figure 1-c and 1-f are the 
filtered signals on single (Figure 1-b) and multiple (Figure 1- 
d) emitting MM recordings.

2.2 Rough TDOA ( T  ) estimation

First, T estimates are based on MM click realignment only. 
Every 10 s, and for each pair of hydrophones (i, j), the 

difference between times ti and t  of the arrival of a click
( J

train on hydrophones i and j  is referred as T(i, j)  = ti -  t j . Its

estimate T  (i, j ) is calculated by CC of 10-s chunks (overlap 
of 2s) of the filtered signal for hydrophones i and j  [3, 2]. We 
keep the 35 (NbT ) highest peaks on each CC to determine the

corresponding T  (i, j ) (see Figure 1 for detail) . The filtered 

signals give a very fast rough estimate of T  (precision ± 2 
ms). Figure 1-e shows the CC with the raw signal and Figure
1-g with the filtered signal. The red circles highlight the 35

T  . Without filtering, CC generates spurious delay estimates

and the tracks are not correct. The raw CC shows more T  
produced by noise than the filtered CC.

2.3 Echo identification and elimination

Each signal shows echoes for each click (Figure 1-b), maybe 
due to the reflection of the click train off the ocean surface or 
bottom or different water layers. Echoes may be responsible
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Figure 2: Maximum T CC rank histogram for each triplet

for the detection of additional T  in the previous step. We use 
a method based on autocorrelation [3, 4, 5, 2] to compute 
echoes E(i) on each 10s chunk and each hydrophone and then

eliminate T  correspond to a multiple of the echo. For each

pair of hydrophones (i, j), all Ta (i, j)  satisfying one of the

following equations are removed, k G {1..4}, a G {2..NbT }:

M h j )  ~ Tx(i . j ) =  k*E{ i )±Ç,  

Ta( i , j ) - T i ( i , j )  =  - k * E ( j ) ± Ç .

where ^  = 2ms.

2.4 T transitivity and filtering

Once many T  for each pair of hydrophones have been 

eliminated, the remaining T  are combined every 10s to select

all quadruplets of hydrophones whose T  independent triplet 
correspond to the same source. Thus we consider that a 
quadruplet of hydrophones (i, j,k,h) localized the same source 
with the f abcd, ef  if the 4 following equations are verified

[3, 2] for each time t:

f a( i . j ) + f b( j . k ') = Td (i k ) ± 5 .

Ta{Uj) + Tc(j. h) = m h ) ± 0 .

f/jii.k) + f e(k.h) = Tf {i h ) ± 5 .

f b( j .k)  + f e(k.h) = U j J i ) ± 5 .
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T  has been estimated with 2 ms precision, moreover T 
transitivity only works for an isospeed model which means 
sound rays move in a straight line. We consider the 

error 5  — 6m s . The distribution of the maximum T  rank 
for each triplet (Figure 2) in D1, is not negligible near the 35th 
rank.

2.5 Source localization with a constant profile

Tracks positions are:

{X,,V/} w ithXt =  {xt ,yt ,zt )T .

X{t, j,k,h} are the known coordinates of hydrophones i, j , k, h.

The three independent T  of each hydrophones (i, j ,  k, h) 
quadruplet measured on the windows t are noted:

{ Ta (/', j , 0 • Td (/. k. t ) . . t )}.

The modeled delays are:

WX^HiW-WXtMjll
TaU.j.r) =  

Td( i , k j )  =

c
\\XM-;\\ -  \ \X,Hk\\

c
\\XrMf\ \ - \ \ X M h \ \

(2)

where denotes the Euclidian norm. We assume that the

precision errors of the T due to the decimation are modelled 
with a Gaussian, centered, additive, and uncorrelated noise

between sensors, noted 8  considered the same on each of the

windows t and with a variance a 2 = (f/3)2 ( ^  contains 68%

of the Gaussian distribution).

Ta(i , j , t )  =  Ta(i,j .Xt ) +£i,j,t,

Td ( i .k . t )  =  Td { i .k .X , )+ £ j 'kj .  (3)

T/H.h.r) = TfU.h.Xr

X t is estimated with a least square method. The least square 
criteria to minimize is given by:

Q{Xt)

+ -
Td{ a . t ) - T d{Lk.Xt)

+ -
T f{ i . h . t ) - T f ( i . h .  X-) 

O2

This case is a non linear criteria minimization. Indeed,

Q ( X t ) contains the non linear function || || (Eq.(2)). To

solve this problem, the classic recursive minimization method 
like Gauss-Newton with the Levenberg-Marquardt technique 
can be applied with an initialization to the middle of the

hydrophones array. X t estimate is noted X t . After X t

estimation, the LMS error is Q  (X t ) . It is adequate when it is 

inferior to a threshold [14].

2.6 Joint celerity profile optimisation

It is possible, by adding a degree of freedom to Eq.(2), to 
estimate an optimal celerity profile that will best fit the 
positions estimates [16]. Five hydrophones are necessary,

which is the case in D2, to calculate four independent T  . The 
fourth adds a degree of freedom to the system and permits the

estimation of X t ,

X t = (x t , y t , z t , c t )T

where x t , y t , z t are the source coordinates and ct the optimal 

sound speed in windows t. After this X t estimation, we inject 

the ct numeric values in the equations system (2) and the

Figure 3: Geometry for a source and receiver in a linear sound speed 
profile [13]

Figure 4: IM;m view o f  the MM m 1)2. our estim ates with a linear 

(-X-), a constant profile (O ) and an estim ated profile (0)- threesome 

are almost merged: and estim ates from M orrissey’s [11] (V) and 

from N osa l’s [12] m ethods (o). N ote the variance o f  the positions 

with N osal’s method. The w hale direction is opposed to the Y axis. 

Track and recording duration: 25miu. The breaks in the track are 

due to a temporary cessation o f  clicking or to engine boat noises.
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5 mi li chunks 0-5 5-10 10-15 15-20

ROSA Lab 4.3 5.3 4 3.6

PIMC 4 4 4 3
A +0.3 +1.3 +0 +0.6

Table 1: Coimting number estimations of whales inD l. First raw 
is the five minutes chunks of D l. second is the averaged number 
of whales estimations from ROSA Lab, third is our estimations 
(PIMC) and the last raw is the difference between PIMC and 
ROSA Lab estimations.

2.7 Source localization with a linear profile

It is well known that the ray paths in a medium with linear 
sound speed profile are arcs of circles and further the radius of 
the circle can be computed [13]. Figure 3 illustrates the 

appropriate geometry. cs is the sound speed at the source and

ds is the launch angle of the ray at the source, measured 

relative to the horizontal. Note one seeks to determine the 

launch angle of the ray ds which will pass through the

receiver located at ( x r , z r ) . From the geometry shown in 

Figure 3, the center of the circle, ( x s , z s ) ,  along which the 

ray path is an arc, can be shown to be:

xs -\-xr (zs ~Zr) 
2(xs -  X r )

[zr - z .
2 Cs

Y 1 (4 )
: Zs----- •

For a linear sound speed profile, the course time T of the ray 
can be evaluated to yield [13]:

1

r = e i l08U
log

R + xc — xs 
R -+ xc — Xj

(5)

Using Eqs.(4)-(5) allows one to compute the propagation time 
from the source to any receiver and hence allows one to 
compute the predicted delays and then the whale position.

3 RESULTS

For D2, three sound speed profiles were used: a constant; or 
an estimated; or a linear. The results are compared with the 
Morrissey [11] and Nosal [12] methods. In Figure 4, there is 
one whale, the results with the different methods are similar. 
In Figure 5, the diving profile underlines a bias of about 50 to 
100m between the linear - estimated and the constant profiles 
results, which emphasizes the importance o f the chosen 
profiles. Moreover with the linear sound speed, the results are 
about the same as Morrissey’s and Nosal’s, who used profiles 
corresponding to the period and place o f the recordings. 
Results for D1 are shown in Figure 6 and 7 for a linear sound 
speed profile. We thus localize 5 MM. Moreover, according to 
ROSA Lab estimation based on click clustering (Tab.1), 
averaged number of MM for each 5min chunks in D1 (A)[6] 
is similar to ours (B).

3.1 The confidence regions

In section 2.5, because we consider a Gaussian distribution, 
the standard deviation of the noise is £ / 3 . Then, we apply a 
Monte Carlo method. For each T  realization, the source
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Figure 9: Confidence regions projection on X and V and on Z and Y 

axes for D2 trajectory.

position is calculated. We deduce the variance and the mean 
for each position to plot the confidence regions with a 
confidence level o f 0.95, which means that there is 0.95 
probability for the whale to be in the ellipse centered on the 
position. In D2, the estimated celerity profile described in 
section 2.6 was used. The mean values of the confidence 
intervals on X, Y, Z axes are about 18, 16 and 30 m (Figure 
9). This justifies the decimation on the raw signal, because the 
error on X and Y axes are close to the sperm whale length 
(20m). The results confirm that the errors on the vertical axis 
are meaningfully higher than the other axes because the 
distance between each hydrophone in this direction (maximum 
difference on the Z axis between hydrophones is 200m) is 
smaller. The D1 results obtained with a linear profile (Figure 
6) indicate five trajectories. The farthest whales in D1 from 
the hydrophones array center have a larger uncertainty with an 
error of about 20 to 30m on X and Y axes, while the whales 
close to the center exhibit an error of about 10 to 20m like for 
D2 (Figure 6). Those uncertainties are reasonable according to 
the sperm whale length.

4 DISCUSSION AND CONCLUSION

The tracking algorithm presented in this paper is non 
parametric and real-time on a standard laptop and works for 
one or multiple emitting sperm whales. The results compared 
an isovelocity water column and a linear sound speed profile. 
Depth results with constant speed contains a bias errors due to 
the refraction of the sound paths from the MM to the receivers 
what the linear speed profile or the joint celerity optimisation 
correct. Our algorithm has no species dependency as long as it 
processes all transients. At this time, only our algorithm gives 
localization results with typical speed (Figure 8) and depth 
estimations for multiple emitting whales. In D2, results 
indicate that only one sperm whale was present in the area, 
unless other whales in the area were quiet during the selected 
25-min period. Moreover, according to ROSA Lab, the 
estimation number of MM for each 5min chunk in D1 is 
similar to ours. Our method provides robust online passive 
acoustics detecting/counting system of clicking MM groups in

open ocean [15]. Further studies will be conducted for click 
labeling and inter click analyses.
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a b s t r a c t

The application of particle filters to two tracking problems in passive acoustic monitoring are discussed. 
Specifically we describe algorithms for extracting the contours of delphinid whistles and the localization of 
vocalizing animals in three dimensions using a distributed sensor array. The work is focused on 
highlighting the potential of particle filters in the analysis of bioacoustic signals. The discussion is based 
on one particular form of particle filter: the sequential importance resampling filter.

s o m m a i r e

Cette étude porte sur l'application des filtres particulaires à deux problèmes d'extraction d'information en 
acoustique passive. La description concerne plus spécifiquement deux algorythmes ayant pour objectif 
l'extraction de contour des sifflements de dauphins et la localisation en trois dimensions d'animaux 
vocalisant à partir d 'un jeu de capteurs répartis localement. L'objectif de ce travail est de mettre en lumière 
le potentiel des filtres particulaires pour l'analyse de signaux bioacoustiques. Parmi les filtres particulaires, 
l'accent est mis dans cette étude sur forme particulière de filtre: le filtre à rééchantillonnage d'importance 
séquentiel.

1. i n t r o d u c t i o n

Real-time Passive Acoustic Monitoring (PAM) 
systems for cetaceans require the integration of many 
elements. Several of these elements can be cast as tracking 
problems. In particular this paper considers two such 
aspects: extracting whistle contours and the estimation of 
source location using a sensor array. The objective of this 
work is to highlight the potential of particle filters within the 
application area as a real-time tracking solution, so the 
paper is framed in a somewhat pedagogical manner. We 
avoid details of the theoretical principles under-pinning 
particle filters, rather we aim to convey the fundamental 
steps common to particle filters.

The definition of a tracking problem is simply a parameter 
estimation problem in which the parameter estimates are 
continually updated; such tasks are also formerly referred to 
as sequential estimation problems. They have been widely 
studied in a large range of application areas, including 
sonar, radar and biomedicine. The classical tool for 
performing sequential estimation is the Kalman filter and its

variants. These methods have been widely, and often 
successfully, exploited. However their applicability is 
limited by the underlying assumptions they require.

2. b a c k g r o u n d

The general framework for sequential estimation 
problems can be expressed as follows. The true value of the 
parameter vector to be tracked, at time step n, is denoted 0n. 
The evolution of this parameter vector is described through 
a system function, F, such that

»n = F  (0n_!, w n ) (1)

where wn is a vector of random variables specifying the 
random component of the parameter evolution, it is referred 
to as either the process or the system noise. Similarly the 
function G defines the measurement process, where xn 
contains the measured data

xn = G (6n , vn ) (2)
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in which vn represents the measurement noise process. In 
the general case the functions F  and G are non-linear, the 
noise processes w n and vn are not necessarily additive and 
are not distributed according to a Gaussian distribution. Our 
goal is to estimate the parameter vector 9„ on the basis of 
the set of measurements xk, k=0,1,...,n. In order to avoid 
increasing memory requirements and computational load as 
n increases, it is natural to seek a recursive solution. That is 
to say we seek a solution in which the parameter estimate at 
time n is derived only from knowledge of the parameter 
estimate at the preceding time step, n-1, and the current 
measurement x„. It should be noted that when k=0, x0 is the 
only information available. This is typically provided by a 
suitable detection algorithm.

2.1 The Kalman Filter

The Kalman filter is a recursive algorithm which is 
optimal under simplifying assumptions on the system and 
measurement models (Arulampalam et al., 2002). 
Specifically (1) and (2) are simplified so that the system and 
measurement models are linear and the noise processes are 
additive and Gaussian. Leading to a model of the form

in which An and Bn are the system and measurement 
matrices, note that whilst in (3) temporal dependence of 
these matrices has been assumed, in many applications they 
are constant. The update equations for the classic Kalman 
filter are (Bozic, 1979;Zarchan & Musoff, 2005)

T n =  A  n  P n -1 A  n'  +  Q n

K n =  T n  B n '  ( B n  T n  B n '  +  R n  ) '

(4)
P n  =  T n  -  K n B n  T„
0  n =  A n 0  n - 1  +  K  n -  B n  A n O  ̂  )

in which T n is a temporary matrix (but can be regarded as an 
a priori estimate of P n) used to ease the computational load, 
Q n and Rn are the covariance matrices for the process and 
measurement noises respectively, Kn is the Kalman gain 

matrix, Pn is the error covariance matrix and 0n is the 

vector of parameter estimates at time n .

The Kalman filter is a highly flexible and computationally 
efficient scheme. But its application is limited to cases 
where (3) can be regarded as suitable approximation of (1) 
and (2). Variants on the Kalman filter have been proposed 
which extend its range of applicability, common examples 
of these are the extended Kalman filter (EKF) (Zarchan &

Musoff, 2005) and unscented Kalman filter (UKF) (Wan & 
van der Merwe, 2000).

2.2 The Particle Filter

Particle filters provide a general solution to 
tracking problems of the form described by (1) and (2), 
without the need to invoke the inherent assumptions 
associated with the Kalman filter. There are a wide variety 
of versions of particle filters that have been be defined 
(Arulampalam et al., 2002;Ristic et al., 2004;Doucet et al., 
2001). However the objective of this work is to 
communicate the opportunities afforded by the use of 
particle filters in PAM systems, rather than a review of 
particle filters per se. So we shall concentrate on a simple 
form of particle filter, specifically we shall discuss 
Sequential Importance Resampling (SIR) filters. These do 
not represent the state-of-the-art particle filtering 
algorithms, but the do provide a good basis for the 
introduction of the concepts of particle filtering and offer 
good performance in the examples presented herein.

Consistent with the review character of this publication we 
provide a mechanistic description of the SIR filter and 
choose to omit the under-pinning principles, these principles 
are widely available elsewhere, e.g. (Arulampalam et al., 
2002;Ristic et al., 2004;Doucet et al., 2001). The objective 
here is to provide some insight into how to construct a 
particle filter and to highlight the flexibility and power that 
they provide.

Particle filters are also referred to as sequential Monte Carlo 
algorithms (Doucet et al., 2001) and, as is characteristic of 
Monte Carlo schemes, they exploit samples drawn from the 
underlying distributions. Given a set of M  parameter 
estimates at time n-1 which are denoted

0  n _ 1 =10 n_ 1 k  |  , the basic steps involved in the SIR
v ’ zk=1,...,M

particle filter are:

i. Update each of the estimates using 

0n ,k = F  (Ôn_u , wnk ) where w„,k is a sample from the 

process noise distribution.

ii. Use the measured data to score each of the new 

estimates 0nk using the likelihood computed via (2) 

and normalize these scores so that they sum to unity.

iii. Create 0 n by drawing M  samples, with replacement, 

from 0 n according to the scores allocated in step ii.

iv. From the samples 0 n form an estimate of the
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parameter vector. as well as potentially low Signal to Noise Ratios (SNRs).

In the first step the existing estimates are perturbed, in a 
manner which mimics the effect of process noise, so 
producing a set of candidate parameter estimates. The 
particle filter then considers these estimates and scores them 
according to how well they predict the sample that has just 
been measured, xn. This may be explained in the specific 
case of an additive noise measurement noise model, i.e. in 
the case where (2) can be expressed in the form:

= G  (On ) + Vn (5)

In such cases the scoring is realized by evaluating the 

likelihood p v (xn -  G (fiink )) inw hich pv is the probability

density function of the measurement noise process v. 
Consequently parameter estimates close to the true value

should yield values of G (0nk j which are close to the

measured data, so the have relatively large likelihood. 
Whereas estimates significantly different form the true 
value, will (probably) yield measurement estimates very 
different from the measured value, so yield a low likelihood. 
The scores are derived from the likelihood by scaling them 
so that they sum to unity.

Step iii, is realized by selecting the estimates using random 
sampling according to the estimate’s scores. Uniform 
random variables are used and the probability of selecting a 
particular estimate is given by its score. The sampling is 
implemented with replacement, so that estimates with high 
scores are typically replicated many times. The new 
samples constitute the set of parameter estimates for starting 
the next iteration.

The final step is to construct the final parameter estimate. 
This can be done using one of several principles including: 
MAP (maximum a priori probability) and minimum mean 
squared error (MMSE).

3. WHISTLE CONTOUR EXTRACTION

One way in which species classification for 
delphinids can be achieved is through analysis of their 
whistles (Oswald et al., 2007). Specifically the contours of 
the whistles in the time-frequency domain are used as the 
key features and these contours need to be estimated 
(extracted) in order to successfully realize such a system. 
The extraction of such whistles is normally achieved 
through use of the spectrogram (Oswald et al., 2007;Datta & 
Sturtivant, 2002;Leprettre & Martin, 2002) although 
alternative approaches can prove successful (Johansson & 
White, 2004). The extraction process can be hindered by 
the presence of overlapping whistles and echolocation clicks

In this work we demonstrate how particle filters can be used 
as one way to automate this contour extraction process. 
Other workers have considered applying particle filters to 
similar problems based on the spectrogram (Dubois et al., 
2005;Nagappa & Hopgood, 2006). The work described 
here takes advantage of the Short Time Fractional Fourier 
Transform (STFrFT). The STFrFT for the analysis of 
whistle has been considered elsewhere (Capus & Brown, 
2003). It is worth noting that the method we adopt we refer 
to as a STFrFT, largely in deference to previous work in this 
application, but it should be noted that the method could be 
regarded under a number of other signal processing 
paradigms, most obviously it also exploits the principles 
behind adaptive basis decomposition methods (Mallat & 
Zhang. 1993).

Our tracking scheme is based on detecting the maxima of 
the STFrFT. Consider the kth windowed data segment of the 
incoming data stream, x(n), denoted xk and defined as

= [ x (kP ), x (kP +1),..., x (kP + L - 1)] (6)

where P is the number of samples by which the window is 
shifted between successive analysis windows and L is the 
window length. The elements of xk are denoted xk(m), 
m=0,.. ,,L-1. The STFrFT is defined as

S (k , a , f  ) = Z xk (m )■
- 2 n i ( / + a t m  / 2 )tm (7)

where f  denotes centre frequency [Hz], a  is the frequency 
sweep rate [Hz/s] and the local time index, tm, is defined

through tm = ^m -  L  j  / f  , in w h ich f denotes the sampling

frequency. The STFrFT can be loosely regarded as 
representing the energy in a signal at a particular time and at 
a frequency associated with a particular sweep rate.

Evidently the classical short time Fourier transform (the 
spectrogram) is a special case of (7) in which a=0. The 
flexibility offered by the STFrFT allows the processing 
scheme to more accurately model the underlying process. 
By accommodating linear sweeps the STFrFT can increase 
the SNR of received signal, assuming that a sweep rate, a , is 
chosen that is close to that in the received data. The rapid 
sweep rates that can be observed in odontocete whistles 
make the use of the STFrFT an attractive option. The use of 
the STFrFT intrinsically provides estimates of the sweep 
rate for each analysis window; this additional information 
can be used to improve tracking performance.

x

x
k

2

m=0
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3.1 Particle Filter for Whistle Contour Extraction
estimated frequency contour.

The use of particle filters to extract whistle 
contours requires one to define the system and measurement 
functions, i.e. (1) and (2). The parameter vector we seek to 
estimate contains both the frequency and sweep rate and is 
defined as 0 = f , a ] \  The system model we employ is:

1 P  
f . 

0 1
-1  +  w  n =  A 0 n -1  +  w n (8)

wn is a zero mean Gaussian noise with a diagonal 
covariance matrix, so that system noise on the frequency 
and sweep rate are uncorrelated with difference variances. 
This is a standard linear model of the form of (3).

The algorithm has successfully tracked the whistle. There is 
an initial period, before 0.1 s, where the algorithm provides 
an estimate which deviates somewhat from the visual track 
of the whistle. The signal is weak here, but the primary 
cause for this behavior is the fact that the algorithms require 
some time to initialize, to “burn in”. The estimated track 
also deviates at around 0.6 s when the whistle’s amplitude 
temporarily reduces significantly. Accepting these minor 
deviations it is encouraging to note that the algorithm has 
successfully tracked the whistle even during the rapid 
frequency jump occurring shortly after 0.2 s and ending 
shortly before 0.4 s. This is despite the signal being partly 
obscured by a click train. This is particularly gratifying 
since such jumps are characteristic of T. truncatus and one 
would seek to avoid classifying such a jump as two separate 
whistles.

There are several candidate measurements one can use for 
this system. The one adopted herein, based on the STFrFT, 
is

X „  =
- 2m (e „  (1)+e„ (2 )tm / 2 )tm

(9)

Note the distinction between the data, xk(m), and the 
measurement associated with a parameter X n. The 
measurementX n is a scalar value.

The processing scheme adopted here applies a robust pre
whitening step (Leung & White, 1998) to the incoming data 
stream, to create x(n); this ensures that the background noise 
has an approximately flat spectrum of a known level. This 
pre-whitening allows one to use the value X n as a proxy for 

the (unscaled) probability p  (0n | xk ) :  large values of X n

relate to highly probable events, whereas small values of X n 
relate to events of low probability. This argument is a 
simplification of the principles lucidly described in detail in 
(Brethorst, 1988). The non-linear character of (9) favors the 
use of a particle filter solution.

3.2 Results for Whistle Contour Extraction

This method is applied to a short (1.9 s) section of 
a whistle recorded from Tursiops truncatus. This recording 
contains features common to many similar recordings. 
There are trains of echolocation clicks, e.g. between 0.2 and 
0.4 s, there are other whistles of varying strength and the 
primary whistle varies rapidly in frequency and level 
throughout the recording. The results are shown in 
Figure 1. The upper frame of this figure shows the original 
spectrogram, whilst the lower frame depicts the same 
spectrogram overlaid with a white line showing the

Figure 1: Results of contour extraction for a Tursiops 
truncatus whistle based on a particle filter. Upper frame 
shows the spectrogram, the lower frame shows the same 

plot with a white line overlaid to show the contour estimate.

4. SOURCE LOCALISATION

The second problem this paper considers is that of 
tracking the location of a vocalizing animal in three 
dimensions using a hydrophone array. The most suitable 
signals for performing such localizations are echolocation 
clicks, but other vocalizations can be used. In this example 
we use echolocation clicks from a sperm whale, Physeter 
macrocephalus.

The localization problem can be described as follows. A set 
of acoustic sensors (in this case hydrophones) are located at

2

m=0
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known positions, rm, in an environment. The source, is at an 
unknown location s, and emits a sound (a vocalization) 
which propagates through a known medium. The phrase 
“known medium” is intended to highlight the assumption 
that the propagation time from one point in the medium to a 
second point can computed, implying knowledge of (at 
least) the sound speed profile. This model we shall denote 
M  . Using the received signals one is able to compute the 
delays, x(m,ri), observed between the vocalizations being 
detected on the pair of hydrophones m and n. Collecting all 
of these delays into a vector t  allows one to express the 
problem as: given the measured delays x, a model of the 
acoustic environment, M  , and the sensor locations, r, can 
one infer the source location?

The choice of the acoustic model M  is an important factor 
controlling the accuracy of the resulting estimated source 
locations. The use of a simple model should result in an 
efficient algorithm, but the estimates may be subject to 
considerable error. The use of models that accurately 
capture the propagation of sound in the ocean is clearly 
advisable, but their use is often limited by the absence of 
complete knowledge of the physical parameters required to 
specify such a model. The form of the model used does not 
directly impact the following discourse. This problem has 
been treated by a large number of authors as a non
sequential estimation problem, e.g. (Spiesberger, 
2001;Thode, 2004;White et al., 2006). In the following we 
translate the problem into a tracking, sequential estimation, 
task and present a particle filter based solution.

4.1 Particle Filter for Source Localization

random walk model described by (10) is that it does not 
account for this irregular sampling. It is reasonable to 
increase the standard deviation of wp in proportion to the 
interval between irregular vocalizations, reflecting the fact 
that an animal is likely to have moved a greater distance in 
longer intervals than short ones.

The measurement model is simply:

t p = M  (0p , r) + v . (11)

The function M  is typically a highly non-linear function. 
It is this that again makes the particle filter an attractive 
processing option. The measurement noise vn is modeled 
using a long-tailed distribution, such as a Laplacian 
distribution. The advantage of this is that it models the 
occasional failure of the delay estimation operation. The 
presence of strong reflectors can lead to some isolated delay 
estimates with large errors. By employing a measurement 
noise model with a long-tailed distribution such outliers are 
penalized less than would be the case if a Gaussian model 
was used for the noise.

4.2 Results for Source Localization

The algorithm outline in the preceding subsection 
has been applied to data obtained from an echo-locating 
sperm whale using bottom mounted hydrophones. 
Specifically, the data used in this study was the second data 
set supplied for the 2005 Workshop on Detection and 
Localization of Marine Mammals using Passive Acoustics 
held in Monaco (Adam, 2006).

The underlying model when using a particle filter 
for localization is relatively straightforward. The unknown 
parameter vector, 0, contains the source co-ordinates, for 
example expressed in Cartesian co-ordinates. The system 
matrix aims to model how the animal moves through the 
medium. Various methods can be used to impose models 
that are appropriate for the known behavioral parameters. 
For example one can seek to impose maximum swim rates, 
or rates of ascent and descent. With the objective of 
retaining simplicity we stick with a simple random walk 
model:

(10)

where wp represents a vector of independent, zero mean, 
Gaussian white noise. The underlying assumptions in (i0) 
are very limited, it assumes that the current location is the 
just a random perturbation from the preceding location; 
Further note that the vocalizations typically occur at 
irregular intervals. The subscript p denotes data associated 
with the pth such vocalization. A shortcoming of the

Figure 2: Estimated source locations using particle filter. 
Open circles ‘O’ indicate the individual estimates. 
Crossed circles ‘©’ indicate the sensor locations
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Figure 3: Comparison of estimated source locations using 
particle filter and non-sequential estimation.

Open circles ‘O’ indicate the results of particle filtering. 
Crosses ‘+’ indicate estimates from non-sequential estimator

Figure 4: Estimated source location in three dimensions. 
Sensor location locations are indicated by the black stars ( ★ )

The results depicted here are based on the same delay 
estimates as those employed in (White et al., 2006). The 
results are obtained assuming a linear sound speed profile. 
Figure 2 depicts the result of applying the particle filter to 
this data set. Whilst Figure 3 shows the same results on an 
expanded scale, also shown in this plot are the results of the 
algorithm presented in (White et al., 2006) obtained on the 
same data set using a propagation model with a constant 
sound speed. Comparing the results from the particle filter 
with those from the estimation method, in (White et al., 
2006), demonstrates the potential of the particle filter as a 
real-time tracking solution of comparable performance 
given the same time delay estimates.

The results shown in Figures 2 and 3 are consistent with 
those obtained in (Adam, 2006) and from Figure 3 we see 
that the particle filter results and those from the non
sequential scheme are very close to each other. In Figure 4 
these results are show in three dimensions.

5. DISCUSSION

Particle filters provide a general, powerful and 
flexible tool for solving tracking problems. The results 
herein demonstrate that the solutions achieved are of high 
quality, despite the rather crude nature of the particle filter 
algorithms used and the fact that we have, in general, 
avoided including all of the available prior information in 
the interests of retaining simplicity.

The good performance of particle filters is commonly 
realized at the cost of a large computational burden being 
incurred. A key parameter in controlling this cost is the 
number of particles M  employed. The larger the number of 
particles, the better the solution but the greater the 
computational burden imposed. A second key parameter 
that affects performance, but is not related to computational 
burden, is suitability of the choice of the distribution width. 
This should be chosen to be representative of the change 
expected to occur in the state vector between measurements. 
In the source localization application this would be relative 
to the typical swim speed of the species of animal to be 
tracked.

The initial estimate of the state vector is derived depending 
on the application. For the whistle contour extraction once 
the presence of a whistle is detected each STFrFT bin is 
weighted according to a uniform distribution. Here this is 
possible because the states are discrete and therefore the 
number is relatively limited. In the localization application 
the number of possible initial states is much greater, 
therefore a cost function minimization estimation scheme 
was utilized to provide the first estimate.

The implementations employed herein both used 1000 
particles. In the case of the localization the computational 
cost that implied was consistent with a real-time 
implementation, even with the algorithm implemented in 
MATLAB®. This is in part because the filter only needs 
updating approximately once per second. The 
computational load would also escalate significantly if a 
more detailed propagation model is used.

The real-time implementation of the contour extraction 
algorithm requires modification of the algorithm presented 
here as in its current form it is probably too computationally 
demanding for simple real-time implementation. One could 
exploit the potential for parallel implementation inherent in 
particle filters, but this dramatically increases the issues
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a b s t r a c t

We propose a new method to localize low-frequency calls in 2D in shallow waters from a sparse array 
of hydrophones using modal propagation modelling. An analysis of modal propagation modelling of 
transients signals in shallow water environment shows that the dispersive behaviour of the waveguide 
can be exploited to design a robust localization scheme without requiring any knowledge of the 
acoustics properties of the environment (bottom and water column) nor any simulation of propagation.
The localization scheme also does not require synchronization of the array and is therefore independent 
of any clock drift. Promising results are obtained for Northern right whale gunshot calls from ‘Bay of 
Fundy data set of the 2003 Workshop on Detection and Localization of Marine Mammals Using 
Passive Acoustics.’

r é s u m é

Dans ce papier, un algorithme robuste de localisation 2D à partir des émissions transitoires dans des 
milieux petits fonds est proposé. Il s’appuie sur un modèle de propagation modale. Une analyse des 
phénomènes de dispersion induits par la propagation montre qu’il est possible, à partir d’un réseau 
lâche d’hydrophones, de proposer une méthode de localisation ne nécessitant ni la connaissance du 
milieu, ni l’exécution d’un code de propagation. L’algorithme de localization ne nécessite pas la 
synchronization du réseau et est par conséquent indépendant des dérives d’horloges. Des résultats 
encourageants sont obtenus pour localiser les émissions « gunshot » des baleines franches à partir du 
jeu de données de la Baie de Fundy, de ‘l’Atelier de 2003 sur la détection, la localisation et la 
classification de mammifères marins par acoustique passive’.

1. i n t r o d u c t i o n

Localizing marine mammals in large ocean basins is 
needed to assess their use of the habitat in time and space 
and study the impact of global changes on ecosystems 
[Tho86] [Win04] [Sta07]. Localization may become 
crucial for some endangered species in relation with 
anthropogenic activities such as airgun seismic surveys, 
low-frequency military applications and collisions with 
ships [And01] . Even if visual observations from ships 
and planes may be used during daytime, passive acoustics 
localization methods can increase the spatial extent of 
localization, besides of being still active during night and 
bad weather conditions [Spi90] [Tho86]. Passive acoustics 
monitoring (PAM) appears to be suitable for integrated 
autonomous, real-time and long term alert systems to 
prevent collisions with ships [Sim06] if the animals

produce sounds regularly enough and over a range of 
behaviours. After being emitted, marine mammal calls 
propagate along paths from the animal’s position to one or 
several hydrophones. Then features such as time 
difference of times of arrival (TDoA) at each hydrophone 
[Lau03] [Spie90] or time-frequency dispersive pattern 
[Win04], are extracted from the measurements using 
signal processing techniques and used to estimate the 
source location. Passive acoustic localization techniques 
require a model of acoustic propagation in the 
environment, the knowledge of ocean acoustics properties 
at the emission time and a localization algorithm. 
Accuracy and robustness of the estimates depend on the 
emitted signal (bandwidth and level), the noise level, the 
adequacy between the propagation model and the reality 
[Cha04] and on monitoring of ocean acoustic properties. 
Existing methods range from direct-ray path propagation
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assumption associated with hyperbolic fixing [Lau04] 
[Des04] to more elaborated modal propagation and 
localization processing [Ebb06] [Win04]. Figures of merit 
of a localization scheme include localization’s accuracy, 
robustness to weak knowledge about environment 
properties and real-time implementation capability for 
alert systems.

The productive shallow waters of continental shelves are 
intensively used by low-frequency calling baleen whales 
(< 1 kHz) [Ric95]. Also, most of the documented 
collisions appeared to be there or near the continental 
shelf [Lai01]. Considering these facts, normal mode 
modelling seems to be an adequate model to deal with 
acoustic propagation of these whale calls [Jen00] 
[Win04]. Real data application of our contribution focuses 
on the localization of North Atlantic right whales gunshot 
calls in the Bay of Fundy, Canada. Nowadays, North 
Atlantic right whales (Eubalaena glacialis) population is 
less than 350 individuals and is in decline due to high 
human induced mortality [Van03]. Indeed, ship strikes 
accounted for 35.5% (16/45) of the documented North 
Atlantic right whale mortality between 1970 and 1999 
[Kno01]. North Atlantic right whales sounds have been 
recently described [Mat01] [Van03] [Par05]. In general 
they are low-frequency sounds (< 1 kHz) with various 
waveforms (constant low-frequency, moan, upsweeping 
and downsweeping modulations and gunshot). Gunshot 
calls are a loud impulsive sounds (duration ~30 ms, 
bandwidth ~[10Hz,20kHz], [Par05] ) frequently used by 
right whales in the Bay of Fundy, Canada [Van03]. They 
are produced by lone males or males in a social active 
group at or near the surface and seem to have some 
implication in reproductive display. The Canadian right 
whale Conservation Area in the Bay of Fundy is close to 
an internationally designated shipping lane used by 
numerous large carriers [Lau03] which was recently 
changed to minimise collision risk. Efficient localization 
of gunshot calls through PAM systems can help 
improving right whale conservation. Moreover, internal 
waves taking place in the Bay of Fundy produce large and 
rapid variations of sound speed profiles [Des04_a] 
[Cla06] that must be taken into account by appropriate 
localization algorithms.

In the present paper, we propose a method to localize (in a 
2D horizontal plane) low-frequency transient signals in 
shallow water environments. Our scheme relies on a 
normal mode propagation modelling and a targeted area 
of emissions surrounded by a sparse network of 
hydrophones. By exploiting the dispersive behaviour of 
the acoustic channel and time-frequency signal 
processing, our method allows localizing the source 
without any knowledge of the ocean acoustics properties 
of the channel and without any requirement to run 
simulations from acoustic propagation models. This 
method can use exactly the same recording device as that 
used for TDOA localisation schemes and can 
advantageously replace them when shallow water and

very low-frequency sounds are encountered. Our method 
is tested on three recordings from the dataset provided in 
support of the 2003 Workshop on Detection and 
Localization of Marine Mammals Using Passive 
Acoustics. Satisfactory results are obtained and the 
present paper aims at presenting this new potential 
localization scheme to the community.

The first part of the paper briefly presents the 
experimental material used in the field, the second part 
recalls the main features of normal mode propagation and 
the third part describes our localization scheme. Then a 
fourth part applies the method to real data, including 
comparisons with other classical methods. The last part 
discusses the results.

2. ACOUSTIC DATA SET

The data set that we used in this paper is the one provided 
in support of the 2003 Workshop on Detection and 
Localization of Marine Mammals Using Passive 
Acoustics. This dataset contains North Atlantic right 
whale sounds recorded in the Bay of Fundy during 2000 
and 2002 [Des04_a]. None of these calls have an in situ 
visual ground truth. Among 16 recordings (9-10 
September 2002), the dataset provides 5 30-s recordings 
containing gunshot calls. Recordings were performed by 
five OBH autonomous hydrophones moored on the 
bottom. A single hydrophone was located in each corner 
of a 14-km square, with the fifth located in the middle 
(c.f. table 1).

The OBH network was deployed in shallow waters with 
bathymetry varying from 100 to 200 meters. Sound speed 
profiles during the experiment were downward refractive 
or had a local minimum. They showed notable short-term 
variations. The sub-bottom structure in the area is mainly 
composed of a first Lahave clay layer over a thick layer of 
Scotian drift [Map77]. The weak compression sound 
speed in Lahave clay, which was smaller than the sound 
speed in water, implies a high level of dispersion for 
normal mode propagation. The OBH recordings were 
digitized using a 12-bit A/D converter with a sampling 
frequency of 1200 Hz. Figure 1 presents the recordings 
S035-2 at hydrophones H, L, E, C with a spectrogram 
representation in 10 to 100 Hz bandwidth (Kaiser 
window, p= 0.1102(180-8.7), length : 512 samples ). One 
can clearly see:

OBH Deployment position Water 
depth (m)Latitude (N) Longitude

(W)
C 44.60073 66.49723 210
E 44.60237 66.31591 134
L 44.66203 66.40453 183
H 44.73051 66.31556 123
J 44.73038 66.49619 170

Table 1 : Dataset OBH positions
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- on the time-amplitude plots (panels C, D, E, F ), the 
gunshot time of arrival on each OBH,

- on the time-frequency plots (panels G, H, I, J), a 
typical pattern of dispersive normal mode 
propagation. Each received gunshot has a multi
component structure and each component has its own 
time of arrival which depends on frequency (as the 
time delay between each echo increases with the 
range between the gunshot and the hydrophones, the 
time frequency structure of the arrival can be 
attributed without ambiguity to propagation and not 
to the gunshot itself).

3. DIRECT MODELLING: NORMAL 
MODE PROPAGATION

Considering that the energy in the vocalization is 
concentrated in the low-frequency band and propagating 
in shallow water waveguide, the normal mode 
propagation theory seems appropriate for the analysis. In a 
range independent environment, the transfer function 
between a receiver and an emitter r meters apart can be 
written as given in equation 1 (c.f Section 8) [Jen00] 
where gm(z) represents the modal function of index m, 
kr(mf) the radial wave number of index m and frequency 
f, Rkr the real part of kr(mf) and Ikr the imaginary part of 
kr(mf), zs is the source depth and zr the receiver depth. 
The term A(mf,r,zs,zr) includes the attenuation between 
source and receiver; the term P(mf,r) includes the 
propagation time and propagation speed between source 
and receiver. From P(mf,r), phase speed vv and group 
speed (propagation speed of the energy) vg of mode m at 
frequency f  are defined by equation 2:

v_(m, f  ) = vg (m, f  ) = 2k  f  Eq 2.
 ̂ Rkr g dRkr

In shallow water environments, vv and vg depend on both 
the frequency and the index m. That’s why, different 
modes at the same frequency propagate with different 
speeds and one mode at different frequencies propagates 
with different speeds. So, if a source emits an impulse 
signal, the received signal after propagation in the channel 
contains several echoes, and for each echo, its frequencies 
arrive at different times, in that sense, normal mode 
propagation is said to be dispersive.

If one source emits a transient signal with a time- 
frequency modulation te— (where te is the emission date 
of frequency f), theoretical received time-frequency 
structure RTFs after a normal mode propagation of range r 
between source and receiver is given by equation 3:

R T F S( t ,  f  )  =  V  A ( m ,  f ,  r ,  z s , z r )S ( t  -  t e (  f  ) --------J — Z )
^  v g ( m  f  )

Eq 3

where S(t) stands for the impulse distribution.

propagation code ORCA [Wes96], a synthetic gunshot 
emitted a time 0s is propagated in the prior Bay of Fundy 
waveguide (described in Section 2) over a 10-km range. 
Figure 2 gives the simulated received signal (noise free) 
and its spectrogram with the theoretical time-frequency 
arrival structure. The figure clearly illustrates the 
dispersive behaviour of the waveguide underlined in 
equation 3.

4. LOCALIZATION SCHEME

Our idea consists of using the dispersive behaviour of the 
waveguide to localize transient emissions. To design a 
localization scheme, we assume that:
- a sparse network of hydrophones is used to measure 

propagated signals,
- a source emits a transient signal with an unknown 

time-frequency modulation te(f),
- from the recordings, we dispose of time-frequency 

processing that allows us to extract the time of arrival 
of any modal arrival for each frequency.

Times of arrival of mode with index m at frequency f  
measured at hydrophones n and n ’ are given by equation 4 
(c.f Section 8) where r(s,n) is the range between source s 
and receiver n . This implies that the TDoAs of modes 
with index m and m ’ at frequency f  measured at 
hydrophones n and n ’ are given by equation 5 (c.f Section 
8). If the ratio of d(n f,m ’,m) over d(n’f,m ,m ’) is 
computed, one obtains equation 6 (c.f Section 8). We can 
note that this ratio does not depend on the waveguide 
properties. So, if a geographical set of coordinates is 
defined with the origin set half way between hydrophones 
n and n ’, the x coordinate along a line between n and n ’ 
and the y  coordinate perpendicular to this line, it is easy to

r(s,n)
show that the set of positions which satisfy Q

r(s, n') 

(where Q is a constant) is:
- if Q#1, a circle with centre coordinates equal to

( - -> f o and radius equal to QL 

1 -  Q 2
■ where

To illustrate the dispersive propagation and previous 
formula, simulation is carried out. Using normal mode

L  is the range between hydrophones n and n ’,
- if Q=1, the median between hydrophones n and n ’.

R(n,n’f,m ,m ’) constrains the source to lie on a circle or on 
a line (under the assumptions that the channel is isotropic 
and range independent on the array area), it does not 
depend on waveguide acoustic properties, so it can be 
used to locate the source without any requirement about 
monitoring channel’s properties, thus offering a robust 
localization scheme.

Then, our localization scheme follows these steps:
- step 1: perform a preliminary analysis of recordings 

to identify the hydrophones, the bandwidth and the 
modal indexes for which the modal arrivals are 
clearly resolved in a time-frequency plane,

m=1
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- step 2: with a given time-frequency tool, extract the 
times of arrival tr(m ,n f  for any m, n and f  selected in 
step 1 (in this paper, we look for a prior number of 
local maxima on the spectrogram computed with a 
Kaiser window, p=0.1102(180-8.3), L=512 samples),

- step 3: for each quintuplet (m,m’,n,n’f  with 
m ’,m,n,n’f  selected at step 1 and m ^m ’, n ^n ’, 
compute R(n,n’f,m,m ’),

- step 4: estimate the source’s location by solving the 
optimization problem described in equation 7 (c.f 
Section 8) where (xn,yn) are the coordinates of 
hydrophones n, and N  is the number of quintuplets 
(m,m’,n,n’f )  selected at step 3 (in this paper, we 
evaluate J(x,y) on a discrete grid in x and y  with a 
step of 5 m and search the global maximum of J  on 
the grid but we can also envisage to use global or 
local optimization techniques).

5. APPLICATION ON REAL DATA

The localization scheme above designed is applied to 
‘S035-2’ Bay of Fundy data set recordings which contain 
a gunshot call. Figure 1 illustrates the results. To obtain 
these localization results, our method was applied using 
hydrophones C, H, L, E, modal arrivals 1 and 2 and 
frequencies from 30 to 50 Hz (c.f. above step 1). Table 2 
summarizes the localization results. Standard deviation of 
our method was assessed via 100 Monte-Carlo 
simulations with synthetics signals simulated with ORCA 
and with a signal to noise ratio similar to the real one 
(note that these Monte Carlo simulations help us to 
quantify the impact of recordings noise on localization 
accuracy but not the impacts of propagation and gunshot 
instabilities).

The application of our method on real data from S035-2 
recordings indicates that the gunshot localization is 
compatible with the solutions obtained by Laurinelli et 
al.’s ([Lau04]) and Desharnais et al.’s ([Des04]) methods, 
which somewhat confirms the validity of our approach. 
The precision of our scheme seems to be better than 
Laurinelli et al.’s approach but one must note that errors 
are not assessed the same way (Monte Carlo simulations 
with a statistical mean in our case, whereas Laurinelli et 
al.’s is obtained from the spread of hyperbole’s

intersections in the hyperbolic fixing method and does not 
have any statistical meaning). Similar good results were 
obtained on S070-3 and S013-1 recordings. For S093-4 
and S110-5 recordings, signal to noise ratio were too low 
to be able to clearly separate the modal arrival on a 
spectrogram and our method fails.
Compared to other methods, ours takes into account true 
propagation model that really exists in the waveguide 
while Laurinelli et al.’s and Desharnais et al.’s methods 
assume an acoustic direct ray path (straight line or not) 
propagation. In this sense, the link between time of 
arrivals and source position is better explained in our 
scheme. Although gunshot calls contain frequencies from 
20 Hz to 20 kHz, our method exploits only the low- 
frequency band while Laurinelli et al’s and Desharnais et 
al.’s may use the full bandwidth. Therefore, time of 
arrival estimates are more precise for Laurinelli et al.’s 
and Desharnais et al.’s schemes. Without ground-truth it 
is difficult to establish which method is the most accurate. 
However, we underline the fact that our approach does not 
require any knowledge about acoustic properties of the 
waveguide, which is a major advantage for robustness. 
Wiggins et al. [Win04] proposes a localization scheme 
based on normal mode propagation with a single 
hydrophone while our approach requires several 
hydrophones. To succeed, Wiggins et al.’s scheme needs a 
normal mode propagation code and the knowledge of 
acoustic properties of the waveguide. When applying his 
method on Bering Sea calls, the waveguide structure was 
simple (a Pekeris waveguide) and group speed weakly 
depended on waveguide properties. This was not the case 
in Bay of Fundy waveguide whose bottom presents a 
multi-layer structure with a poorly compacted first layer 
and a time-space variable sound speed profile. Thus a 
localization approach that is robust to poor knowledge of 
acoustic properties of the environment offers significant 
additional advantages even if it requires several 
hydrophones.

Our localization scheme can advantageously be used in a 
real-time anti-collision (between whales and ships) alert 
system in situations where low-frequency calls are 
frequent because it does not require the monitoring of 
acoustic properties of the waveguide, which simplifies the 
experimental PAM implementation and it does not require 
to run a propagation code, so a fast real-time localization 
may be achieved. However, it requires real-time 
implementation of time-frequency processing.

Because our scheme works on TDoAs between the 
arrivals of modes on a same hydrophone (see Eq 5), it is 
not sensitive to clock’s drifts, which is a major difficulty 
with non-cabled hydrophone arrays (c.f. Simard and Roy, 
2008 [Sim08])

In this paper, our approach was applied to right whale 
calls, but it can be used with any low-frequency calls with 
clear time-frequency modulation in shallow waters, for 
example with North Pacific right whales, Humpback

Method Xgs (m) yGs (m) Standard
deviation
xGS (m)

Standard
deviation
yGS (m)

Gervaise et 
al.

9225 -1248 420 110

Laurinelli et 
al. [Lau04]

8950 -970 760 620

Desharnais 
et al. 

[Des04]

8884 -848

Table 2 : S035-2, gunshot call localization results

6. DISCUSSION
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whales in the Bering sea [McD02] , eastern North Pacific 
blue whales [0le07], blue whale (Balaenoptera musculus) 
in the St. Lawrence Estuary [Ber06] .

6. FUTURE WORK

include this localization scheme in a larger acoustic 
perspective to perform passive geoacoustic inversion 
of waveguide properties using marine mammal calls 
[Ger07] .

As a perspective for future work, we plan to:
- look for larger dataset to test the proposed approach 

(any contributions are welcomed),
- estimate the source’s depth using the normal mode 

propagation assumption and the time-frequency 
analysis of the recorded signals,
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8. EQUATIONS

H  ( / )  « (2^ )1/2 ̂  A(m, / ,  r, Zs, Zr / ,  r )

Equation 1 A(m, f ,  r, Zs, Zr ) = gm (Zs )gm (Ze ) exp(- / k,. (m, f  )r) /

P(m, / ,  r) = exp(-j(Rkr (m, /  )r)

Equation 4 tr (m, n, / ) = te (/ ) + ~r S n ^  tr (m, n', / ) = te (/ ) + - r (S, n )
vg (m, / ) vg (m, /  )

Equation 5

d  (n, / ,  m, m') = tr (m, n, /  ) -  tr (m', n, /  ) = r(s, n)(
1 1

ve (m,y ) ve (m' ,y )

d  (n', / ,  m, m') = tr (m, n', / )  -  tr (m', n', / )  = r(s, n')(-
1 1

vg (m, /  ) vg (m', /  )

Equation 6 R(n, n', / ,  m, m') =
d  (n,/ ,  m, m') r(s, n) 

d  (n ',/ ,  m, m') r(s, n')

Equation 7

( xs, y*) = arg min( J  ( x  y ))

J  ( X y ) = X [( X _ xn )2 + ( x _ y n )2 _ R 2(^  m^ /  )(( x _ Xn)2 + ( x _ y»,)2)]2

m=1

x y

?=1
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9. FIGURES

Figure 1 )  A : Estimated gunshot position and mapping o f criteria J, B : zoom around the estimated positions, black square GSGer : 

estimated position with standard deviation from  our method, black square GSDes: estimated position with Desharnais et a l.’s method, 

black square GSLau : estimated position with standard deviation from  Laurinelli method; Panels C, D, E, F  : received signals by 

OBHs C, L, E, H; panels G, H, I, J: :received signal spectrogram (Kaiser window, /3=0.1102(180-8.3), L=0.5s) with estimated time-

frequency law o f modal arrivals (black square)

Figure 2) A] received waveform; B] gray scale map: received waveform spectrogram in dB scale, black squares: theoretical time-

frequency structure o f arrivals
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a b s t r a c t

Three algorithms are explored to localize fin whale calls recorded from a large-aperture hydrophone 
array deployed in the Saguenay— St. Lawrence Marine Park. The methods have to cope with varying 
sound speed in space and time, errors in time differences of arrival (TDoA) measurements in a noisy 
environment, and often a limited number of hydrophones having recorded a particular event. The array 
was composed of 5 AURAL autonomous hydrophones with a total aperture of about 40 km, coupled with 2 
hydrophones from a small-aperture cabled coastal array. The autonomous hydrophones clock drifts were 
estimated with a level of uncertainty from timed sources and the coastal array time reference. The calls 
were then localized by constant-speed hyperbolic fixing, variable-speed isodiachron Monte-Carlo 
simulations, and a ray-tracing propagation model. The Monte-Carlo simulations generate clouds of 
possible localizations from the uncertainty in hydrophone positions, TDoAs and the effective horizontal 
sound speeds along the different source-hydrophone paths. The ray-tracing model produces a fixed grid of 
TDoAs which can then be consulted to find the likeliest positions of the whales. Results from the different 
methods are compared and their relative advantages or limitations are discussed.

r é s u m é

Trois algorithmes sont explorés pour la localisation de vocalises de rorqual commun enregistrées par 
un réseau d'hydrophones à large ouverture déployé dans le Parc Marin du Saguenay-Saint-Laurent. Les 
méthodes doivent composer avec une vitesse du son variable dans l'espace et le temps, des erreurs dans les 
mesures des différences de temps d'arrivée (DTA) avec un environnement bruyant, et souvent un nombre 
limité d'hydrophones ayant capté un événement donné. Le réseau était composé de 5 hydrophones 
autonomes AURAL avec une ouverture totale d'environ 40 km, couplé avec 2 hydrophones d’un petit 
réseau côtier. La dérive des horloges des hydrophones autonomes a été évaluée avec un niveau 
d’incertitude à l'aide de sources aux temps connus ainsi que de la référence temporelle du réseau côtier.
Les vocalises ont ensuite été localisées par la méthode à vitesse constante des hyperboles, par celle à 
vitesse variable des isodiachrones avec simulations de Monte-Carlo, et par un modèle de propagation de 
rayons. Les simulations de Monte-Carlo produisent des nuages de localisations possibles à partir des 
incertitudes sur les positions des hydrophones, sur les DTAs et sur les vitesses horizontales effectives du 
son le long des différentes trajectoires source-hydrophone. Le modèle de propagation des rayons produit 
une grille fixe de DTAs qui est ensuite consultée pour trouver les positions les plus probables des baleines.
Les résultats des différentes méthodes sont comparés et leurs avantages ou limites relatives sont discutés.

1. i n t r o d u c t i o n

Continental shelf marine environments are challenging 
for acoustic localization methods because of varying 
complex bathymetry, 3D oceanographic processes affecting 
temperature and sound speed time-space structures, 
especially at tidal and seasonal frequencies. Localization 
from TDoAs on short distances also requires high time 
precision with special care given to clock synchronization of 
the array and time drifts during mid- and long-term 
deployments. The most used localization method, 
hyperbolic fixing (Spiesberger and Fristrup 1990), assumes 
constant speed over the 2D or 3D localization space. The 
source location is assumed to be a linear function of travel
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time differences, speed of sound and receiver locations. 
Errors in localization can be large when these assumptions 
are not satisfied and uncertainties in the input data are 
present (e.g. Spiesberger and Wahlberg 2002). These 
conditions generally prevail in the study area at the head of 
the Laurentian Channel in the St-Lawrence Estuary, where 
the summer sound speed profile is characterized by a well- 
defined channel at intermediate depths (e.g. Fig. 1a), 3D 
physical processes including semi-diurnal tidal upwelling 
and higher frequency of internal waves or fronts resulting 
from the interaction of tidal currents with the complex 
bathymetry combining with the confluence of several 
estuarine water masses (e.g. Saucier and Chassé 2000).
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Park, with bathymetry, locations o f the 5 AURAL M l
autonomous hydrophones and the 6-hydrophone coastal 

array, CTD station and sound speed profile.

Three methods have been explored here to compare 
their localization performance using an array which includes 
autonomous hydrophones, each having its own clock, under 
this general context of considerable uncertainty in input 
data. They are the hyperbolic fixing (Spiesberger and 
Fristrup 1990, Spiesberger 1999, 2001), the isodiachron 
method with Monte-Carlo simulations (Spiesberger and 
Whalberg 2002, Spiesberger 2004) and the use of an 
acoustic propagation model (Tiemann and Porter 2004).

2. MATERIAL AND METHODS

Data collection

The hydrophone arrays were deployed in the study area 
during summer 2003 (Fig. 1). All hydrophones were HTI 
96-min with a nominal receiving sensitivity (RS) in the low 
frequency band (< 2 kHz) of -164 dB re 1 V/^Pa. Five 
AURAL autonomous hydrophone systems (Multi- 
Electronique Inc, Rimouski, Qc, Canada) programmed to 
sample continuously 16-bit wave data over the 1 kHz band 
were deployed as oceanographic moorings. The 
hydrophones were placed at intermediate depths in the water 
column close to the summer sound channel axis. Special 
care was taken to minimize possible noise sources from the 
moorings. The outer 2 hydrophones from a 650-m aperture 
cabled coastal array deployed along Cap-de-Bon-Désir 
(Fig. 1,) completed the 7-hydrophone data base used in this 
study. The acquisition system for the coastal array was a 16- 
bit ChicoPlus Servo-16 data acquisition board (Innovative 
Integration, Simi Valley, CA, U.S.A.). After analysis of the 
recordings, this beta version of AURAL M1 was found to 
have a clock drift of about 18 s per day, consistent on all 5 
instruments. The coastal array's PC clock had a drift of 
about 10 s per day, which was checked and corrected every 
weekday morning. The coastal and AURAL arrays were

synchronized using simultaneous recording of the same 
acoustic signals such as motor boats and whale 
vocalizations, and linear time interpolations assuming 
constant drift. Timing errors are inherent to such a 
procedure and the localization method must be robust 
enough to deal with such uncertainties as well as the non 
spatially homogenous effective sound speed.
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Figure 2. Binarized image o f spectrogram from a fin whale 

series o f calls from 6 hydrophones o f the array.

A typical sound speed profile from a CTD cast made in 
the area is shown in Fig. 1a.

Data analysis

The 80-s sample used for localization is a series of fin 
whale pulse calls in the 18-25 Hz frequency band (Fig. 2) 
recorded Sept. 24 at 4:49 local time. This sample was 
detected on all hydrophones except one where background 
noise was masking the call. The TDoAs between 
hydrophones is determined by spectrogram cross

Figure 3. Ray model grid o f 1000 points covering 20 x 50 km 
in the area o f study and associated with the 7 receiver 

positions.
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coincidence (e.g. Simard et al. 2004), after bandpass 
filtering to [18 25] Hz.

A constant sound speed of 1450 m s-1, corresponding to 
the average speed in the sound channel where the 
hydrophones were deployed, was used for hyperbolic 
analysis and as the central speed of the interval used in 
isodiachron Monte-Carlo applications.

The 1-km resolution grid used for the ray-tracing 
Bellhop model (Porter and Liu 1994) covered an area of 20 
x 50 km enclosing all hydrophones (Fig. 3). The typical 
sound speed profile of Fig. 1a was used for the modeling. 
For each grid point, a set of TDoAs was calculated 
assuming a source at a depth of 10 m, a frequency of 500 
Hz, and using 21 rays in the ±20o directions along the 
propagation path plane. The bathymetry profile between 
source and receiver was extracted from a high-resolution 
multibeam bathymetry dataset provided by the Canadian 
Hydrographic Service. The mean times of ray arrivals, 
weighted by ray amplitudes, provided by Bellhop for the 
array configuration were then used for TDoA calculations. 
The sound source was located at the minimum Euclidean 
distance between measured and modeled TDoAs (Tiemann 
and Porter 2004).

Isodiachrons are an extension of the hyperbolic location 
method but where the effective sound speed along the path 
between source and each receiver is allowed to vary from 
path to path. Receivers are combined in groups of three, 
which gives a total of 20 groups from 6 receivers. For each 
group, sound speed, receiver positions and TDoAs are 
treated as uniformly distributed random variables within a 
chosen interval that is the best educated guess of data 
uncertainty. Monte-Carlo simulations are then applied to 
produce a probability density function (pdf) of source 
location, called a constellation, for each group of 3 
receivers. The actual source is then located within the 
intersection of all the constellations at the most probable
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Figure 4. 2D hyperbolic localization of the fin whale calls. 
Hydrophone positions are illustrated as crossed circles. 

Whale position is the bold circle.
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Figure 5. Localization o f fin whale on the ray-tracing model 
grid. The receivers are illustrated by stars; the whale 

position is a crossed circle in the darker zone o f the figure. 
Background grayscale image represents difference between 

measured and modeled TDoAs; smaller differences are 
darker. White patches are areas where a source would not 

be heard by all receivers.

position from the joint probability distribution function 
(pdf) along X and Y dimensions (i.e. 2D histogram) of all 
solutions.

3. RESULTS

Resulting hyperbolic fixing from the set of TDoAs is 
presented in Fig. 4. The position found for the fin whale is 
48.214° N, 69.408° W, within the center of the array 
configuration. Estimated fixing error on this result is 1690 
m, derived from the norm of the differences between

0 30 60

Eastings (km)
Figure 6. Localization process using isodiachron technique 

with Monte-Carlo simulations. The receivers are 
illustrated by crossed circles. Different constellations are 
shown in shades o f gray. The estimated whale position is 

represented by a diamond.
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estimated and measured time along every path (Simard et al. 
2004).

The same set of TDoAs was applied to the ray tracing 
TDoA estimation grid to produce results shown in Fig. 5. 
The background grayscale image represents difference 
between measured and modeled TDoAs; smaller differences 
are darker. The whale position is in the darkest area of the 
grid at a position of 48.220° N, 69.384° W. Grid size 
implies an uncertainy of at least ± 1 km.

Fig. 6 illustrates results obtained from the isodiachronic 
Monte-Carlo method. Each constellation was obtained from 
4000 different estimates of source location from a varying 
set of input values for receiver location, sound speed and 
TDoAs. Assumed errors for these variables were ± 20 m, ± 
5 m s-1 and ± 1.0 s respectively. The 1.0 s error is the 
minimal value needed to obtain intersection of all 
constellations. The region of intersection is a 600 x 800 m 
rectangle, the presumed position of the source being where 
the density is highest. The estimated whale position is 
48.216° N, 69.421° W. Confidence intervals for 95% of the 
pdf are 580 m for x and 770 m for y.

Figure 7 shows the whale positions obtained from the 
three methods. The isodiachron result is at 1.01 km from 
the hyperbolic position and at 2.24 km from the result of the 
ray-tracing model grid.

4. DISCUSSION

The whale was localized in one of the 3 intensive 
feeding spots found at the head of the Laurentian channel 
(Mingelbier and Michaud 1996), where tidal upwelling 
along the slope concentrates krill in dense demersal patches
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Figure 7. Locations o f fin whale from the three methods: 
diamond for isodiachron, circle for hyperbolic result and 

cross for ray-tracing model grid. The receivers are 
illustrated by triangles.

(Cotté and Simard 2005) that are exploited by fin whales 
from tagging experiments (e.g. Simard et al. 2002 Fig. 3b1). 
We observed strong whale blows (either from fin or blue 
whales) from the coastal array location at Cap-de-Bon-Désir 
on the north shore on the same morning during daylight, 
which were about 4 km from the localized fin whale, 6 
hours later; so the localization found by the three methods is 
very likely given the fidelity to the feeding site over several 
hours.

This localization example illustrates the need for high 
precision in the set of variables involved in the localization 
problem and an accurate propagation model, which is 
difficult to satisfy because of technical constraints due to 
complex water mass structure combined with complex 
bathymetric characteristics. The isodiachron Monte-Carlo 
technique indicated that the error on TDoAs was in the 
order of 1 s. Even if the whale is favourably positioned at 
the center of the array, both the hyperbolic and ray-tracing 
solutions have uncertainties exceeding 1 km, given a 1-s 
travel time at 1450 m s-1. In both cases, an estimate of the 
confidence interval of the localization reflecting 
uncertainties in the input values would be needed (c.f. 
Spiesberger and Wahlberg 2002), but is not formally 
provided by the methods. As mentioned by Tiemann and 
Porter (2004), a Monte-Carlo approach could be used to 
evaluate uncertainties in localization by incorporating the 
measurement error in TDoAs. However, the uniform sound 
speed profile over the entire grid is an unrealistic model 
condition that would also require special attention in such 
variable environments. This would add substantial 
modeling efforts. Monte-Carlo simulations can also be 
applied to the hyperbolic method to find the optimal 
effective homogeneous sound-speed, which corresponds to 
the isodiachron particular case when the sound speed is 
constant. Indeed, what we found most useful in the 
isodiachron Monte-Carlo method is the application of pdfs 
to evaluate input error magnitude.

Our estimation of source location is done by finding the 
area of highest density on a 2D histogram of all possibilities 
in the overlapping constellation area. Spiesberger and 
Wahlberg (2002) used separate pdfs along X and Y 
dimensions to compute the confidence interval of the 
solution. We found the joint 2D pdf more practical in a 
context of comparing method precision and also for whale 
tracking purposes, where a best estimate of whale position 
has to be extracted. However, the 2D histogram becomes 
useless if very few points are present in the constellation 
intersection area, or when two or more equivalent peaks are 
found in the distribution. Then the computation of the center 
of gravity by principal component analysis might be more 
adapted to estimate the source localization.

Another difficulty is estimating confidence limits for 
the source localization. Spiesberger et al. (2002) proposed 
to use the x and y sizes of the constellations with the 
smallest confidence limits, defined as two standard 
deviations. We found this approach misleading when 
constellations are spread out in long elliptic shapes, and 
distributions can stretch out to 100 km or more. Our 
approach uses the pdf of the localizations in the 
constellation intersecting area. However, in both cases, the 
limitation of this Monte-Carlo method is the strong 
dependence of output confidence interval on input error 
bounds. They should ideally be independent.

In our test, the ray-tracing model grid's precision is 
limited by mesh size. Building the grid is demanding in 
computation time, although some degree of interpolation 
can be applied to reduce the number of grid points to 
compute. Computation time can be reduced by inverting the
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source-receivers in computing the TDoAs along equally 
spaced directions for each hydrophone and then 
interpolating on the grid from the 7 propagation times (M.B. 
Porter pers. comm.). However, the grid has to be 
regenerated when a new configuration of receivers is used. 
Another drawback is that a position is always found on the 
grid even if the source is outside the domain or if 
measurement errors are high, which requires position 
validation by other means. To be fair, the grid method 
should be tested with measured data with a known source; it 
might actually outperform other methods in cases where 
input data have relatively small errors and where sound 
speed and ray trajectories are not uniform. In our case 
study, calls detected on more than three hydrophones were 
rare, due to the large aperture of the array and low number 
of hydrophones combined with high shipping noise (e.g. 
Simard et al 2006). Testing the localization from a low- 
frequency source would be suitable, notably for evaluating 
the effective sound speed and for synchronizing clocks, but 
such large-size and high-power sources are specialized 
equipments that are not easily available and deployable 
besides posing ethical problems because of their potential 
negative impact on fauna.

For future work perspective, the clock synchronization 
problems encountered in this initial deployment of the array 
in 2003 were clearly the main source of localization error. 
Then, at an order of magnitude lower, come the sound speed 
variation and the precision and accuracy of TDoA estimates. 
Increasing the number of hydrophones to form a denser 
array may improve probability of detection and reduce the 
localization error. Then regular sound speed profile 
measurements over the area could further improve the 
localization. Acquiring frequently updated profiles would 
need the regular use of a ship equipped with a CTD or 
sound speed profiler. Alternatively, sound speed profiles 
could eventually be estimated from the recorded acoustic 
data on the array by passive acoustic tomography techniques 
using the transiting merchant ships as sources of opportunity 
to monitor the environment in a non-invasive way (C. 
Gervaise, Ensieta, Brest, France, personal communication).
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a b s t r a c t

The vocal behavior of Blainville's beaked whale (Mesoplodon densirostris) was measured using the 
bottom-mounted hydrophones of the Atlantic Undersea Test and Evaluation Center (AUTEC) in the 
Bahamas. The statistics for the vocal durations and gaps within these vocal periods were measured over 
multiple deep foraging dives. The sizes of foraging groups of M. densirostris were estimated from the dive 
vocalization durations by applying click rate and detection ratio statistics derived from Woods Hole 
Oceanographic Institution (WHOI) Digital recording Tags (DTags) to visually verified data collected on 
the AUTe C range.

s o m m a i r e

Le comportement vocal de la baleine à bec de Blainville (Mesoplodon densirostris) a été mesuré à l’aide 
d’hydrophones installés sur le fond marin, au Centre d’évaluation et de tests sous-marins de l ’Atlantique 
(AUTEC, de l ’anglais Atlantic Undersea Test and Evaluation Center) des Bahamas. Les statistiques 
relatives à la durée des signaux acoustiques et les périodes qui s’écoulent entre les périodes de « chant » ont 
été mesurées pour des plongées multiples en profondeur (en comportement de recherche de nourriture). La 
taille des groupes de M. densirostris en recherche de nourriture ont été estimés d’après la durée des 
périodes de chant en plongée, en appliquant le taux de « clics » et des statistiques sur le rapport de détection 
dérivés des enregistrements numériques du DTags de la WHOI (Woods Hole Oceanographic Institution), 
afin de visualiser les données recueillies au centre AUTEC.

1. i n t r o d u c t i o n

Tests of a marine mammal passive acoustic monitoring, 
detection, and localization system have been carried out at 
the U.S. Navy’s Atlantic Undersea Test and Evaluation 
Center (AUTEC) training range in conjunction with the 
Bahamas Marine Mammal Research Organization 
(BMMRO) and the Woods Hole Oceanographic Institution 
(WHOI). BMMRO trained observers were directed to 
vocalizing animals on the range based on passive acoustic 
detections and localizations. They visually verified species 
and group size, and obtained photo-IDs of animals. WHOI 
placed DTags on 7 Blainville’s beaked whales (Mesoplodon 
densirostris). The DTag records pitch, roll, heading, and 
depth, and records acoustic signals using stereo 
hydrophones. The tag provides detailed data on the tagged 
animal’s movements and vocalizations.

The AUTEC range is located in a deep ocean canyon 
known as the Tongue of the Ocean (TOTO) off Andros 
Island in the Bahamas. The range consists of 82 bottom- 
mounted hydrophones that are deployed up to depths of 
2000 meters. Sixty-eight of the hydrophones are arranged in 
offset rows on approximately 4 km baselines. The 
bandwidth of these hydrophones is 50 Hz to approximately
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45 kHz. Fourteen additional hydrophones are arranged into 
two 7-hydrophone hexagonal arrays with a center 
hydrophone. These hydrophones are separated by a baseline 
of about 1.2 km and have a bandwidth from 8 to 50 kHz [6, 
7].

Since 2004 M. densirostris has been the focus of this 
research, as it is the species generally sighted by observers 
at AUTEC, and is frequently detected acoustically on the 
range. This species has been associated with mass 
strandings linked to Navy sonar.

In a study from 1997-2002 in the Northern Bahamas, D. 
Claridge found the mean group size of M. densirostris to be 
4.1, with group sizes ranging from 1 to 11 animals [2]. 
Pairs of both M. densirostris and Z. cavirostris tagged 
simultaneously with DTags have been reported to dive and 
subsequently approach the surface in close proximity [5, 
10]. Visual observations of M. densirostris at AUTEC by 
BMMRO observers on the water and passive acoustic 
monitoring on-shore also indicate that these animals dive as 
a group and vocalize at depth. Personnel acoustically 
monitoring the AUTEC range hydrophones detect groups of 
M. densirostris across the range throughout the course of 
any given day. This species is known to dive to depths in 
excess of 1200 meters [1, 8]. These dives are separated on
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average by about 2 hours and the dive duration may exceed 
60 minutes [1]. Vocalizations are produced only at depth 
during foraging. Vocalizations generally occur below 200 
m [3].

M. densirostris produce short (~250 ^s) frequency- 
modulated upsweeps from approximately 25 to 55 kHz, 
with an inter-click interval (ICI) o f 0.2 to 0.4 s [3, 4]. The 
beam  pattern of another beaked whale species, Cuvier’s 
beaked whale (Ziphius cavirostris), has been shown to be 
highly directional [10]. The same M. densirostris clicks are 
often detected concurrently on only 1 or 2 hydrophones, 
depending on the animal’s bearing and direction of 
movement, making localization difficult. However, as 
individuals in the group move during foraging, the group’s 
clicks are detected on a number of surrounding range 
hydrophones, with click detections often shifting back and 
forth between adjacent hydrophones. When a group of M. 
densirostris starts vocalizing, a few intermittent clicks are 
often heard before they start clicking fairly consistently on 
the surrounding hydrophones. Similarly, as foraging comes 
to an end, a few intermittent clicks can still be detected after 
consistent clicking has ceased.

Clicks are detected using a multi-stage FFT-based 
energy detector [7]. The sample rate for the data is 96 kHz. 
A 2048-point FFT with 50% overlap is used. It provides a 
46.875 Hz frequency resolution and a 10.67 ms time 
resolution. An adaptive threshold is run in each bin of the 
FFT. If energy above threshold is detected, the bin is set to 
a “ 1” and a detection report is generated. M. densirostris 
clicks are then isolated based on the frequency distribution 
of the detected signal [6].

Raw acoustic, click detection, and localization data 
have been collected at the AUTEC range during these tests. 
For this study dive vocalization durations of M. densirostris 
were measured from the click detection data, and a method 
was developed to estimate M. densirostris group size given 
this dive vocalization duration.

Groups of vocalizing beaked whales were isolated and 
the durations of the vocal periods during the dives for the 
groups were measured. Gaps in the vocalizations during 
these vocal periods were also measured.

To estimate group size, a normalized detection ratio and 
mean click rate was derived from DTag dive data. The 
normalized detection ratio is the ratio of total number of 
clicks detected on the array to the product o f the total 
number emitted by the tagged animal multiplied by known 
group size and the number of hydrophones in the array. 
These data were used to predict the number of animals in 
another group based on the total number of clicks detected 
for this group during its dive vocal period on a hydrophone 
array.

In October of 2006, a WHOI DTag was attached to a 
Blainville's beaked whale at the AUTEC range in the 
Bahamas. The tag was recovered after 17 hours. Five deep 
foraging dives were recorded. Statistics from three of these 
dives were used as a predictor of group size using verified 
data collected at AUTEC during an independent exercise 
conducted with BMMRO visual observers.
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2. METHODS AND RESULTS 
2.1 Vocal Behavior

Click detection data from a species verification test 
conducted at AUTEC in April, 2005 with BMMRO and 
from a test conducted with The Technical Cooperation 
Program (TTCP) at AUTEC in February, 2007 were 
analyzed to quantify the vocalization periods for groups of 
diving M. densirostris. Groups were isolated and baseline 
dive vocalization durations were measured.

A program that recorded the start and stop time of 
beaked whale detections on each hydrophone was run on 
archived detection data. The program recorded a start time 
when a beaked whale click was detected on a hydrophone. 
A 60-second timer was then initialized for this hydrophone. 
If a detection did not occur within the 60-second window, 
the tim er was stopped, and the time of the last detected click 
marked as the stop time. Each time a new click was 
detected, the tim er was reinitialized. The program output the 
start time, stop time, and total click count for each 
hydrophone that had detections. The total click count is the 
number of clicks detected between a single start and stop 
time on a single hydrophone.

To isolate animal groups and measure dive vocalization 
durations, the start and stop data from groups of adjacent 
hydrophones were overlaid on a single plot. Generally, 7- 
phone arrays centered on the presumed group location were 
examined. AUTEC hydrophones are laid in offset rows with 
a baseline of ~4 km  to form hexagonal arrays with a center 
phone. Based on tag analysis, beaked whale vocalizations 
are detected up to a range of 6.5 km. In order to help 
isolate vocalizing groups, total click counts of less than 5 
clicks were discarded. The vocalization duration was 
derived by measuring the start and stop time of detections 
on the set of hydrophones believed to represent a single 
beaked whale group. Durations for the April, 2005 dataset 
were measured from the onset o f consistent clicking on the 
analysis hydrophone array to the cessation of this consistent 
clicking. Durations for the February, 2007 dataset were 
measured from the first to the last detected click. A 
characteristic plot o f detection start and stop time versus 
total click count for 3 hydrophones over 3 dives is given in 
Figure 1. In the figure, the vocalization durations range 
from 20 to 21 minutes. Dives with vocalizations detected 
only on hydrophones on the edge of the range were not 
considered as part of the analysis. Vocalization periods 
longer than 52 minutes, twice the mean dive vocal phase of 
26 minutes measured for M. densirostris from DTag data 
[9], were also not considered. Difficulty in measuring dive 
vocal periods from the range hydrophones arises when two 
or more groups in close vicinity ensonify common sensors.

Sixty-four dives from April, 2005 and thirty-three dives 
from February, 2007 believed to be associated with single 
beaked whale groups were isolated and the vocalization 
durations measured. Dive vocalization statistics are shown 
in Table 1 and Figure 2.

Gap statistics were measured from the February, 2007 
dataset. Gaps in the vocalizations refer to periods of time 
when fewer than five clicks from the group were detected
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simultaneously on any given hydrophone associated with 
the group.

These gap statistics provided baseline data for typical 
beaked whale detections on the AUTEC range for the 2007 
Behavioral Response Study (BRS). During this test a tagged 
Blainville’s beaked whale was exposed to anthropogenic 
sound during a deep foraging dive. The animal’s 
vocalizations were monitored using the AUTEC sensors 
during the exposure. Changes in typical vocal behavior 
were used as a real-time cue to the test conductor to secure 
the source.

Figure 1: M. densirostris vocalization start and stop times vs. 
total number o f clicks detected within the period for 3 dives on 

3 hydrophones.

Figure 2: Vocalization duration vs. number o f groups for 97 
dives from the two datasets analyzed.

April, 2005 February, 2007 Combined

# Dives 64 33 97

Mean 31.4 31.8 31.5

Median 28.5 32.6 30.3

Mode 26.0 37.0 26.0

Std Dev 9.9 10.5 10.6
Min 15.0 14.9 14.9

Max 51.0 50.4 51.0

Thirty-three dives were examined from 01/30/07-02/04/07. 
twelve of which had no gaps. A total of 63 gaps were 
measured; of these only five were more than 6 min long. 
10% of the gaps started between 40 and 60% of the way 
through the corresponding dive vocalization duration. The 
gap statistics are indicated in Table 2.

Mean Median Mode Std Dev Min Max

# Gaps 1.9 1.0 0.0 2.3 0.0 8.0

Gap (min) 2.5 1.3 1.3 2.3 0.0 12.7

Table 2: Gap statistics

2.2 Click Counting
A method of click counting for the range hydrophones was 
developed to estimate the number of M. densirostris present 
in a group. This method uses the dive vocalization duration 
for each group, the total number of clicks detected on 
surrounding range hydrophones, and statistics (mean click 
rate and normalized detection ratio) derived from DTag data 
to estimate group size. DTag data were used in conjunction 
with nearby range hydrophones to estimate the mean click 
rate for an individual and the normalized detection ratio of 
the hydrophone sub-array of interest. The click rate is the 
number of clicks emitted by an individual per second during 
the vocal periods within deep foraging dives. The 
normalized detection ratio is the ratio of total number of 
clicks detected on the array to the product of the total 
number emitted by the tagged animal multiplied by known 
group size and the number of hydrophones in the array. The 
mean click rate and normalized detection ratio were then 
applied to three separate dives to estimate group size. These 
dives were randomly chosen from visually verified M. 
densirostris sightings with known group size. The goal of 
the analysis was to estimate the number of animals in the 
group from clicks detected on the hydrophone array in the 
vicinity of the sighted animals.

DTag Statistics
To estimate a mean beaked whale click rate, three dives 
were examined from a DTag deployed on an M. densirostris 
on 23 October 2006 by WHOI at the AUTEC range in the 
Bahamas. For each dive the total number of clicks detected 
on the tag from the tagged whale was divided by the tagged 
whale’s vocalization period during the dive to estimate the 
click rate. These three click rates were then averaged to 
produce the mean click rate (CR) of 2.75 clicks/sec used for 
this analysis (Table 3).

Dive Click Rate (CR)

1 2.66
2 2.87

3 2.72

Mean 2.75

Table 1 Dive vocalization statistics
Table 3: Mean click rate calculated from DTag tagged whale 

vocalizations.

168 - Vol. 36 No. 1 (2008) Canadian Acoustics / Acoustique canadienne



To determine a normalized detection ratio (NDR) for 
the range hydrophones, a hydrophone sub-array of 7 to 10 
hydrophones was first defined in the vicinity of the tagged 
animal. Detection data from range hydrophones surrounding 
the tagged animal were examined for the dive vocalization 
period. The hydrophone with the maximum number of 
clicks detected during this period was chosen as the center 
hydrophone for the sub-array. At the time of the analysis 
the exact position of the tagged animal was not known and 
the phone with the most detections was chosen as a first 
order approximation. A circle with a radius of 4.8 km was 
drawn around this center phone, and all hydrophones falling 
within the circle defined the hydrophone sub-array used in 
the analysis. An example of the sub-array designation is 
shown Figure 3. The 4.8 km radius circle was chosen to be 
consistent with the M. densirostris group localization 
density estimation method presented in [6].

The total number of clicks (Cha) detected on all 
hydrophones in  the sub-array during the dive vocalization 
period was summed. The total number of clicks produced by 
the tagged animal during its dive vocalization period and 
recorded on the DTag was defined as Ct. The tagged animal 
was sighted in a group of four (two mother-juvenile pairs), 
though two other animals were sighted at a distance from 
the group. Using a group size of four, the normalized 
detection ratio (NDR) for each dive was defined as the total 
number of clicks detected on the hydrophone sub-array 
during the tagged animal’s dive vocalization period (Cha) 
divided by the total number of clicks emitted by the tagged 
animal during this period (Ct) multiplied by the group size 
(GS) and the number of hydrophones in the sub-array (Hha):

NDR = Cha/ (Ct*GS*Hha)

The normalized detection ratios for the three dives were 
then averaged to produce the mean normalized detection 
ratio of 0.031 used in this analysis (Table 4).

Dive H ha C ha Ct NDR

1 7 4626 4903 0.034

2 10 5528 4556 0.030

3 10 8639 7564 0.029

Mean NDR 0.031

Table 4: Detection ratio calculated from the DTAG.

Application

To test the efficacy of this click-counting approach for 
estimating the number of animals in  a group, the mean click 
rate, CR, and normalized detection ratio, NDR, were then 
applied to data from three separate verified M. densirostris 
sightings. These verified data were collected during focal 
follows at AUTEC with trained surface observers from the 
Bahamas Marine Mammal Research Organization 
(BMMRO). M. densirostris groups were detected 
acoustically on the range. BMMRO observers were directed 
to a group’s location and notified when vocalizations 
ceased. W ithin about 20 to 25 minutes the BMMRO
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observers visually sighted and counted the number of 
animals in the group. When the animals went on a terminal 
dive the observers notified the personnel monitoring the 
acoustics on-shore, and the group’s vocalizations were again 
detected acoustically within about 5 minutes. The sightings 
occurred on September 27, 2005 in  three different parts of 
the range, and at different times during the day (Table 5, 
Figure 3).

The predicted number of animals and the predicted 
number of clicks detected on the hydrophone array were 
then compared to the number of animals sighted and the 
actual number o f clicks detected on the array.

Closest
Hyd Date

Local
Time

Group
Size

H72 9/27/2005 10:30 2

H76 9/27/2005 11:06 5

H57 9/27/2005 15:25 4

Table 5: BMMRO verified sightings o f M  densirostris groups 
at AUTEC on 09/27/2005.

For each sighting, click detection reports from the 
nearby hydrophones were examined to determine the dive 
vocalization duration (DVD) for the group, and the 
hydrophone with the maximum number of clicks detected 
during this period. This hydrophone was used as the center 
hydrophone, and a hydrophone array was again defined as 
all hydrophones that fell within a 4.8 km-radius circle 
centered on this hydrophone. The total number of clicks, 
Cha, detected on the array during the dive vocalization 
period was determined. The number of animals predicted to 
be in the group, NAp, was then calculated as the total 
number of clicks detected on the array divided by the 
product o f the normalized detection ratio (NDR), the mean 
click rate (CR), the dive vocalization duration (DVD), and 
the number of hydrophones in the array (Hha):

NAp = Cha / (NDR*CR*DVD*Hha)

For a known number of animals, NA, the predicted 
number of clicks detected on the array (Chap) is given by:

Chap= NA* NDR*CR*DVD*Hha

Table 6 and Table 7 show the hydrophone arrays used 
and the associated group dive vocalization durations for the 
three verified M. densirostris sightings. For the sighting at 
hydrophone 72, the 4.8 km circle defined around 72 only 
included five hydrophones, since hydrophone 72 is located 
on the edge of the range. In addition, it appeared that 
another group was simultaneously vocalizing just north of 
this array, producing clicks detected by hydrophone 64. To 
avoid conflict with an adjacent group, hydrophone 64 was 
removed from the analysis.

The results for the predicted number of animals versus 
the actual number of animals sighted, and the predicted 
number of clicks detected on the hydrophone array versus 
the actual number detected, are shown in Table 8.
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Visual Sightings of Md S e p tem b er 27, 2005
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Figure 3: Three visual sightings by BMMRO of M. densirostris 
groups on 09/27/2005 are indicated by triangles. The 

corresponding 4.8km-radius circles used for the click counting 
are shown.

Closest
Phone Phones Used

Center
Phone Hha Cha

H72 65, 72, 73, 80 H72 4 1343

H76
68, 69, 75, 76, 

77, 83, 84 H76 7 5439

H57
49, 50, 56, 57, 

58, 64, 65 H57 7 4884

Table 6: Analysis hydrophones used for the 3 verified M. 
densirostris sightings, with center hydrophone and total 

number o f clicks detected on the array.

Sighting
Start
Time

End
Time

DVD
(h:m:s)

H72 9:34:40 10:09:30 0:34:50
H76 10:14:51 10:46:15 0:31:24
H57 14:27:19 15:01:20 0:34:01

Table 7: Local start time, end time and dive vocalization 
durations in hours:minutes:seconds for the 3 verified M. 

densirostris sightings.

Sighting Hydrophone Location

H76 H72 H57

N A a 4.86 1.89 4.03

NA 5 2 4

Chap 5593.28 1418.25 4847.51

Cha 5439 1343 4884

Table 8: Predicted number of animals and clicks detected 
versus the actual number sighted and detected for the 3 

verified M. densirostris sightings.
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3. DISCUSSION

Vocalizing groups of M. densirostris in the TOTO were 
isolated by measuring and comparing the start and stop 
times of vocalizations on adjacent, widely distributed (4-km 
baseline) bottom-mounted hydrophones. The dive 
vocalization durations for multiple groups of animals were 
measured. These vocalization periods occur during deep 
foraging dives [3, 4]. The mean vocalization periods for 
two separate datasets and gaps in vocal periods for the 
second dataset were measured.

A generalized method for estimating the number of 
animals vocalizing in an M. densirostris group during deep 
foraging dives was developed using baseline tag data as 
follows:

1. Isolate a vocalizing M. densirostris group.
2. Estimate the group’s dive vocalization duration 

(DVD) and the hydrophones ensonified by the 
group.

3. Assign the hydrophone with the most clicks during 
the DVD as the center phone of the analysis 
hydrophone sub-array. This sub-array is defined as 
all hydrophones that fall within 4.8 km of the 
center phone.

4. Adjust the DVD if necessary using the 
hydrophones in this analysis sub-array.

5. Sum all the clicks detected during the DVD on the 
hydrophones in the analysis sub-array.

6. Divide the total number of M. densirostris clicks 
detected on the sub-array during the DVD by the 
product of the DVD multiplied by the normalized 
detection ratio, the mean click rate, and the number 
of hydrophones in the sub-array to estimate the 
number of animals in the group.

7. Compare the results to the actual number of 
animals sighted.

This method makes 4 major assumptions:
1. M. densirostris vocalizes at a constant rate.
2. The detection ratio is constant.
3. The distribution of hydrophones used to derive the 

estimating parameters is the same as for the test 
cases.

4. All detected vocalizations used for the estimate are 
produced by a single group.

The mean click rate and normalized detection ratio 
were obtained from one animal tagged on the AUTEC 
range. These estimates must be verified with data from 
additional tagged animals, and their variability quantified. 
Six tags were successfully placed on M. densirostris during 
the Behavioral Response Study at AUTEC 13 August -  27 
September, 2007. These tag data will be analyzed and 
compared to those presented here. The calculation of 
variance within these data will allow an associated estimate 
of group size uncertainty. In addition, data from other 
locations must be quantified and compared, as click rate and 
normalized detection ratio may be site dependent.

The calculated detection ratio depends directly on the 
click probability of detection, which depends on 
environmental conditions. The detection performance is a
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function of the receiver performance and the input Signal to 
Noise Ratio (SNR). The SNR at the receiver is inversely 
proportional to the sea-state. As the sea-state rises, ocean 
noise increases, and the SNR at the receiver decreases, 
which in turn decreases the probability of detection.

M. densirostris spend little time at the surface and are 
inconspicuous while at the surface [2]. Consequently, 
sighting these animals is difficult in anything but low sea- 
states. The estimating parameters (normalized detection 
ratio and mean click rate) were derived from DTag data. 
Both the tag data and the verified sighting data were 
collected in low sea-state (0-1) conditions. To generalize 
this methodology across varied environmental conditions, 
the effect of SNR on the detection ratio must be quantified 
for higher sea-states.

The normalized detection ratio was calculated by 
totaling the number of clicks detected on hydrophones 
within a measured area. The number of clicks detected is a 
function of both the number of hydrophones and their 
distribution within this area. Thus the detection ratio is 
dependent upon the given hydrophone distribution, and 
must be recalculated for new hydrophone configurations. 
Vocalizations associated with a group of beaked whales are 
detected on a set of hydrophones. It is assumed that the 
detected vocalizations used for this analysis were produced 
by single groups. However, there are cases in which 
adjacent groups may ensonify common hydrophones. In 
one case presented in this paper, detections from a 
hydrophone were rejected as they were attributed to two 
adjacent groups. This required manual data analysis. 
Improved methods for isolating groups should be 
investigated.

4. CONCLUSIONS

The vocal periods of foraging dives, or dive vocalization 
durations, for beaked whale groups were measured using 
passive acoustic detections from the AUTEC range 
hydrophones. Gaps in the vocal periods were also 
quantified.

The group size estimation method presented was 
applied to three dives from visually verified groups of 
animals with good results. In each case, the method 
successfully predicted the number of animals in the 
vocalizing group. The mean error over the three examples 
was 3%. However, the estimating parameters were derived 
from a tagged animal in the TOTO, and the method was 
applied to animals in the same location under similar 
environmental conditions. Extension of the method must 
incorporate additional measurement parameters as discussed 
above.

A passive acoustic density estimation method for M. 
densirostris called group localization was presented in [6]. 
This method identifies groups of M. densirostris on the 
AUTEC range and uses a mean group size to estimate 
density. Click counting will be used in place of a mean 
group size in the group localization method to improve the 
estimate of M. densirostris on the AUTEC range.

It may be possible to estimate animal density directly from 
click counts using cue-counting methods similar to those 
used in traditional distance sampling. These methods are 
currently under investigation.
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a b s t r a c t

Since the moratorium on whaling, the Brazilian government and local Non-Govermental Organizations 
(NGOs) have adopted and encouraged a more sustainable use of whales as tourist attractions. Nevertheless, 
concerns about boat traffic impacts on whale population health have arisen, especially in protected areas 
such as marine parks. The Abrolhos Marine National Park is the seasonal habitat for the breeding 
population of humpback whales in the Western South Atlantic. We acoustically monitored 7% of the park 
area during 26 days using marine autonomous recording units and evaluated the responses of whales to 
boat traffic by measuring changes in male singing activity. The recorded humpback whale songs were 
analyzed to locate and count individual singers. We modeled the fluctuation in the number of singers over 
time in response to: number of acoustic boat events, tide height, lunar phase, hour of the day, the quadratic 
function of hour of day, day of the season, and presence of light. Generalized linear models were used to fit 
the singer count data into a Poisson distribution and log link. We found an important negative effect of boat 
traffic on singing activity. There is evidence that the interaction between phases of the moon and the 
quadratic function of hour of day also affect singing behavior. Adaptive management should aim at 
reducing the number of noise events per boat, which can improve the whale watching experience and 
reduce the impact on male singing behavior.

s o m m a i r e

Depuis le moratoire sur la pêche à la baleine, et dans une optique de tourisme durable, une utilisation plus 
raisonnée des baleines en tant qu'attraction pour touristes a été adoptée et encouragée par le gouvernement 
brésilien et les O.N.G. locales. Mais des problems concernant les impacts du trafic de bateaux sur la santé 
des populations de baleines ont toutefois surgi, particulièrement dans des secteurs protégés comme les 
parcs marins. Le parc national marin d'Abrolhos abrite la population reproductrice des baleines humpback 
du sud-ouest de l'océan atlantique. Afin d'évaluer les réponses des baleines au trafic de bateaux, nous avons 
réalisé des enregistrements sonores sur 7% du parc pendant 26 jours en utilisant des unités autonomes 
marines d'enregistrement. Ces enregistrements nous ont permis de mesurer les changements dans l'activité 
de chant des mâles. Les sons émis par les baleines humpback ont été détectés et les différents chanteurs ont 
été localisés et comptés. Nous avons modélisé les fluctuations du nombre de chanteurs au cours du temps 
en fonction du nombre d'événements acoustiques émis par les bateaux, de l'amplitude des marées, de la 
phase lunaire, de l'heure, de la function quadratique de l'heure, de la date, et de la présence de lumière. Des 
modèles linéaires généralisés ont été utilisés pour adapter le nombre de chanteurs à une distribution de 
Poisson et un lien log. Nous avons trouvé un effet négatif important du trafic de bateaux sur l'activité de 
chant. L'interaction entre la phase lunaire et la fonction quadratique de l'heure semblent également affecter 
le comportement de chant. Une gestion adaptative devrait viser à réduire le nombre d'événements de bruit 
émis par les bateaux, qui améliorerait l'expérience d'observation des baleines et réduire l'impact sur le 
comportement de chant des mâles.

1. i n t r o d u c t i o n

There has been a dramatic increase in the appreciation of 
whales as living beings, with the shift away from 
exploitation (whaling) to ecotourism (whale-watching). 
However, whale-watching has been somewhat controversial. 
There can be costs associated with whale-watching to 
individuals and populations and this activity has coexisted 
with whaling in many cultures [1-2]. In Brazil, since the

moratorium on whaling was initiated, whale watching has 
been considered a more acceptable way to coexist with these 
large marine mammals. The potential negative effect of 
whale watching on marine mammals is of special concern in 
breeding areas, where animals congregate and where boat 
noise has been shown to be disruptive to vocal behavior 
related to reproduction [3-4]. In their wintering grounds, 
male humpback whales produce a conspicuous, long, and 
patterned sequence of sounds denominated as “song” [5]. 
Various hypotheses for the function of these complex male
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vocal displays have been offered, and the prevailing one is 
that songs are socially important, and related to reproduction 
[6-12]. Boat disturbances of singing behavior on breeding 
grounds may thus affect individual mating success, and have 
even more far-reaching effects on the long-term viability of 
populations.

The Abrolhos National Marine Park is the most 
important breeding site for the southwestern Atlantic 
population of humpback whales [13]. Local whale-watching 
activity increased until 1998, and since then, the annual 
number of park visitors has been 4,000-5,000 people. The 
boat-based trips to Abrolhos provide substantial income to 
the small coastal towns from which the tour boats depart 
[14]. Increasing boat traffic from these coastal towns may 
put the Abrolhos humpback whale population at risk. 
Fortunately, as a designated Marine Park, there is the 
opportunity for better regulation of the potential human 
disturbances on the whales, while still allowing 
economically important ecotourism to continue.

Monitoring programs designed to improve management 
decisions should focus on the fundamentals of the 
humpback’s biology: its population size, distribution, 
behavior, and mating system. In a marine environment, to 
disregard acoustic communication between individuals is to 
ignore their primary sensory modality which enables social 
interactions, and thus, the mechanisms that strongly 
influence reproductive success and the mating system. 
There is limited information about how whale vocal 
behavior varies through time. Studies on humpback whale 
singing activity have focused on geographic and temporal 
changes in song patterns [6, 15-24]. Only a few authors [25
28] have addressed temporal variability in the singing 
activity of individuals to evaluate effects of disturbances. 
Studies have shown an effect of noise from human activities 
on humpback whale singing activity [28-30] and in one case 
the factor that most influenced ambient noise was the total 
number of vessels passing within the area per unit time [31].

Here we employed advanced technologies in passive 
acoustics to: 1) explain the natural fluctuation in humpback 
singing over a 26-day period and 2) determine how the 
noise generated by boat traffic affects the variation in 
singing activity in the Abrolhos National Marine Park, 
Brazil. Our approach was to create multiple models 
incorporating variables that we hypothesized might affect 
singing behavior. A list of the hypotheses is presented. 
These hypotheses are not mutually exclusive; some of the 
variables may affect the others, so interaction terms between 
effects are included in the models. The prediction of each 
hypothesis is given in parenthesis and the specific variable 
is in bold.

H1) singing is negatively affected by boat noise (Boats has 
a negative coefficient);
H2) singing is a function of the density of whales and 
increases as the season progresses, peaks in September and 
decreases until the end of the season [32] (Day is not an 
important variable and the quadratic function, Day2, has a 
negative coefficient but is not included in the models 
because data collection was concluded in August);

H3) singing increases linearly as the season progresses (Day 
has a positive coefficient);
H4) singing decreases as a function of density (Day has a 
negative coefficient, Day2 has a positive coefficient);
H5) singing is intensified at night (Light has a negative 
coefficient);
H6) singing is affected by moon cycle, and will decrease 
during phases with moonlight (Moon has a negative 
coefficient when “Full” and positive when “New”);
H7) singing increases with tide height (Tide has a positive 
effect), and;
H8) singing is a function of time of the day (Hour2 has a 
positive effect; H our has a negative effect).

2. METHODS

2.1. Data Collection

The Abrolhos Bank is located off the coast of Brazil 
between 16o40’-19o30’S covering an area of approximately 
30,000km2 [33]. The Abrolhos Marine National Park 
includes the Abrolhos archipelago in the northeast portion 
of the bank [34]. The local humpback whale population has 
been estimated at around 3,000 individuals [35], 
representing almost 15% of the total population of 
humpbacks thought to occur in the Southern Hemisphere 
[36]. Approximately 7% of the park area was acoustically 
monitored using an array of pop-ups (marine autonomous 
recorders developed by the Bioacoustics Research Program 
of the Cornell Lab of Ornithology - details at 
www.birds.cornell.edu/brp). Each pop-up carries an onboard 
clock that makes it possible to perform sound source 
localization and tracking of signals recorded by an array of 
synchronized pop-ups. Our array consisted of 4 pop-ups 
deployed northwest of the Abrolhos archipelago. The 4 pop- 
ups were programmed to record continuously from 22 July 
to 16 August, 2003 at a sampling rate of 2kHz.

2.2. Data Processing

The 4-channel sound files were submitted to detection and 
location algorithms. The detections were identified using 30 
to 70 different templates of humpback whale sounds (song 
units) extracted from the same 24-hour recording using a 
custom software analysis program, XBAT (xbat.org). This 
detection procedure was repeated for each day of recording 
in order to avoid reduced detection probability due to 
changes in song units that are known to occur through time 
[18]. All XBAT detections were located using a custom 
location tool (Cortopassi & Fristrup, unpublished), and the 
resulting locations of each detected sound were checked by 
an experienced analyst using a browsing time window of 10 
to 30s. This protocol insured that false detections and 
locations were eliminated and that missed humpback whale 
sounds were detected and located individually. Detections 
of boat acoustic events were done manually by an operator 
listening to the files and drawing a box over any continuous 
bout of engine sound produced by a single or multiple boats 
in one channel while browsing each 24-hour sound file with 
a window of 100-300s. The “Energy Distribution

Canadian Acoustics / Acoustique canadienne Vol. 36 No. 1 (2008) - 175

http://www.birds.cornell.edu/brp


Measurement” tool [37] was used to obtain the “center
time” of each boat event (i.e., the time at which the median 
amplitude of the boat’s noise occurred on a given channel).

2.3. Data Sampling and Analyses

We extracted two variables from the sound recordings: 1) 
the response variable: “Singers” and 2) one of the predictor 
variables: “Boats”. The number of singers was first counted 
following each singing male continuously through time. 
Individual singing bouts (i.e., time spent singing 
continuously by a single male, N = 136) varied from 30 
minutes to 20.5 hours, with median duration of 90 minutes. 
The absolute number of singers was then counted separately 
in each consecutive 30 minute period as a continuous count 
of singers. A time series analysis was performed in version 
6.2 of the S-PLUS statistical software package (S-PLUS 
2003) to determine the time lag between independent 
samples. The autocorrelation was negligible after six 30-min 
periods. Thus, counts were done with a lag of 3 hours or 
more to avoid autocorrelation and to sample all 30-min 
periods of a day. The number of singers in a 1-minute count 
is proportional to the number of singers in continuous 
counts (N = 47; Regression through the origin: 1-Minute 
Count = 0.7850467*Continuous counts; R2 = 0.8963). 
Given this result, the number of singers within the 5th 
minute of each 30 minutes sampled (N = 141) was used as 
the singer count to reduce analysis time.

The variable “Boats” was used as a measure of boat 
noise and is the number of boat events over each 30-min 
period. A boat event was counted when its center time was 
within the sampled 30-min period. Whales typically startle 
when exposed to unexpected, loud, suddenly louder or 
different sounds, such as a nearby engine starting up. The 
same sounds may not elicit a reaction if the sound is 
continuous and predictable, such as engine noise from a 
distant, approaching boat traveling at a constant speed [4, 
38]. To address this observed response to noise events, cases 
in which the same boat’s engine was turned off and then 
back on with a silent interval between them were counted as 
two boat events. The effect of a boat’s source level and 
distance from the study area were also accounted for by 
counting every boat event that appeared on each channel of 
the array, even if coming from the same boat. Therefore, a 
higher weight was given to the boats that were louder or 
closer to the array and the nearby whales. The models 
included other measurable predictor variables that might 
affect humpback whale singing behavior according to the 
literature (Table 1). All predictor values were standardized. 
We excluded interactions between predictors that did not 
make sense and between correlated variables. Generalized 
linear models [39] were used to fit the singer count data into 
a Poisson distribution with log link. All statistical 
procedures were carried out in version 9.1 of the SAS 
statistical software package (SAS Institute 2002-2003). A

set of 70 models was explored trying to balance between 
under- and over-fitted models, with an effort to avoid over
fitting of the relatively small sample size. We used the 
Akaike information criteria [40], corrected for small sample 
sizes, AlCc [41-42], to choose the best model in the set, i.e., 
the model that minimizes the information loss about the 
system, given the data. We also used multimodel inference 
(model averaging) to reduce bias of the estimates [43]. The 
relative likelihood of model i versus model j  is termed the 
“evidence ratio”, and a ratio of their Akaike weights (wi) 
was used to compare several models and make inferences 
about the importance of the different predictors [44].

3. RESULTS

The singer counts (N = 141) varied from 0-9 (Mean = 2.62, 
Standard Deviation (SD) = 1.54), while boat counts ranged 
from 0-19 events (Mean = 2.34, SD = 4.02, Median = 0, 
Interquartile Range (IQR) = 3). The selected best model 
(Singers = Boats + Hour + Hour2 + Moon + Hour2*Moon) is 
not convincingly the single best. If the Akaike differences 
(A AlCc) are ranked from smaller to larger, the evidence 
ratio of the best model over each subsequent model 
decreases gradually, until the models become less plausible 
to be the best (A AICc >10). We then selected the models 
that had some support (A AICc < 10) and included these 39 
models in a 99% confidence set to recalculate the Akaike 
weights (Table 2) [44]. The confidence intervals for the 
predictors (Table 3) were estimated using the averaged 
model (S = B + H + H2 + M + T + L + D + H*M + H*B + 
H*T + H2*B + H2*M + H2*L+ H2*T + M*T).

Table 1: Descriptions of model independent variables.

Variable Description

Boats

(B)

Integer value of the number of boat acoustic 

events within each sampled 30-minute period.

Day

(D)

Continuous variable counted from the first day 

of the local humpback whale season.

Hour

(H)

Continuous variable calculated based on the 

first hour of the first day of the humpback 

whale season, in half hour increments.

Hour2
(H2)

Square value of Hour based on the quadratic fit 

of the averaged count by time of day.

Moon

(M)

Phase categories (4 levels) based on NOAA 

Astronomical online data.

Light

(L)

Binary variable based on rise and set times of 

the sun in Abrolhos (U.S. Naval Observatory 

online database).

Tide

(T)

Height of tide at the end of the half hour period 

averaged from the hourly local values.
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Table 2: Model selection results for the 39 most plausible models (A AICc <10). AICc values were scaled (adding the number 8) to avoid 
negative numbers. K  = number o f parameters. The best model is highlighted in bold in the table below.

Model # LnLikelihood K AICc A AICc W i W21/ Wi

S = B H H2 M H2 *M 21 14.4255 10 0.8412 0.0000 0.1805 1.00

S = B H H2 M T H2*M 57 14.9879 11 2.0708 1.2295 0.0976 1.85

S = B H H2 M L H2*M 68 14.6747 11 2.6971 1.8558 0.0714 2.53

S = B H H2 M H 2*M  H2*B 67 14.5059 11 3.0347 2.1935 0.0603 2.99

S = B H H2 M H*B H2*M 35 14.4644 11 3.1178 2.2765 0.0578 3.12

S = B H H2 M D H2*M 65 14.4276 11 3.1913 2.3501 0.0557 3.24

S = B H 42 5.4801 3 3.2149 2.3737 0.0551 3.28

S = B H H2 M L H 2*M  H2*L 70 15.5522 12 3.3331 2.4919 0.0519 3.48

S = B H H2 M H *M 61 13.0015 10 3.6892 2.8480 0.0434 4.15

S = B H H2 M T H 2*M  H2*T 69 15.0896 12 4.2583 3.4170 0.0327 5.52

S = B H H2 M T H 2*M  H2*B 55 15.0808 12 4.2759 3.4347 0.0324 5.57

S = B H H2 M L H 2*M  H2*B 51 14.7692 12 4.8991 4.0578 0.0237 7.61

S = B H H2 M T H2*M M *T 59 17.1765 14 4.9803 4.1391 0.0228 7.92

S = B H H2 31 5.6030 4 5.0881 4.2469 0.0216 8.36

S = B H H*B 43 5.4884 4 5.3172 4.4760 0.0193 9.37

S = B H H2 L 32 6.3518 5 5.7408 4.8995 0.0156 11.59

S = B M 44 6.3328 5 5.7788 4.9375 0.0153 11.81

S = B H M 41 7.3690 6 5.8888 5.0476 0.0145 12.48

S = B H H2 T 33 6.0710 5 6.3024 5.4611 0.0118 15.34

S = B H H2 M T L H 2*M  H2*B 53 15.2777 13 6.3108 5.4695 0.0117 15.41

S = B H H2 M H *M H 2*M 66 15.2262 13 6.4138 5.5725 0.0111 16.22

S = B H H2 M 30 8.1838 7 6.4745 5.6332 0.0108 16.72

S = B M L 38 6.9107 6 6.8054 5.9641 0.0091 19.73

S = B H H2 M T H 2*M  H2*B M *T 54 17.4739 15 6.8923 6.0510 0.0088 20.60

S = B M T 62 6.7471 6 7.1327 6.2914 0.0078 23.24

S = B H H2 D 11 5.6376 5 7.1693 6.3281 0.0076 23.67

S = B H H2 M T 34 8.7642 8 7.5624 6.7212 0.0063 28.81

S = B H H2 M L 29 8.6338 8 7.8233 6.9820 0.0055 32.82

S = B H H2 L D 10 6.3757 6 7.8755 7.0342 0.0054 33.69

S = B H M H*B 40 7.3795 7 8.0831 7.2418 0.0048 37.37

S = B H H2 T H2*T 60 6.2251 6 8.1767 7.3354 0.0046 39.16

S = B H H2 M H2*B 39 8.2422 8 8.6065 7.7653 0.0037 48.55

S = B H H2 M H*B 36 8.2248 8 8.6414 7.8002 0.0037 49.41

S = B H H2 M T L H*B H*T H 2*M  H2*L 24 16.4777 15 8.8846 8.0433 0.0032 55.79

S = B H H2 M T L H 2*M  H2*B M *T 52 17.6475 16 9.0920 8.2508 0.0029 61.89

S = B H H2 M T L 28 9.1323 9 9.1094 8.2682 0.0029 62.43

S = B M T M *T 63 9.0888 9 9.1965 8.3552 0.0028 65.21

S = B H H2 M T H2*B 56 8.8289 9 9.7163 8.8751 0.0021 84.57

S = B H H2 M T H*B H *M M *T 64 15.9764 15 9.8872 9.0459 0.0020 92.11

Canadian Acoustics / Acoustique canadienne Vol. 36 No. 1 (2008) - 177



Table 3: Parameter 95% confidence intervals (CIs = coefficient 

estimate ± 1.96* Standard Error (SE)) for the predictors of the 

averaged model.

Parameter Lower Limit Upper Limit
INTERCEPT -2.4403 1.3721
DAY -0.0283 0.1901
HOUR -1.2365 10.5929
HOUR2 -7.5842 1.1652
BOATS -0.3743 -0.0954
LIGHT

1 -0.0701 0.1121
0 0 0

MOON
Full -3.9447 0.8133

Last quarter -22.5943 2.9131
New -0.6259 0.9612

First quarter 0 0
h o u r 2*m o o n

Full -0.7800 2.673
Last quarter -30.8003 4.7036

New -4.6914 1.2647
First quarter 0 0

TIDE -0.0446 0.0620
HOUR*BOATS -0.0177 0.0206
HOUR*TIDE -0.0007 0.0005
h o u r 2*l ig h t

1 -0.0405 0.0250
0 0 0

TIDE*MOON
Full -0.0229 0.0366

Last quarter -0.0425 0.0707
New -0.0155 0.0215

First quarter 0 0
h o u r 2*b o a t s -0.0312 0.0428
h o u r 2*t id e -0.0061 -0.0045
HOUR*MOON

Full -1.2013 1.7672
Last quarter -2.9588 1.7631

New -1.8024 1.0836
First quarter 0 0

“Boats” (B) has a negative effect and is undoubtedly 
the most important predictor of variation in number of 
singers (CI does not include zero). All the models that are 
plausible to be the best in the set include B as a predictor. 
Additionally, model 21 is 504.47 times more likely to be the 
best model in the set than a model which differs from model 
21 only by the lack of B (not included in Table 2). 
Therefore, there is strong evidence to conclude that singing 
is negatively affected by boat noise.

“Hour” and “Hour2” are important predictors for a 
good model. Although their coefficient CIs may include 
zero, the majority of the plausible models include both 
predictors. Nevertheless, evidence ratios between models 
that exclude and include H and H2 (w44/w30 = 1.42; w38/w29 
= 1.65) show that models that include both these predictors 
are less likely to be best. Therefore, there is not enough 
evidence to support H8: humpback whale singing behavior 
is affected by time.

The prediction was that singing activity would decrease
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during midday but the estimated coefficient of H2 tends to 
negative values, contrary to the prediction. Only when we 
investigated the importance of the interaction between 
Hour2 and Moon (H2*M) that the importance of H and H2 
became clear. The inclusion of H2*M makes model 21 
16.72 times more likely to be the best if compared to model 
30. There is strong evidence that a change in the effect of 
“Moon” changes the effect “Hour2” on singing behavior, 
i.e., some phases of the moon affect the temporal pattern of 
singing activity more than others. The main effects (H2 and 
M) must be kept in the model if the interaction is important. 
Also, H2 is a function of H, and the same rule applies. 
Similarly, “Moon” needs to be in the model. The change 
from first to last quarter has a strong negative effect on 
singing. Light level is unlikely to play a role given than both 
phases have the same percentage moon illumination. 
Evidence ratios (w42/w41 = 3.8; w31/w30 = 2) show that 
models that do not include “Moon” are slightly more likely 
to be best. Therefore the support for H6 is weak and the 
importance of “Moon” might also be due to the importance 
of the H2*M interaction. “Light” and “Day” are less 
important predictors. Their coefficient CIs include zero, and 
evidence ratios indicate that there is considerably less 
support for hypotheses 2-5.

The inclusion of “Tide” improves the fit of the model, 
and the evidence ratio indicates that model 57 is also likely 
to be the best in the set (w21/w57 = 1.85). Nevertheless, the 
coefficient CI for this predictor includes zero and the 
estimated magnitude of its effect is very small. Inasmuch, 
there is little evidence to support H7, given the data. The 
interaction between “Hour2” and “Tide” (H2*T) seems to 
have an important negative effect on singing based on its CI 
(Table 3) but the inclusion of this predictor in the model is 
not as important as the inclusion of H2*M (w21/w60 = 
39.16), and the fit of the model that includes H2*T instead 
of H2*M is not very good. It is plausible that changes in 
tide height change the temporal pattern of singing activity, 
but the effect is small, and not necessarily important to 
explain most data variation. All the other predictors (H*M, 
H*B, H*T, H2*B, H2*L, and M*T) have similarly small 
effects and are likely unimportant variables (all coefficient 
CIs include zero).

4. DISCUSSION AND CONCLUSIONS

An increase in the number of boat acoustic events 
negatively affects whale singing activity. Although masking 
makes song more difficult to detect, in our analyses the 
counts were made on a single minute during the 30-min 
period, only when boat noise was not enough to mask whale 
signals. The mechanism of this negative effect could, then, 
be: 1) male humpback whales are displaced and move 
outside of the location range, 2) males quit singing, or 3) a 
combination of 1 and 2. Clark & Altman [45] showed a 
decrease in the detection probability of fin whale sounds 
during transmissions of LFA U.S. NAVY sonar due to the 
same 2 possible phenomena. Variation in sound propagation 
can result in different radii of boat noise influence [46]. In
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fact, short-term avoidance responses to ships and boats were 
observed at distances ranging from less than 30 m to more 
than 4 km for different studies [3]. Additionally, area 
avoidance by whales exposed to noise can last for 20 
minutes to several days [3]. Long-term (almost two decades) 
avoidance of areas during periods of increased commercial 
shipping (and associated dredging activities) has been 
suggested for gray whales [47]. Permanent avoidance has 
also been hypothesized for gray whales in San Diego Bay 
[48], although the direct link to the whales’ displacement is 
controversial [3]. It has been shown that whale density is 
inversely related to number of boats in an area [49], and our 
results showed a similar trend for the absolute number of 
vocally active male humpback whales.

It has been proposed that a higher level of singing 
activity at night may indicate that the male vocal display 
might be favored as a mating tactic in the absence of light. 
The assumption is that light and vision are important for 
competitive group formation, so that males engage in 
fighting as a primary mating tactic during the day, as 
opposite to solo singing at night [26, Cholewiak et al., 
unpublished]. In contrast, we found that “Light” was 
unimportant in explaining the fluctuations in singing 
behavior once we controlled for the other covariates. There 
was little evidence for an influence of “Tide”, and if there is 
such effect, it is small. After we controlled for the effect of 
boats, the only temporal effect detected was the one linked 
to the changes in moon phase, i.e., the temporal trend in 
singing activity is altered by the phase of the moon. The 
negative coefficient estimate of “Hour2” might then be an 
artifact of the small sample size for each half hour period, 
which ranged from 1 to 6 samples per period. This might 
have prevented us from detecting a real temporal trend 
found by others [26, Cholewiak et al., unpublished]. The 
most likely explanation for the decrease in singing activity 
during midday observed in the raw data is that it is a 
reflection of the effect of “Boats”, which has a negative 
coefficient and increases during midday. Overall singing 
activity decreases as boat noise increases and the remaining 
temporal trend found is probably related to a cyclical 
biorhythm, influenced by the moon’s phase, and maybe tidal 
cycle rather than related to light.

The sustainability of the whale-watching tourism 
industry depends on: 1) maintaining visitor numbers close to 
the carrying capacity of the whale watching fleet; 2) the 
local and regional fluctuations in the economy, and most 
importantly; 3) the maintenance of the resources on which 
the tourism relies [2]. If whales are being disturbed resulting 
in them moving out of the area, then current levels of whale 
watching activity might not be sustainable. Actions to make 
this human activity less distressing to whales should be 
implemented. Acoustic isolation of engines, scientifically- 
validated approach protocols, and reinforcement of 
regulations of numbers and speeds of boats in areas used by 
marine mammals are sensible measures that should be 
applied. Adaptive management [50] should aim at reducing 
the number of noise events per boat, which can both
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improve the whale watching experience and reduce the 
impact on singing behavior for a given number of boats. It is 
also important to address the need for enforcement of 
existing management guidelines, which clearly depends on 
political will and better prioritization of governmental 
resources.

5. AKNOWLEDGEMENTS

We thank: Stephen Morreale, Milo Richmond, John 
Hermanson, and two anonymous reviewers for their 
constructive suggestions; Guilherme Lessa and Maria E. 
Morete for providing data on covariates; Alexandre Paro, 
Carlo D ’Angelo, Edson Patricio and the Tomara crew for 
field assistance; Andrew Schwarz, Christopher Ko, Justin 
Tsai, Kunal Jain, Michelle Mathios, Miguel Mayol, Susan 
Earle, and Roman Lesko for assistance in data processing; 
and Wesley Hochachka, Russ Loyd, Robert Strawderman, 
and David Anderson for statistical advice. Funding and 
support were provided by the Brazilian Government 
(CAPES PhD scholarship to RSSL), Cornell University’s 
Graduate School, International Students and Scholars 
Office, Laboratory of Ornithology and Field of Zoology; the 
New York Fish & Wildlife Cooperative Unit; the Animal 
Behavior Society’s Cetacean Behavior and Conservation 
Award; the Instituto Baleia Jubarte / Petrobras; and The 
Canon National Parks Science Scholars Program. We thank 
Mark Wilson and Aurélie Coulon for translating the abstract 
into French.

6. REFERENCES

1. Hoyt, E. 2001. Whale watching 2001: worldwide tourism 

numbers, expenditures and expanding socioeconomic 
benefits. IFAW, Yarmouth Port.

2. Higham, J.E.S. & Lusseau, D. 2007. Urgent Need for 

Empirical Research into Whaling and Whale Watching, 

Conserv. Biol. 21:554-558.

3. Richardson, W.J., Greene Jr., C.R., Malme, C.I. & Thomson, 

D.H. 1995. Marine Mammals and Noise. Academic Press, 

San Diego, 576 pp.

4. Sousa-Lima, R.S., Morete, M.E., Fortes, R.C., Freitas, A.C. & 

Engel, M.H. 2002. Impact of boats on the vocal behavior of 

humpback whales off Brazil. J. Acoust. Soc. Am. 112:2430
2431.

5. Payne, R.S. & McVay, S. 1971. Songs of humpback whales. 

Science 173: 585-597.

6. Winn, H.E. & Winn, L.K. 1978. The song of the humpback 

whale, Megaptera novaeangliae, in the West Indies. Mar. 

Biol. 47: 97-114.

7. Tyack, P. 1981. Interactions between singing Hawaiian 

humpback whales and conspecifics nearby. Behav. Ecol. 
Sociobiol. 8:105-116.

8. Baker, C.S. & Herman, L.M. 1984. Seasonal contrasts in the

Vol. 36 No. 1 (2008) - 179



social behavior of the humpback whale. Cetus 5:14-16.

9. Helweg, D.A., Frankel, A.S., Mobley, J.R. & Herman, L.M. 

1992. Humpback whale song: our current understanding. In: 

Marine mammal sensory systems (Thomas, J. et al., ed.). 
Plenum Press, New York, p. 459-483.

10. Frankel, A.S., Clark, C.W., Herman, L.M. & Gabriele, C. 

1995. Spatial distribution, habitat utilization, and social 

interactions of humpback whales, Megaptera novaeangliae, 

off Hawaii determined using acoustic and visual techniques. 

Can. J. Zool. 73:1134-1146.

11. Darling, J.D. & Bérubé, M. 2001. Interactions of singing 

humpback whales with other males. Mar. Mammal Sci. 

17:570-584.

12. Darling, J.D., Jones, M. E. & Nicklin, C.P. 2006. Humpback 

whale songs: Do they organize males during the breeding 
season? Behaviour 143:1051-1101.

13. Engel, M.H. 1996. Comportamento reprodutivo da baleia 

jubarte (Megaptera novaeangliae) em Abrolhos. Anais de 

Etologia 14: 275-284

14. Palazzo, Jr., J.T., M. Kammers, and I. Linhares. 1994. 

Whalewatching sites in Brazil: a summary of available 

information. IWC/46/WW Working paper, 46th IWC, 8 pp.

15. Payne, R. 1978. Behavior and vocalizations of humpback 

whales (Megaptera sp.). In: Report on a workshop on 

problems related to humpback whales (Megaptera 

novaengliae) in Hawaii (Ed. by K. S. Norris & R. R. Reeves), 
pp.56-78. U. S. Dep. Commer. NTIS PB-280 794.

16. Winn, H.E., Thompson, T.J., Cummings, W.C., Hain, J., 

Hudnall, J., Hays, H. & Steiner, W.W. 1981. Song of the 

humpback whale: population comparisons. Behav. Ecol. 

Sociobiol. 8:41-46.

17. Payne, R. & Guinee, L.N. 1983. Humpback whale 

(Megaptera novaengliae) songs as an indicator of "stocks". 

In: Communication and behavior of whales: AAAS Selected 

Symposium 76 (Ed. by R. Payne), pp. 333-358. Boulder, CO: 

Westview Press.

18. Payne, K., Tyack, P. & Payne, R. 1983. Progressive changes 

in the song of humpback whales songs (Megaptera 

novaengliae): A detailed analysis of two seasons in Havaii. 

In: Communication and behavior of whales: AAAS Selected 

Symposium 76 (Ed. by R. Payne), pp. 9-57. Boulder, CO: 
Westview Press.

19. Payne, K. & Payne, R. 1985. Large Scale Changes over 19 

Years in Songs of Humpback Whales in Bermuda. Z . 

Tierpsychol., 68: 89-114.

20. Matilla, D.K. Guinee, L.N. & Mayo, C.A. 1987. Humpback 

whale songs on a North Atlantic feeding ground. J. Mamm. 

68:880-883.

21. Noad, M.J., Cato, D.H., Bryden, M.M., Jenner, M.N. & 

Jenner, C S. 2000. Cultural revolution in whale songs. Nature 
408:537.

22. Cerchio, S. Jacobsen, J.K. & Norris, T.F. 2001. Temporal and

180 - Vol. 36 No. 1 (2008)

geographical variation in songs of humpback whales, 

Megaptera novaeangliae: synchronous change in Hawaiian 

and Mexican breeding assemblages. Anim. Behav. 62:313

329.

23. Darling, J.D. & Sousa-Lima, R.S. 2005. Songs indicate 

interaction between humpback whale (Megaptera 

novaengliae) populations in the Western and Eastern South 
Atlantic Ocean. Mar. Mamm. Sci. 21:557-566.

24. Eriksen, N., Millar, L.A., Tougaard, J., & Helweg, D.A. 2005. 

Cultural change in the songs of humpback whales (Megaptera 

novaeangliae) from Tonga. Behaviour 142: 305-328.

25. Helweg, D.A. & Herman, L.M. 1994. Diurnal patterns of 

behavior and group membership of humpback whales 

(Megaptera novaeangliae) wintering in Hawaiian waters. 

Ethology 98:298-311.

26. Au, W.W.I., Mobley, J., Burgess, W.C. & Lammers, M.O. 

2000. Seasonal and diurnal trends of chorusing humpback 

whales wintering in water off Western Maui. Mar. Mamm. 
Sci. 16:530-544.

27. Charif, R., Clapham, P.J., Gagnon, W., Loveday, P. & Clark, 

C.W. 2001. Acoustic detections of singing humpback whales 

in the waters of the British Isles. Mar. Mammal Sci, 17:751

768.

28. Fristrup, K.M, Hatch, L.T. & Clark, C.W. 2003. Variation in 

humpback whale (Megaptera novaeangliae) song length in 

relation to low-frequency sound broadcasts. J. Acoust. Soc. 

Am. 113:3411-3424.

29. Norris, T.F. 1995. Effects of boat noise on the singing 

behavior of humpback whales (Megaptera novaeangliae). 

Master Thesis. Department of Moos Landing Marine 
Laboratories, San Jose State University, 69 pp.

30. Miller, P.J.O., Biassoni, N., Samuels, A., & Tyack, P.L. 2000. 

Whale songs lengthen in response to sonar. Nature 405: 903.

31. Haviland-Howell, G., Frankel, A.S., Powell, C.M., 

Bocconcelli, A., Herman, R.L. & Sayigh, L.S. 2007. 

Recreational boating traffic: A chronic source of 

anthropogenic noise in the Wilmington, North Carolina 

Intracoastal Waterway. J. Acoust. Soc. Am. 122:151-160.

32. Morete, M.E., Pace III, R.M., Martins, C.C.A., Freitas, A.C. 

& Engel, M.H. 2003. Indexing seasonal abundance of 

humpback whales around Abrolhos archipelago, Bahia, 
Brazil. LAJAM  2:21-28.

33. Fainstein, R. & Summerhayes, C.P. 1982. Structure and origin 

of marginal banks off Eastern Brazil. Mar. Geol. 46:199-215.

34. IBAMA/FUNATURA 1991. Plano de Manejo: Parque 

Nacional Marinho dos Abrolhos. Brasilia, Brazil.

35. Freitas, A.C., Kinas, P.G., Martins, C.C.A. & Engel, M.H. 

2004. Abundance of humpback whales on the Abrolhos Bank 

wintering ground, Brazil. J. Cetacean Res. Manage. 6:225
230.

36. Klinowska, M. 1991. Dolphins, Porpoises and whales o f the 

world: The IUCN Red Data Book. Gland, Switzerland: IUCN.

Canadian Acoustics / Acoustique canadienne



Blue Whale (Balaenoptera musculus) and Fin Whale 

(Balaenoptera physalus) Sounds During a SURTASS LFA 

Exercise. IEEE J. Oceanic Engineering 31: 120-128.

46. Watkins, W.A. & Goebel, C.A. 1984. Sonar observations 

explain behaviors noted during boat maneuvers for radio 

tagging of humpback whales (Megaptera novaeangliae) in 

the Glacier Bay area. Cetology 48:1-8.

47. Bryant, P.J., Lafferty, C.M. & Lafferty, S.K. 1984. 

Reoccupation of Laguna Guerrero Negro, Baja Califronia, 

Mexico, by gray whales. P. 375-387 In: Jones, M.L., Swartz, 

S.L. & Leartherwood, S. (Eds.). The gray whale, Eschrichtius 

robustus. Academic Press, Orlando, Fl. 600 pp.

48. Rice, D.W. & Wolman, A.A. 1971. The life history and 

ecology o f the gray whale (Eschrichtius robustus). Am. Soc. 

Mammal., Spec. Publ. 3, 142 pp.

49. Baker, C.S. & Herman, L.M. 1989. Behavioral responses of 

summering humpback whales to vessel traffic: experimental 

and opportunistic observations, Final Rep. No. NPS-NR-TRS- 

89-01. United States Department of the Interior, National 

Park Service, Anchorage, Alaska.

50. Blumstein, D.T. 2007. Darwinian Decision Making: Putting 

the Adaptive into Adaptive Management. Conserv. Bio. 

21:552-553.

Photo Credit:Bahamas Marine Mammal Research Organisation

Canadian Acoustics / Acoustique canadienne  Vol. 36 No. 1 (2008) - 181

37. Cortopassi, K. A. 2006. http://www.birds.cornell.edu/ 

brp/research/algorithm/automated-and-robust-measurement- 

of-signal-features.

38. Watkins, W.A. 1986. Whale reactions to human activities in 

Cape Cod waters. Mar. Mamm. Sci. 2:251-262.

39. McCullagh, P. & Nelder, J.A. 1989. Generalized Linear 

Models. 2nd. Ed. Chapman & Hall, New York, NY.

40. Akaike, H. 1973. Information theory as an extension of the 

maximum likelihood principle. In: Second International 

Symposium on Information Theory. (Eds B. N. Petrov and F. 

Csaki.) pp. 267-281. Akademiai Kiado: Budapest.

41. Sugiura, N. 1978. Further analysis of the data by Akaike’s 

information criterion and the finite corrections. Comm. Stat., 

Theory and Methods A7:13-26.

42. Hurvich, C.M. & Tsai, C-L. 1989. Regression and time series 

model selection in small samples. Biometrika 76:297-307.

43. Buckland, S.T., Burnham, K.P. & Augustin, N.H. 1997. 

Model selection: an integral part of inference. Biometrics 

53:603-618.

44. Burnham, K.P. & Anderson, D.R. 1998. Model Selection and 

Inference: a Practical Information-Theoretic Approach. 

Springer-Verlag: New York, 488 pp.

45. Clark, C.W. & Altman, N.S. 2006, Acoustic Detections of

http://www.birds.cornell.edu/


Photo Credit:Bahamas Marine Mammal Research Organisation

EXCERPTS FROM “ACOUSTICS IN THE NEWS”, IN ECHOS, ASA

Twenty-two varieties of beaked whales roam the seas, diving as deep as a mile to feed on bottom-dwelling squid and small fish on 
the dark ocean floor. According to a story in the October 15 issue of the Washington Post, the realization that sonar can disorient or 
frighten whales sufficiently to leave them beached and dying has spurred protests and lawsuits. The Navy first denied but now 
acknowledges the problem, but it has resisted efforts to limit testing of their sonar, saying it is essential to national security. The 
Navy has now funded a $6 million project to learn more about beaked whales and their response to sonar and loud ocean noises. 
The goal is to learn more about beaked whales by attaching sophisticated motion detectors to record the timing, depth and angles 
of their dives and ascents to see how the animals react when exposed to sounds approaching the intensity of sonar signals. Beaked 
whales can dive for periods as long as 85 minutes.

Test sections of asphalt rubber in the Seattle area are drawing favorable comments, according to a story in the December 17 issue 
of The Seattle Times. Recent tests show older asphalt registers about 105 decibels when measured with a microphone on a rear 
wheel of a vehicle about 2 inches above the pavement. Brand-new conventional asphalt registers about 100 decibels, while new 
rubberized asphalt tends to be about 95 to 96 decibels. Pound for pound, asphalt rubber and polymer asphalt are more expensive 
than conventional asphalt, but since they’re placed at half the thickness, they end up costing about the same. However, the life span 
of asphalt rubber tends to be several years shorter. Since 1988, the Arizona Department of Transportation has used asphalt rubber 
in more than 3,000 miles of pavement overlays. Arizona now recycles 70 percent of its used tires back into the highways, eating 
up about 1,500 tires per lane mile of highway.

Quiet hotels were the subject of two articles in The New York Times. Although luxury hotels have often made efforts to 
“soundproof ” their rooms, an article in the October 21 issue describes efforts by AmericInn, a mid-range hotel chain, to reduce 
room noise by using masonry blocks filled with sound-absorbing foam, in addition to drywall that is 5/8-inch thick instead of 1/2- 
inch. It also installs gaskets and door sweeps to minimize hallway noise and obtain a Sound Transmission Class test of 50 or 
higher. The Fairmont Vancouver Airport hotel recently created a “quiet zone” on its sixth floor for daytime sleepers. Loews Hotels 
have been offering guests free sound-masking machines that emit white noise for light-sleeping guests. An article in the October 2 
issue cites other examples of construction with double-glazed windows and insulated walls. Older luxury hotels often were built 
“like the Maginot Line,” with enormous thick walls but when hotels add plumbing or wiring to such a structure they have a 
temporary noise problem. Some hotels, especially in the luxury market, deliberately encourage the kind of bustle and excitement 
in lobbies and bars that can lead to noise seeping into guest rooms. One hotel was recently built with 8-inch thick walls between 
rooms.

A federal judge limited the Navy’s ability to use mid-frequency sonar on a training range off the Southern California coast, 
according to a story in the January 4 issue of the Washington Post. The court ruled that the loud sounds would harm whales and 
other marine mammals if not tightly controlled. The order banned the use of sonar within 12 nautical miles of the coast and 
expanded from 1100 yards to 2200 yards the “shut down” zone in which sonar must be turned off whenever a marine mammal is 
spotted. The judge also forbade sonar use in the Catalina Basin, an area with many marine mammals. The decision is a blow to the 
Navy, which has argued that it needs the flexibility to train its sonar operators without undue restrictions.
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O bituary  /  N écrologie

News Item /  Rubriquenouvelles

P ro f . J ohn  E . K . F orem an  (1 9 2 2  - 2 0 0 7 )

Compiled by Elizabeth Wells (Prof. Forman’s daughter)

Professor John E. K. Foreman passed away in his 85th year on 
Aug 7, 2007. He taught at the University of Toronto, Cornell 
University in USA and Cambridge University in England and 
joined the University of Western Ontario in 1956, starting up 
the Mechanical Engineering department. He was Chairman 
of the Mechanical Group for 12 years and head of the Sound 
and Vibrations Laboratory from 1972 until his retirement in 
1987, when he was awarded Professor Emeritus. John was 
instrumental in equipping a Sound and Vibrations Mobile 
Laboratory Van which was used for many research projects. 
John loved to teach and emphasized the importance of 
simply doing your best. He was very proud of his students’ 
efforts in research e.g. developing a battery powered car in 
the 1970’s. He wrote a textbook, entitled “Sound Analysis 
and Noise Control” for use in classes and as a reference 
book in the acoustical field. His research projects included 
bio-medical research into fetal monitoring, research for the 
Ontario Ministry of Transport on high voltage transmission 
lines, and testing attitudinal responses to these noises. He 
also acted as a consultant for building acoustics (e.g. Alumni 
Hall), and industrial and general community noise. John 
was a member of the Canadian Acoustical Association for 
many years, contributing several articles to the publication. 
He was married for 60 years, and leaves behind his widow, 
Janet Foreman, 4 children and 4 grandchildren. He made a

difference in his life and will be missed by many whose lives 
he touched.

Prof. Ramani Ramakrishnan adds:

Prof. Foreman has been involved with the Canadian 
Acoustical Associaition from its inception. He chaired the 
CAA meetings in London (1970) and in Ottawa (1971). He 
also served as the President of the association from 1971 to 
1972. Porf. Foreman’s guest article was the main feature 
of the first issue of the CAA newsletter, edited by Dr. Tony 
Embleton. The first issue was released in 1973 during 
the 12th meeting of CAA held in Ottawa. He was also 
part of the group that coined the name for the association, 
“Canadian Acoustical Association/Associaiton canadienne 
de l ’acoustique.” On a personal note, I found John to be 
charming and eager in sharing of his knowledge with others. 
In that sense, he was a true academic. He was still continuing 
his research during the last few years of his life, in spite of his 
failing health. He wrote two papers dealing with the impact 
of noise and vibration on plant growth and seed germination. 
A friendly correspondance ensued between John Foreman 
and me, as the Editor-in-Chief of the Canadian Acoustics 
Journal during the publication of his articles. I was happy to 
have known him during his last years.
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Three $500 awards for the best student oral presentations at the Annual Symposium o f The Canadian Acoustical Association. •  Trois prix de $500 pour les 
meilleures communications orales étudiant(e)s au Symposium Annuel de l'Association Canadienne d'Acoustique.
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Travel subsidies are available to assist student members who are presenting a paper during the Annual Symposium o f The Canadian Acoustical Association 
if they live at least 150 km from the conference venue. • Des subventions pour frais de déplacement sont disponibles pour aider les membres étudiants à 
venir présenter leurs travaux lors du Symposium Annuel de l'Association Canadienne d'Acoustique, s'ils demeurent à au moins 150 km du lieu du congrès.
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NEWS / INFORMATIONS

CONFERENCES

I f  you have any news to share with us, send them by mail or 
fax to the News Editor (see address on the inside cover), or 
via electronic mail to stevenb@aciacoustical.com

2008

08-10 March. 34th Meeting of the German Association for 
Acoustics. Dresden, Germany. Web: http://2008daga- 
tagung.de

17-19 March. Spring Meeting of the Acoustical Society of 
Japan. Narashino, Japan. Web: www.asj.gr.jp/index-en.html

March 30 - April 01. SAE-Brazil Noise and Vibration 
Conference-NVH. Florianopolis, SC, Brazil. Web: 
www.saebrasil.org.br/eventos/secao_parana_sc/nvh2008/site/

March 31 - April 04. International Conference on Acoustics, 
Speech, and Signal Processing (IEEE ICASSP 2008). Las 
Vehas, Nevada, USA. Web: www.icassp2008.org

08-11 April. Oceans '08. Kobe, Japan. Web: 
www.oceans08mtsieeekobe-technoocean08.org/index.cfm

10-11 April. Institute of Acoustics (UK) Spring Conference. 
Reading, UK. Web: www.ioa.org.uk/viewupcoming.asp

17-18 April. Swiss Acoustical Society Spring Meeting. 
Bellinzona (Tessin), Switzerland. Web: www.sga-ssa.ch

12-15 May. 10th Spring School on Acousto-optics and 
Applications. Sopot, Poland. Web: http://univ.gda.pl/~school

29 June - 04 July: Joint Meeting of European Acoustical 
Association, Acoustical Society of America, and Acoustical 
Society of France. Paris, France. Web:
www.sfa.asso.fr/en/index.htm

06-10 July. 15th International Congress on Sound and 
Vibration. Daejeon, Korea. Web: www.icsv15.org

7-10 July: 18th International Symposium on Nonlinear 
Acoustics (ISNA18). Stockholm, Sweden. E-mail: 
benflo@mech.kth.se

21-25 July. 9th International Congress on Noise as a Public 
Health Problem. Mashantucket, CT, USA. Web: 
www.icben.org

27-30 July. Noise-Con 2008. Dearborn, MI, USA.

27-31 July. 10th Mechanics of Hearing Workshop. Keele 
University, UK. Web: www.mechanicsofhearing.com

28 July - 1 August: 9th International Congress on Noise as a 
Public Health Problem. Mashantucket, Pequot Tribal Nation, 
(CT, USA). Web: www.icben.org

25-29 August. 10th International Conference on Music 
Perception and Cognition. Sapporo, Japan. Web: 
http://icmpc10.typepad.jp

08-12 September: International Symposium on Underwater 
Reverberation and Clutter. Lerici, Italy. Web: 
http://isurc2008.org

10-12 September. Autumn Meeting of the Acoustical Society 
of Japan. Fukuoka, Japan. Web: www.asj.gr.jp/index-en.html 

15-17 September: International Conference on Noise and 
Vibration Engineering (ISMA2008). Leuven, Belgium. Web: 
www.isma-isaac.be
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stevenb@aciacoustical.com

2008

08-10 mars. 34th Meeting of the German Association for 
Acoustics. Dresden, Germany. Web: http://2008daga- 
tagung.de

17-19 mars. Spring Meeting of the Acoustical Society of 
Japan. Narashino, Japan. Web: www.asj.gr.jp/index-en.html

mars 30 - avril 01. SAE-Brazil Noise and Vibration 
Conference-NVH. Florianopolis, SC, Brazil. Web: 
www.saebrasil.org.br/eventos/secao_parana_sc/nvh2008/site/

mars 31 - avril 04. International Conference on Acoustics, 
Speech, and Signal Processing (IEEE ICASSP 2008). Las 
Vehas, Nevada, USA. Web: www.icassp2008.org

08-11 avril. Oceans '08. Kobe, Japan. Web: 
www.oceans08mtsieeekobe-technoocean08.org/index.cfm

10-11 avril. Institute of Acoustics (UK) Spring Conference. 
Reading, UK. Web: www.ioa.org.uk/viewupcoming.asp

17-18 avril. Swiss Acoustical Society Spring Meeting. 
Bellinzona (Tessin), Switzerland. Web: www.sga-ssa.ch

12-15 mai. 10th Spring School on Acousto-optics and 
Applications. Sopot, Poland. Web: http://univ.gda.pl/~school

29 juin - 04 juillet: Joint Meeting d'European Acoustical 
Association, Acoustical Society d'America, et Acoustical 
Society du France. Paris, France. Web: 
www.sfa.asso.fr/en/index.htm

06-10 juillet. 15th International Congress on Sound and 
Vibration. Daejeon, Korea. Web: www.icsv15.org

7-10 juillet: 18th International Symposium sur Nonlinear 
Acoustics (ISNA18). Stockholm, Sweden. E-mail: 
benflo@mech.kth.se

21-25 juillet. 9th International Congress on Noise as a Public 
Health Problem. Mashantucket, CT, USA. Web: 
www.icben.org

27-30 juin. Noise-Con 2008. Dearborn, MI, USA.

27-31 juillet. 10th Mechanics of Hearing Workshop. Keele 
University, UK. Web: www.mechanicsofhearing.com

28 juillet - 1 août: 9th International Congress sur Noise as a 
Public Health Problem. Mashantucket, Pequot Tribal Nation, 
(CT, USA). Web: www.icben.org

25-29 août: 10th International Conference on Music 
Perception and Cognition. Sapporo, Japan. Web: 
http://icmpc10.typepad.jp

08-12 septembre: International Symposium on Underwater 
Reverberation and Clutter. Lerici, Italy. Web: 
http://isurc2008.org

10-12 septembre. Autumn Meeting of the Acoustical Society 
of Japan. Fukuoka, Japan. Web: www.asj.gr.jp/index-en.html 

15-17 septembre: International Conference on Noise and 
Vibration Engineering (ISMA2008). Leuven, Belgium. Web: 
www.isma-isaac.be
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16-18 September: Underwater Noise Measurement. 
Southampton, UK. Web: www.ioa.org.uk/viewupcoming.asp

22-26 September: Interspeech 2008 - 10th ICSLP, Brisbane, 
Austrailia. Web: wwwinterspeech2008.org

23-25 September. Underwater Noise Measurement. 
Southampton, U.K. Web: www.ioa.org.uk/viewupcoming.asp 

21-23 October. 13th Conference on Low Frequency Noise 
and Vibration. Tokyo, Japan. Web: 
www.lowfrequency2008.org
21-24 October. Acustica 2008. Coimbra, Portugal. Web: 
www.spacustica.pt

26-29 October: Internoise 2008, Shanghai, China. Web: 
www.internoise2008.org

01-05 November. IEEE International Ultrasonic Symposium. 
Beijing, China. Web: www.ieee-
uffa.org/ulmain.asp?page=symposia

10-14 November. 156th Meeting of the Acoustical Society of 
America, Miami, Florida, USA. Web: www.asa.aip.org

24-26 November. Australian Acoustical Society National 
Conference. Victoria, Australia. Web: www.acoustics.asn.au

2009

19-24 April. International Conference on Acoustics, Speech, 
and Signal Processing. Taipei, R.O.C. Web: icassp09.com

18-22 May. 157th Meeting of the Acoustical Society of 
America, Portland, Oregon, USA. Web: www.asa.aip.org

23-26 August: Internoise 2009, Ottawa, Canada.

23-27 August: International Confress on Acoustics 2010. 
Sydney, Australia. Web: www.acoustics.asn.au 

06-10 September: Interspeech 2009. Brighton, UK. Web: 
www.interspeech2009.org

2010

19-24 March. International Conference on Acoustics, 
Speech, and Signal Processing. Dallas, TX, USA. Web: 
icassp2010.org
23-27 August: International Confress on Acoustics 2010. 
Sydney, Australia. Web: www.acoustics.asn.au 

26-30 September: Interspeech 2010. Makuhari, Japan. 
Web: www.interspeech2010.org

16-18 septembre: Underwater Noise Measurement. 
Southampton, UK. Web: www.ioa.org.uk/viewupcoming.asp

22-26 septembre: Interspeech 2008 - 10th ICSLP, Brisbane, 
Austrailia. Web: wwwinterspeech2008.org

23-25 septembre. Underwater Noise Measurement. 
Southampton, U.K. Web: www.ioa.org.uk/viewupcoming.asp 

21-23 octobre. 13th Conference on Low Frequency Noise 
and Vibration. Tokyo, Japan. Web: 
www.lowfrequency2008.org
21-24 octobre. Acustica 2008. Coimbra, Portugal. Web: 
www.spacustica.pt

26-29 Octobre: Internoise 2008, Shanghai, China. Web: 
www.internoise2008.org

01-05 novembre. IEEE International Ultrasonic Symposium. 
Beijing, China. Web: www.ieee-
uffa.org/ulmain.asp?page=symposia

10-14 novembre. 156th Meeting of the Acoustical Society of 
America, Miami, Florida, USA. Web: www.asa.aip.org

24-26 novembre. Australian Acoustical Society National 
Conference. Victoria, Australia. Web: www.acoustics.asn.au

2009

19-24 avril. International Conference on Acoustics, Speech, 
and Signal Processing. Taipei, R.O.C. Web: icassp09.com

18-22 mai. 157th Meeting of the Acoustical Society of 
America, Portland, Oregon, USA. Web: www.asa.aip.org

23-26 août: Internoise 2009, Ottawa, Canada.

23-27 août: International Confress sur Acoustics 2010. 
Sydney, Australia. Web: www.acoustics.asn.au 

06-10 septembre: Interspeech 2009. Brighton, UK. Web: 
www.interspeech2009.org

2010

19-24 mars. International Conference on Acoustics, Speech, 
and Signal Processing. Dallas, TX, USA. Web: 
icassp2010.org
23-27 août: International Confress sur Acoustics 2010. 
Sydney, Australia. Web: www.acoustics.asn.au 

26-30 septembre: Interspeech 2010. Makuhari, Japan. Web: 
www.interspeech2010.org

NEWS

We want to hear from you! If you have any news items related to the Canadian Acoustical Association, please send them. Job 
promotions, recognition of service, interesting projects, recent research, etc. are what make this section interesting.
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EXCERPTS FROM “WE HEAR THAT...’’, IN ECHOS, ASA

G erhard  Sessler, Professor at the Darmstadt University of Technology in Germany, received the Technology Award of the 
Eduard Rhein Foundation for “outstanding and internationally acknowledged achievements in numerous areas of technical 
acoustics.”

Laymon Miller is the sixth recipient of the 2007 C. Paul Boner award from the National Council of Acoustical Consultants 
(NCAC). The award is presented to a member of the acoustical consulting community who embodies the qualities of the late Paul 
Boner—teacher, scientist, administrator, technician—and who has made outstanding contributions to the science of acoustics. 
Miller is a Fellow of ASA and a member of the Institute of Noise Control Engineering (INCE).

Lisa Z urk, Director of the Northwest Electromagnetics and Acoustics Research Laboratory at Portland State University, received 
a Presidential Early Career Award for Scientists and Engineers at the White House. Zurk was nominated by the National Science 
Foundation from which she previously received a five-year, $400,000 NSF Career Award. Her teaching and research are in 
electromagnetics, acoustics, and computational methods.

The National Academy of Engineering presented the 2007 Arthur M. Bueche Award to Jo rd an  Baruch, President, Jordan Baruch 
Associates “for the promotion of the innovation and management of science and technology nationally and internationally, thereby 
enhancing the economy of the U.S. and developing nations.” Baruch is a Fellow of ASA.

M ichael Howe, Professor of Theoretical Mechanics at Boston University, was awarded the 2007 Rayleigh Medal for his 
outstanding contributions to research, mainly in aeroacoustics stretching over almost four decades. The presentation was made by 
Colin English, President of the Institute of Acoustics at the Institute’s recent Autumn Conference on Advances in Noise and 
Vibration Engineering at Oxford. The Rayleigh Medal is awarded without regard to age to persons of undoubted renown for 
outstanding contributions to acoustics. It is normally presented to a UK acoustician in even numbered years and an overseas 
acoustician in odd numbered years. Howe is an ASA Fellow.

The Canadian Association of Physicists has honoured University of Windsor physics professor Roman Maev with the 2007 CAP 
medal of Outstanding Achievement in Industrial and Applied Physics for his work in the field of acoustic microscopy. Maev holds 
the Natural Sciences and Engineering Research Council/DaimlerChrysler/University of Windsor Industrial Research Chair in 
Applied Solid State Physics and Material Characterization.

Bishwajit C hakraborty , a senior scientist in the Geological Oceanography Division at National Institute of Oceanography, Dona 
Paula, Goa, is a recipient of the National Mineral Award -2006 for his significant contributions in the field of earth sciences and 
related fields under the National Mineral Award Scheme of the Ministry of Mines, Government of India.

Michael Canney is the new chair of the Student Council. Michael is a doctoral student in Bioengineering at the University of 
Washington, where his research is focused on therapeutic ultrasound for noninvasive surgery. He has served on the ASA Student 
Council since the spring of 2005 as the representative for the Biomedical Ultrasound / Bioresponse to Vibration.

Emily Tobey, Nelle C. Johnston Chair in Communication Disorders in the School of Behavioral and Brain Sciences at the 
University of Texas at Dallas, has been named a Sigma Xi Distinguished Lecturer for 2008-2009. Tobey, a Fellow of ASA and the 
American Speech-Language and Hearing Association, was named the University of Texas at Dallas Polykarp Kusch Lecturer, the 
highest honor an individual faculty member can receive from the University.

EXCERPTS FROM “SCANNING THE JOURNALS", IN ECHOS, ASA

Hair cells of the inner ear transduce mechanical vibrations arising from sound waves into electrochemical signals. At the apical 
surface each hair cell contains a bundle of stereocilia. According to a letter in the 6 September issue of Nature, two cadherins 
interact to form tip links that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Cadherin 
23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of the tip links, respectively. Ions that affect the 
tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interaction between CDH23 and 
PCDH15. A remarkable photo by the authors of this report appears on p. 112 of the October issue of Physics Today. In this photo, 
CDH23, tagged with a green fluorescent antibody, is found at the tail end of the tip link.

Physicists have discovered a simple way to “store” light pulses in a material by converting them into sound waves according to an 
article in the 14 December issue of Science. The optical data pulses are converted into long-lived acoustic excitations in an optical 
fiber by means of stimulated Brillouin scattering. These stored pulses can be retrieved later, after a time interval limited by the 
lifetime of the acoustic excitation. In the experiment reported, smooth 2-nanosecond-long pulses were stored for up to 12 ns with
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good readout efficiency. This method can potentially be implemented at any wavelength where the fiber is transparent and can be 
incorporated into existing telecommunication networks because it operates using commercially available components at room 
temperature.

“Stringing the fiddle: the inner ea r’s tw o-part invention” is the title of an article in the October issue of Nature Neuroscience 
which discusses the roles of CDH23 and PCDH15 in transduction by the stereocilia tip links. Physiological experiments illuminate 
channel function in a dazzling array of detail. Deflection of a hair cell’s stereocilia bundle by ~100 nm opens ~100 transduction 
channels, located at the tips. Each channel is in series with a “molecular gating spring” of ~1 millinewton per meter stiffness that 
can stretch by >100 nm. Each tip link, about 170 nm long, appears as a twisted pair of strands 5 nm in diameter.

Would-be conductors now have a system that allows them to change the tempo and dynamics of a virtual orchestra with the wave 
of a hand, according to a note in the 20 October issue of New Scientist. Audio and video recordings of a real orchestra are used to 
create the virtual orchestra. The would-be conductor wears an ewatch, a device the size of a wristwatch that contains 
accelerometers and tilt sensors. The ewatch records the user’s hand movements and sends them to a computer, where software 
translates the actions into dynamics and tempo commands and feeds them to the virtual orchestra.

People blinded early in life often develop better hearing than sighted people. According to a note in the 20 October issue of New 
Scientist. They do this by taking over the parts of the visual system that are easiest to adapt, the medial occipital. In sighted people 
the medial occipital plays a crucial role in registering visual signals by setting the thresholds at which they are noticed by the brain. 
Researchers played a series of sounds to blind subjects, each preceded by a cue warning the brain to pay attention. Brain scans 
showed that as subjects heard the cue their medial occipitals became more active, indicating that the brain uses the same region that 
alerts them to visual signals to prime them to listen for sounds.

“A Sound Use for Heat” is the title of an article on thermoacoustics in the November/December issue of American Scientist. The 
article focuses largely on the work of Orest Symko and his colleagues at the University of Utah (see ECHOES, Summer 2006 
issue). Their work has been directed especially toward converting waste heat from computers, electronics, power plants, and 
automobiles into electricity. To accomplish this, the heat is first used to generate sound, which is then converted into electricity by 
means of piezoelectric transducers. The thermoelectric converters, which have no moving parts, can work with a temperature 
difference as low as 25 degrees Celsius, although larger temperature gradients increase efficiency.

The WGBH Educational Foundation, in association with Sigma Xi, has launched a website, sciencecafes.org, to promote the 
growing Science Café movement in the U.S., according to a story in the November-December issue of American Scientist. From a 
handful of gatherings a few years ago to more than 50 around the country today, the café format has proven that people of all ages 
and backgrounds enjoy talking about the latest developments in science. The largest at the time of my editorial “Café Acoustique?” 
in the Fall 2006 issue of ECHOES was the Denver Café Scientifique which draws about 150 people. Meanwhile, has anyone tried 
out the Café Acoustique idea, or even made a presentation on acoustics at a Café Scientifique?

The history and appearance of renal (kidney) tissue in rabbits after histotripsy is the subject of a paper in the October issue of the 
Journal o f Endourology. Histotripsy, defined as “noninvasive, nonthermal, mechanical (cavitational) tissue ablation,” is an 
experimental type of bloodless surgery. The left kidneys of 29 rabbits were treated with 750-kHz bursts of ultrasound from an 18- 
element phased-array transducer. After 60 days only a small fibrous scar persisted adjacent to a wedge of tubular dilation and 
fibrosis underlying a surface-contour defect.

“There’s more to yodeling than meets the ear,” according to an article in the December 22/29 issue of New Scientist. Kerry 
Christensen, who performed a mini-concert at the ASA meeting in Salt Lake City, can lay claim to being one of the world’s most 
versatile yodelers. His repertoire of 1500 tunes includes Cajun yodeling as well as a number in which performs a series of rapid 
chromatic runs up and down the musical scale. Human voices have two distinct ranges that singers call the “head voice” and the 
“chest voice.” There is a distinct gap between these two ranges, which is noticed most in inexperienced singers. Opera singers are 
experts at smoothing over this break, while yodelers accentuate it, says Ingo Titze of the University of Iowa.

In August, the World Health Organization (WHO) released preliminary estimates of the number of Europeans killed or disabled by 
exposure to noise, according to a story in 22/29 December issue of New Scientist. For example, chronic and excessive traffic noise 
is implicated in the deaths of 3 per cent of people in Europe with ischaemic heart disease. Noise kills in much the same way as 
chronic stress does, by causing an accumulation of stress hormones, inflammation and changes in body chemistry that eventually 
lead to problems such as impaired blood circulation and heart attacks. Next year the WHO will finalize its estimates of the 
amazing effects of noise and will also provide guidelines on exposure levels that are likely to cause harm.

A brain transcription called FOXP2 is necessary in order for zebra finches to learn to sing, according to a paper in the Public 
Library open access journal PLoS Biology 5, e321 (2007). After a 3-month tutoring period with an adult bird, the songs of the 
birds with reduced FOXP2 were missing syllables and contained inappropriately repeated segments. Without sufficient FOXP2 
normal developmental motor learning could not take place.
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--- SECOND ANN OUNCEMENT --

A co u stic s  W eek  in C anada

Vancouver, 6 - 8 October 2008

Acoustics Week in Canada 2008, the annual conference 
of the Canadian Acoustical Association, will be held in 
Vancouver, British Columbia from 6 to 8 October 2008. 
This is the premier Canadian acoustical event of the year, 
and is being held in beautiful, vibrant Vancouver, making 
it an event that you do not want to miss. The conference 
will include three days of plenary lectures, technical 
sessions on a wide range of areas of acoustics, the CAA 
Annual General Meeting, an equipment exhibition, and 
the conference banquet and other social events.

Venue and Accommodation -  The conference will be held at the Coast Plaza Hotel & Suites 
[http://www.coasthotels.com/hotels/canada/bc/vancouver/coast_plaza/overview], in the dynamic West 
End of downtown Vancouver, steps from the beach at English Bay, walking distance to beautiful 
Stanley Park and trendy Robson Street, near Granville Island and Chinatown. Participants registering 
with the hotel before 5 September 2008 will receive the reduced room rate of $ 129/night (single or 
double). Stay at the conference hotel to be near all activities and your colleagues, and to help make the 
conference a financial success, to the benefit of all CAA members.

Plenary Lectures -  Plenary lectures will be presented by Prof. Stan Dosso, School of Earth and 
Ocean Sciences, University of Victoria, Prof. Barry Truax, Department of Communication, Simon 
Fraser University and Prof. John Esling, Department of Linguistics, University of Victoria.

Special Sessions -  Special sessions consisting of invited and contributed papers are currently 
being organized on the following topics: • Architectural and Classroom Acoustics

• Auditory Scene Analysis
• Sound Absorbing Materials
• Biomedical Acoustics
• Speech Production and Speech Disorders
• First Nations Languages Acoustics
• Speech Perception
• Acoustical Consulting—Challenges and Opportunities
• Second Language Acquisition Acoustics
• Occupational Noise Standards
• Psychological Acoustics
• Vibroacoustics

If you would like to propose and/or organize a special session 
in your technical area, please contact the Conference Chair or 
Technical Co-Chair as soon as possible.

Equipment Exhibition -  The conference will include 
a one-day exhibition of acoustical equipment and products 
on Tuesday 7 October 2008. If you are an equipment supplier 
interested in participating in the exhibition, please contact the 
Exhibition Coordinator as soon as possible.
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Social Events -  The conference will begin on Monday morning with an opening ceremony and 
welcome by Elder Larry Grant, Musqueam Indian Band (http://www.musqueam.bc.ca/Home.html). On 
Monday evening, a reception will be held for all delegates, followed by a visit to Christ Church 
Cathedral in downtown Vancouver, where acoustical consultant Michael Noble, BKL will discuss 
renovations to improve the Cathedral’s acoustical environment, after which delegates will experience 
the acoustics during an organ recital.

Courses / Seminars -  If you would like to propose to offer a course / seminar in association with 
Acoustics Week in Canada, please contact the Conference Chair. Assistance can be provided in 
accommodating such a course / seminar, but it must be financially independent of the conference.

Student Participation -  The participation of students is strongly encouraged. Travel subsidies 
and reduced registration fees will be available. A hotel room-sharing program will be available to reduce 
costs. Student presenters are eligible to win prizes for the best presentations at the conference.

Paper Submission -  Following are the deadlines for submission of abstracts, and of two-page 
summaries for publication in the proceedings issue of Canadian Acoustics: submission of abstracts: 13

June 2008; submission of two-page summaries: 10 July 2008.

Registration -  details of registration fees and the registration 
form will be made available on the conference website. Early 
registration at a reduced fee is available until 5 September 2008.

Local Organizing Committee
• Conference Chair: Murray Hodgson [murray.hodgson@ubc.ca]
• Technical Co-Chair: Kimary Shahin [kns3@sfu.ca]
• Venue: Linda Rammage [linda.rammage@vch.ca]
• Treasurer: Mark Cheng [mark_cheng@yvr.ca]
• Equipment Exhibition: Mark Bliss [bliss@bkl.ca]
• Audio/Visual: Christine Harrison 

[christine.harrison@ worksafebc.com ]
• Student Issues, Translation: Hind Sbini [sbihi@interchg.ubc.ca]
• Administrator: Bernadette Duffy [bduffy@interchg.ubc.ca]

Conference Website at http://www.caa-aca.ca/
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-- SECONDE ANNONCE - -  SEMAINE CANADIENNE D’ACOUSTIQUE

Vancouver, 6 - 8 Octobre 2008

La conférence annuelle de l’Association Canadienne 
d’Acoustique (ACA) se tiendra à Vancouver en 
Colombie-Britannique du 6 au 8 octobre 2008. Il s’agit 
du plus important événement canadien de l’acoustique 
de l’année, et aura lieu à Vancouver, une des plus 
pittoresques et vibrantes villes canadiennes. Trois jours 
de sessions plénières, ainsi que des sessions techniques 
parallèles seront présentées, couvrant un large éventail 
du domaine de l’acoustique. La conférence comprendra 
aussi la réunion annuelle générale de l’ACA, 
l’exposition de divers équipements acoustiques, un 
banquet et autres événements sociaux.

Lieu du congrès et hébergement -  La conférence se tiendra au Coast Plaza Hotel & Suites 
[http://www.coasthotels.com/hotels/canada/bc/vancouver/coast_plaza/overview], dans le quartier 
dynamique West End du centre-ville de Vancouver, a quelque pas de la plage de la baie des Anglais 
(English Bay), a proximité du fameux parc Stanley et de la chic rue Robson, et proche du marche 
populaire de l ’île Granville, et du Chinatown. Les délègues qui réserveront leur chambre avant le 5 
septembre 2008 bénéficieront d’un tarif préférentiel de $129/nuit (occupation simple ou double). 
Choisissez cet hôtel pour participer pleinement au congrès, à proximité de toutes les activités et de vos 
collègues, et pour assurer le succès de la conférence pour le bénéfice de tous les membres de l’ACA.

Sessions plénières -  Les professeurs Stan Dosso, Earth and Ocean Sciences, Université de 
Victoria, Barry Truax, Département de Communication, Université Simon Fraser, et John Esling, 
Département de Linguistique, Université de Victoria, assureront les présentations des sessions plénières.

Sessions spéciales -  Des sessions présentées par des conférenciers invités ou par des commun
ications soumises par les délégués sont actuellement organisées autour de divers sujets, tels que:

• Acoustique architecturale et de salles de classe
• Matériaux absorbants
• Acoustique biomedical
• Troubles du débit
• Acoustique des langues des Premières Nations
• Perception du language
• Consultation en acoustique -  défis et perspectives
• Acoustique de l’acquisition d’une seconde langue
• Standards du bruit en milieu de travail
• Psychoacoustique • Vibroacoustique

Si vous désirez suggérer un sujet de session spéciale et/ou 
organiser une de ces sessions, veuillez communiquer avec le 
président du congrès ou le directeur scientifique.

Exposition technique -  Le mardi 7 octobre 2008 sera 
consacré à l’exhibition d’instruments et autres produits de 
l’acoustique. Si vous êtes un fournisseur d’équipement intéressé 
de participer, veuillez contacter la personne en charge de la 
coordination de l’exhibition.
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Activités -  La conférence débutera le lundi matin avec une cérémonie d’ouverture avec un discours 
de bienvenue par Elder Larry Grant, Musqueam Indian Band (http://www.musqueam.bc.ca/Home.html) 
Lundi soir, une réception est prévue, suivie par une visite de la Cathédrale Christ Church au centre-ville 
où Michael Noble, consultant chez la firme BKL, présentera les rénovations récentes qui ont été 
entreprises pour améliorer l ’environnement acoustique de la Cathédrale. Les délégués pourront par la 
suite assister à un récital d’orgue.

COUTS / Séminaires -  Si vous désirez présenter un cours/séminaire en association avec la 
semaine canadienne d ’acoustique, veuillez contacter le président du comite d’organisation. Sou: 
condition d’une indépendance financière, l ’accommodation d’un cours/séminaire pourra être appuyée.

Participation étudiante -  La participation des étudiants au congrès est vivement encouragée 
Des aides financières pour le déplacement et une réduction pour l’inscription seront mises à disposition 
Un programme pour faciliter le partage des chambres sera mis sur pied pour réduire les dépenses. Le! 
étudiants présentant leurs travaux seront éligibles pour les prix des meilleures présentations au congrès.

Soumission des présentations -  Les dates limites 
pour soumission sont le 13 juin 2008 pour les résumes et le 10 
juillet 2008 pour les sommaires de deux pages aux actes.

Inscription -  Les détails ainsi que le formulaire d’inscription 
seront mis en ligne sur le site Web de la conférence. Une réduction 
sera effective pour toute inscription avant le 5 septembre 2008.

Comité d’organisation
• Président: Murray Hodgson [murray.hodgson@ubc.ca]
• Directeur scientifique: Kimary Shahin [kns3@sfu.ca]
• Accomodations: Linda Rammage [linda.rammage@vch.ca]
• Tresorier: Mark Cheng [mark_cheng@yvr.ca]
• Exposition: Mark Bliss [bliss@bkl.ca]
• Audio-visuel: Christine Harrison 

[christine.harrison@ worksafebc.com ]
• Student Issues, Translation: Hind Sbihi [sbihi@interchg.ubc.ca]
• Administrateur: Bernadette Duffy [bduffy@interchg.ubc.ca]

Site Web de la conférence à http://www.caa-aca.ca/
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Soumissions: Le manuscrit original ainsi que deux copies doivent 
être soumis au rédacteur-en-chef.
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lage. Dimensions des pages, 8.5” x 11”. Si vous avez accès à 
un système de traitement de texte, dans la mesure du possible, 
suivre le format des articles dans l’Acoustique Canadienne 18(4) 
1990. Tout le texte doit être en caractères Times-Roman, 10 pt et à 
simple (12 pt) interligne. Le texte principal doit être en deux col
onnes séparées d’un espace de 0.25”. Les paragraphes sont séparés 
d’un espace d’une ligne.

Marges: Dans le haut - page titre, 1.25”; autres pages, 0.75”; dans 
le bas, 1” minimum; latérales, 0.75”.

Titre du manuscrit: 14 pt à 14 pt interligne, lettres majuscules, 
caractères gras. Centré.

Auteurs/adresses: Noms et adresses postales. Lettres majuscules 
et minuscules, 10 pt à simple (12 pt) interligne. Centré. Les noms 
doivent être en caractères gras.
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lettres majuscules, caractères gras, centré. Paragraphe 0.5” en 
alinéa de la marge, des 2 cotés.
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titres: numéroter 1.1, 1.2, 1.3, ..., en lettres majuscules et minus
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Equations: Les minimiser. Les insérer dans le texte si elles sont 
courtes. Les numéroter.

Figures/Tableaux: De petites tailles. Les insérer dans le texte 
dans le haut ou dans le bas de la page. Les nommer “Figure 1,
2, 3,...” Légende en 9 pt à simple (12 pt) interligne. Laisser un 
espace de 0.5” entre le texte.

Largeur Des Traits: La largeur des traits sur les schémas tech
nique doivent être au minimum de 0.5 pt pour permettre une bonne 
reproduction.

Photographies: Soumettre la photographie originale sur papier 
glacé, noir et blanc.

Figures Scanées: Doivent être au minimum de 225 dpi et au max
imum de 300 dpi. Les schémas doivent être scannés en bitmaps tif 
format. Les photos noir et blanc doivent être scannées en échelle 
de gris tifs et toutes les phoots couleurs doivent être scannées en 
CMYK tifs.

Références: Les citer dans le texte et en faire la liste à la fin du 
document, en format uniforme, 9 pt à simple (12 pt) interligne.

Pagination: Au crayon pâle, au bas de chaque page.
Tirés-à-part: Ils peuvent être commandés au moment de 
l’acceptation du manuscrit.
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