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PERIPHERAL PREPROCESSING IN HEARING AND PSYCHOACOU-
STICS AS GUIDELINES FOR SPEFCH RECOGNITION

Eberhard Zwicker

Institute of 'Electroacoustics, Technical University
Miinchen, Arcisstr. 21, D-8000 Miinchen 2, F R Germany

Introduction

Modern electronic equipment realizing network of
system-theory as well as signal-theory strategies was
a strong motor within the last 15 years pushing
speech recognition systems to better and better
results (for summaries see for example DeMori, 1979;
Terhardt, 1978}. Nevertheless, this progress is not
comparable with the much larger progress of the data
processing system like computers, memories, signal
processors. Therefore we may ask for other and better
guidelines to organize speech recognition systems.
Since the human hearing system is still by far the
best speech recognition system in every respect, it
may be very helpful to simulate this system as much
as we know about it. This idea is not new. Our re-
search group seems to offer proposals in this direc-
tion each seventh year (Zwicker, 1971; Zwicker et
al., 1979), this paper included. Other groups have
accepted this approach in part by using critical band
filtering {Klatt, 1982), by using loudness-time func-
tions for segmentation (Mermelstein, 1975; Schotola,
1984), or more in general by using loudness-critical
band rate-time patterns as preprocessed data base
{Ruske, 1985 and this volume).

Hearing research made progress in the last seven
years especially in the field of peripheral prepro-
cessing in the cochlea. The Mdssbauer technique was
used in carefully performed animal experiments in or-
der to measure basilar membrane displacement at lower
levels (Patuzzi et al., 1984). For research in human
cochlear preprocessing, the oto-acoustic emissions
became a very effective non-invasive tool in order to
get insight into this system (Zwicker, 1979; 1986a).
The peripheral preprocessing system acts in advance
of the neural data processing. The data to be proces-
sed are displacements, velocities or accelerations,
i.e. AC-values, which are correlated to the sound
Pressure time function. This kind of preprocessing
ends at the synapses of the inner hair cells in the
organ of Corti. Then neural data processing starts.
Its function can be studied in humans almost exclu-
sively by psychoacoustical experiments. The neural
pProcessing with regard to speech recognition may be
devided into two parts, the extraction of basic audi-
tory parameters, such as loudness, pitch, roughness,
timbre, fluctuation strength, duration together with
the selection of the dominant parameters which form
the input data to the second part, the subsequent
Begmentation, classification and recognition.

Although the general topic of our laboratory's
fesearch is "human hearing” and not specifically
SPeech recognition" we may be able to offer to the
research area of speech recognition some usable tools
%hich can help to solve some of actual problems by
imitating the best speech recognizer, the human hea-
Ting system. A paper like this should deal with all
three topics mentioned: (1) peripheral preprocessing
UP to the first synapses, (2} extraction of basic
SWditory parameters and selection of dominant ones,
;"d 3) segmentation, classification and recognition.

€ are not active in topic (3). Therefore, I will
Soncentrate on topics (1) and (2} in this paper.

1. Peripheral preprocessing

Based on a hypothesis {(Zwicker, 1979) which was
not very well founded on real facts and which did not
fit into the trends at that time we completed a model
of peripheral processing which looks like well foun-
ded on the measured facts known now. The model incor-
porates three assumptions: Only inner hair cells
transfer information towards higher neural levels;
the outer hair cells act as nonlinear saturating ac-
tive AC-amplifiers; and form together with the hydro-
mechanic system of the cochlea many feedback loops,
which may even oscillate although at very low levels.

The physiological and anatomical view of the mo-
del was cutlined formerly (Zwicker and Manley, 1983},
and the simplified model realized in an analog ver-
sion (Zwicker, 1984; 1986a) and in a computer version
(Zwicker and Lumer, 1985). The behaviocur of a combi-
naticn of linear and nonlinear networks often is dif-
ficult to describe. In our case, with a strong fre-
quency selectivity included, its behaviour can be
outlined as a quasi linear system the nonlinearity of
which is expressed in level dependencies. This way,
the most prominent characteristics of the analog mo-
del simulating our hearing system's preprocessing are
described in the following paragraphs.

A schematic diagram of two sections out of 90 in
the analog model is shown in Fig. 1. The upper part
represents the hydromechanics of the (passive) inner
ear in the dual form in regard to the one normally
plotted. This way, voltages can be used as values of
interest instead of currents. The velocity-correspon-
ding voltages are picked up through a transformer,
amplifiedin an amplifier with symmetrically satura-
ting nonlinear characteristic and feed back through a
large resistor. This amplifying part with feedback
represents the action of the outer hair cells. The
inner hair cells are not shown explicitly but the
output of each section of the model represents the
input to the inner hair cells which is there trans-
formed into neural spike activity and transmitted to-
wards higher centers belonging to topic {2).

Before describing the behaviour of the periphe-
ral preprocessing simulated in the model in some de-
tail, it may be didactically helpful to compare the
most important characteristics with those achieved in
formerly used simple broadcasting receivers. Such re-
ceivers have a knob to choose the station we want to
listen to: A resonant circuit produces the frequency
selectivity needed. Otherwise we would hear many sta-
tions at the same time and the loudest one would
disturb all the other softer ones we may be inte-
rested in. The sharper the tuning the better the me-
paration of different stations. Normal passive fre-
quency selective mystems have been found not to be
sharp enough ard also not sensitive enough. There-
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Fig. 1: Schematic diagram of a peripheral prepro-
cessing model containing nonlinear active feed-
back.



fore, the simple broadcasting receivers of the 30's
got - besides the tuning knob and the volume knob -
a third, namely the feedback knob. Using active
systems, the feedback could be controlled by this
knob. Turning it to the right, the tuning was shar-
pened and the selectivity enhanced so that faint
broadcasting stations could be received as well. Thia
feadback knob, however, was a capricious tool: tur-
ning the knob a little bit too much to the right,
-feedback resulted in a very loud squeezing selfoscil-
lation of the smystem. This was a strong handicap of
those systems. Nevertheless, the most selective and
most sensitive adjustment could be achieved by set-
ting the kmob Jjust before the set ‘where it starts
to oscillate. Such feedback systems basically are not
very stable and therefore are not used anymore.

Our inner ear, however, seems to make use of
this strategy in a very interesting variation: it
combines the feedback system with a saturating nonli-
nearity so that - for very faint sounds - the whole
syastem can act near the oscillation point with large
selectivity and large sensitivity. For loud sounds,
however, the sensitivity is reduced automatically and
the tuning widened. Such a behavior is very meaning-
ful: the large sensitivity is needed for faint sounds
only, not for loud sounds. But what about the anno-
ving loud oscillations? The saturating nonlinearity
acts at faint levels already, leading to the fact,
that oscillations can be produced only with very
small amplitude. Depending on the metabolism of the
inner ear the system may oscillate a very little bit
or not, an effect which was actually measured as
sound pressure in the closed ear canal of more than
50% of normal hearing human subjects {(Schloth, 1983;
Pallmayr, 1985}, The level of these spontanecus oto
-acoustic emissions is mostly below threshold and
therefore neither audible nor disturbing (no relation
to tinnitus was found for these low-level emis-
sionsl!}.

This nonlinearity established in the outer hair
cells creates an important characteristic: the large
dynamic range of the sounds received is reduced
strongly already at the level of basilar membrane vi-
bration. OQur inner ear acts in many parallel channels
- and not in one channel only as the broadcasting
receiver does - but all these channels act frecuency
selective so that the introduced nonlinearity does
not disturb the information. This way, the ingenious
and very effective construction of the inner ear uses
all advantages of the above mentioned system and
pushes its disadvantages in the background.
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Fig. 2: Level Lgy, of the voltage equivalent to basi-
lar membrane vibration and its phase PgMy A8 a
function of the section number ¥ corresponding to
place along the basilar membrane. Parameter is the
input level Lip of the 1770-Hz tone,

The so fare more generally described characteri-
stics of the model are shown cuantatively in Fig. 2.
The level IPM' and the phase Ogyy corresponding to
the level of the vibration of tgl basilar membrane
and to its phase are plotted as a function of ¥, the
number of sections of the model corresponding to the
place along the basilar membrane. The level-place
patterns are plotted for an input freguency of 1770
Hz and input levels L;, of 30, 50, 70, and 90 dB. The
comparison of the fcru:"J curves indicates the increa-
sing place selectivity (corresponding to fregquency
selectivity) with decreasing input level. The peak
strongly indicated for 30 dB at the characteristic
place cv=4l disappears more and more for increasing
input level. The increasing slopes of the curves are
very steep but flatter for the decreasing part to-
wardg large numbers v and level independent. The
two phase-place patterns show an expected behaviour
of strong phase lag with decreasing v which depends
near the characteristic place c¥ on input level L.

The effect of compressing the dynamic range 'is
most clearly seen in the relation between level
at the characteristic place and the input level Lj
as indicated in Fig. 3. There, an input range og
{100-40)dB=60dB is reduced to (B80-39)dB=41dB. The
slope of this output~input function amounts in a
large range close to 0.5.

The model of peripheral preprocessing explains
very well the existance and the behavior of oto-acou-~
gtic emisgions {(Zwicker, 1986b) and also the unusual
frequency~-difference and level dependence of the
(2f;-f,)-difference tones {(Zwicker, 1986c). More im-—
pox%an% for speech recognition seems to be the fact
outlined in Fig. 2: the unsymmetric shape of the
level-place patterns with the extremly steep rise,
the level-dependent 3dB bandwidth which corresponds
for normal speech level of 60dB to a AY of about 8
i.e. to the critical bandwidth, and the compression
of the dynamic range especially at medium levels.

2. Extraction of basic auditory parameters

Following the peripheral nonlinear active pre-
processing in the cochlea, the information picked up
asg vibration of the basilar membrane is transferred
by 3500 inner hair cells into neural spike patterns.
Since the tonotopic organization remains toward
higher neural centers, it can be assumed that the
information used for speech recognition is hidden in
the neural spike rate-place-time pattern. This pat-
tern is the bagis of the extraction of basic auditory
sensations such as loudness, pitch, roughness, tim-
bre, fluctuation strength, or duration. Presuming
that the temporal variations of these parameters bear
the relevant speech information the processes leading
to these parameters have to be cutlined. Since neuro-
physiological methods can not be applied for this
search, psychoacoustical ones are only usable, How-
ever, the models based on psychoacoustical experi-
ments must be in line with the peripheral preproces-
8ing. This means that the reduction of signal flow
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produced stepwise from the sound pressure time func-
tion of speech to the fipal recognition by our hear-
ing system can not be reversed: something lost in
the first parts can not show up again at a later
stage of processing.

The specific loudness-critical band rate-time
pattern seems to be that fundamental psychoacoustical
pattern, from'which all basic auditory sensations are
derived. It is approximated by the subdivigion of the
auditory frecquency band into 24 adjacent critical
bands. The amount' of specific loudness in each chan-
nel is proportional to the square root of the sound
pressure, and post-masking is already incorporated in
its temporal structure. )

To give an impression of such a specific loud-
negs—critical band rate-time pattern, Fig. 4 shows it
for the spoken word "ELECTROACOUSTICS" simplified in
such a way that only the values of the even numbered
bands between 2 and 22 are plotted. On top of the
eleven time functions of the specific loudnesses N'g.
the total loudness N is also indicated. Its time
function changes much more slowly in relation to spe-
cific loudness but still contains important informa-
tion useful for segmentation.

The extraction of the basic auditory sensation
out of the specific-loudness pattern is described in
a former paper {Zwicker et al., 1979}, Meanwhile se-
veral pitch extractors have been discussed (Hess,
1983}, some of them are also based on preprocessed
auditory patterns (Terhardt, 1979; Terhardt etal.,
1982a,b). Also pitch strength was studied in many de-
tails (Fastl, 1980) indicating that some kinds of
pitch are much more impressive than others, addition-
al data on roughness {(Kemp, 1982; Aures, 1985} on
timbre and sharpness (Aures, 1985.), and on subjec-
tive duration (Fastl, 1982b} have confirmed the
effectivness of the use of specific loudness-critical
band rate-time patterns.

An other basic auditory sensation, the floctua-
tion strength, added to the mentioned collection
(Fast, 1982a, 1983, 1984). It im a sensation which
seems to be useful for indicating the rhythm of
speech (Kéhlmann, 1982, 1985a,b) but may also produce
hints for better and more meaningful segmentation
{(K6hlmann, 1985a,b). It is interesting to note that
fluctuation strengh as a function of modulation fre-
quency has its maximum near 4 Hz, a value for which
the loudness-time function of speech shows its maxi-
mal spectral component as well (Fastl, 1982a).

The selection of dominant parameters is the last
but in view of signal flow reducticn still important
step in using psychoacoustical results and models in
speech recognition. The dominant changes of the basic
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auditory sensations are the featurea we listen to
during speech recognition. In order to weight the
different changes in a proper way, they should ke
expressed in just noticeable differences as units.
Using this kind of psychoacoustical measure, the do-
minance shows up very clearly, sBo that for differen-
ces for a factor of two, the smaller one can be al-
most ignored, while for showing equal numbers of
units, the changes of two auditory parameters are
ecuivalent to each other so that both have to be
taken into account (Suchowerskyj, 1977a,b).
For speech recognition, the size of the information
flow to be handled by the recognition procedure is a
very important value. Since normal speech in a quiet
room offers an information flow of roughly 100.000
bit/s, this is too much to be processed and has to be
reduced. In the specific loudness-—critical band rate-
time patterns, the flow is reduced to some 10.000
bit/s. Transferring these patterns into time func-
tions of basic auditory sensations may reduce the
Flow for an additional factor of four. The extraction
of only the dominant parameter changes decreases the
flow for about a factor of two. This means that a
signal flow closely to 1000 bit/s remains to be
handled by the recognition procedure (see Fig. 5).
Two experiments produced results which are in
line with these numbers, although very precise values
can not be given. The first experiment made use of a
single-board on-line system for speaker-independent
isolated word recognition (Daxer and Zwicker, 1982},
The influence of changes of (a) the number and fre-
quency distance of channels, (b} the amplitude gquan-
tization, and {(c} the dynamic range on recognition
performance was explored. The results indicate that
10 to 20 filters basaed on critical band rate, 30 dB
of dynamic range with only three or four bits per
channel are sufficient. Using a sample frecuency of
50 Hz, this leads to about 2500 bit/s. The second
experiment used a vocoder system which was based on
the specific loudness-critical band rate-time pattern
{Knebel, 1980} and especially on sharpness {Fastl,
1982c} to devide speech into relevant features and to
resynthegize it again. Speech intelligibility tests
were used to check the effectivity. The results indi-
cate that an information flow of about 1400 bit/s is
sufficient to produce intelligibility scores of 90%,
This means that a flow in the order of 1000 bit/s may
be sufficient for speech recognition if an effective
preprocessing system acts meaningfully, i.e. in our
view, in a similar way than our hearing system.

3. Discussion and conclusion

Sihce computers and processors became so very popular
in recent years, I have often been asked what is the
difference between modern electronic systems and our
hearing system in view of speech recognition. My
reply was similar to the following sentences: {1) a
very basic difference seems to be that electronics
almost exclusively uses one very perfect, almost
ideal line or processor or computer in order to solve
a problem, while most of the biological sensory
systems use very many, very poor lines or processes
in parallel. This way, even with one or a few lines
broken we are still able to hear although not as
perfect as before. (2) Biological systems prefer non-—
linear devises or at least combinations of linear and
nonlinear devises, while we have learned through our
education in mathematics and system theory to think
more easily in linear systems. (3} Biological systems
make much more use of adaptation and of feedback,
often combined with each other, while we normally
take care to avoid feedback in order to keep our
electronic systems stable, and adaptive memories are
coming in use only slowly.
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Fig. 5: Blockdiagram of a speech recognition system
hased on cochlear preprocessing and psycho-
acoustics.

Summarizing the strategies used by our hearing
system which are discovered so far and which may be
used in human speech recognition, a system as that
shown in Fig. 5 can be offered. It contains the non-
linear peripheral preprocessing with active feedback,
followed by the extraction of basic auditory sensa-
tions, out of which complex auditory sensations like
virtual pitch or rhythm may be created. All these
sensations are checked for dominant changes. The
speech recognizing procedure makes also use of non~
auditory information like linguistic rules and phone~
tic rules and finally produces a seguence of phonetic
items.

It may be necessary to add to this simplified
structure of a speech recognizing system bazed on au-
ditory models other parts which take care of the many
adaptive procedures available in hearing. We can
adapt to reverberation, even to a strongly freguency-
—dependent one. We also adapt quickly to the charac-
teristics of a speaker, however, to do so we need a
larger information flow than in adapted situation.
This can be given either by ideal, i.e. noiseless
transmission of a new information or by a redundant
information at the beginning of a speech, as for
example "ladies and gentlemen”. Adaptation is identi-
cal with strong feedback which is indicated in Fig. 5
by dashed lines and can be studied psychoacoustically
in the same way as we have studied hearing sensa-
tions. Therefore and in contrary to ideas popular
some 15 years ago {(Pierce, 1969), we have seen and
still see in the results of hearing research an ef-
fective help in order to find new or to improve rea-
lized ideas useful in speech recognition.
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REPRESENTATION OF THE FIRST FORMANT IN SPEECH
RECOGNITION AND IN MODELS OF THE AUDITORY PERIPHERY

pennis H. Klatt

Room 36-523, Massachusetts Institute of Technology,
Cembridge MA 02139, USA

Abstract. ' The frequency and amplitude of the
first formant are not easy to measure as fundamental
frequency (f0) varies in speech. Perceptual data
indicate that the auditory system ia not bothered by
changes to f0, but processing strategies used in
gpeech recognition, such as linear prediction,
filterbank analysis, and the synchrony spectrum are
geriously perturbed as f0O varies. The irrelevant
variation makes it difficult/unreliable to perform
phonetic comparisons between similar vowels based on
ginple ideas of pattern similerity. Of the possible
golutions to this problem considered here, the one of
greatest practical attraction is to implement a
synchrony spectrum representation of vowel-like apeech
gounds, and a "learned pattern equivalence" approach
to vowel phonetic-quality equivalence across different
fundamental frequencies.

DFT magnitude spectra (25.6 ms Hamming window) of
the lowest 1 kHz of a series of 5 kHz aynthetic vowels
are shown in Figure 1. All synthesis parameters have
been held constant across atimuli except for the
fundamental frequency of voicing (f0), which has been
apaigned a different constant value for each stimulus.
The stimuli were devised to illustrate the problem of
estimating the frequency (F1) and level (A1§ of the
first formant as fundamental frequency changes.
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Figure 1. DFT magnitude spectra of 9 synthetic vowel
stimuli varying only in 0.
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The first formant frequency is 400 Hz in each
synthetic waveform, and the first formant bandwidth is
50 Hz. These values, as well as the chosen
frequencies and bandwidths of higher formants (F2=1800
Hz, B2=140, F3=2900, B3=240, F4s3800, B4=350), are
typical for a vowel such aa in the word "bit" (Klatt,
1980). Fundamental frequencies were selected in equal
logarithmic stepe from 133 Hz to 200 Hz. For the
lowest fundamental, the third harmonic is exactly
aligned with the 400 Hz first formant frequency; for
the highest fundamental in the set of atimuli, the
8econd harmonic is exactly aligned with the first
formant frequency. For stimuli with intermediate
values of fundamental frequency, no harmonic is
8xactly aligned with F1, and one has to interpolate by
8ye to determine the probable location of the first
formant, This interpolation is not easy to perform
a“tOMatically, as will become clear when we discuss

¢ performance of various popular algorithms for
r°rmant estimation. There is a tendency for the first
otmant frequency estimate to be biased toward the
Téquency of the most intense harmonic, resulting in
:2 error of up to plus-or-minus 8 percent for this
inulus set (Table 1).
M Furthermore, the amplitudes of harmonics close to
atiare considerably less intense for intermediate
ave gob OF the stimulus set. The hamonic amplitudes
autetermined by the transfer function of the vocal
harge which peaks rather sharply at 400 Hz. If no
atte°“10 is near F1, the strongest hamsonic can be
tha Muated by up to 9 dB, resulting in a spectral peak
or § éﬂ attenuated by as much as 6 dB (filter banks)
(tht linear prediction}, which agrees with theory
EQhand Liljenecrants, 1962) and measurements of real
r°rmant(Fint°fv Lindblom and Martony, 1962)}. The
are » amplitude misestimates of linear prediction
Congqy. Cult of misestimating formant bandwidths by a
derable factor (Atal and Schroeder, 1975).

STIM fo ] HARMON FB Lp
A 200 400 400 400 400
B 189 400 378 382 389
(4] 179 400 358 367 384
D 169 400 338 37 398
E 160 400 amb. 401 425
F 152 400 456 430 436
G 145 400 435 430 432
H 139 400 417 47 423
I 133 400 399 400 400
MAX ERROR: +16% +7% +9%

-15% -8% -4%

Table 1. First formant frequency predictions of
neareat harmonic hypothesis (HARMON), peak location in
wide-bandwidth filter bank (FB), and linear prediction
spectrum (LP)}. Error increases if f0 is increased or
BW1 is decreased.

According to one theory (HARMON in Table 1), the
first formant is perceived to be the frequency of the
strongest harmonic, at least for fundamental
frequencies such that the ear can resolve individual
harmonics (Chistovich, 1971).

According to a second theory, the formant peek is
found by smoothing the spectrum in frequency such that
individual harmonics are not seen {Chistovich et al.,
1979). This proposal is similar in effect to earller
models which proposed to weight the importance of two
atrong harmonics according to the relative astrength of
their auditory representations {(Carlson, Fant and
Granstrom, 1975). In order to test the predictions of
this theory, a particular smoothing algorithm was
chosen -- the dft spectrum was smoothed by a 300-Hz
wide Gaussian filter. As can be seen from Table 1,
the energy smoothing model predicts that the perceived
formant frequency will be somewhere between the "true"
400 Hz synthetic formant and the strongest harmonic.
The amount of formant shift with changes to
fundamental frequency is, however, quite large {=ee
also Lindblom, 1962; Mongen, 19xx). Stimuli C snd F
differ by 63 Hz according to this model, which is 15
percent of F1. This difference would be easily
audible because the JND for F1 is about 3% (Flanagan,
1955; Mermelstein, 1978). Thus Stimuli C and F
should be heard as different vowels (/i/ and /I/) if
this model were an accurate predictor of perceptual
formant shifts with changes in formant/harmonic
relationships. Apparently, the problem with the
energy smoothing model is that a harmonic changes
amplitude very rapidly as it slides down the skirt of
a formant with a narrow {50 Hz) bandwidth. As soon as
a harmonic is reduced by 4 to 6 dP below an adjacent
harmoniec, it hardly influences the location of the
peak in the energy-smoothed spectrum.

According to a third theory, linear prediction
spectra (autocorrelation form, 14-pole, 25.6 ms
Hamming window) can extract F1 as the peak in the LP
spectrum. Linear prediction fits an all-pole model to
the waveform (Atal and Hanauer, 1971; Markel, 1972) or
spectrum {Makhoul, 1975}, thereby providing a method
for effectively interpolating between harmonic
locations to infer formant peaks. It is a
particularly good medel to apply to these stimuli
since they were generated by an all-pole synthesizer
and have virtually no noise or voicing source
irregularities. The predictions of the linear
prediction model are shown in the final column of
Table 1. Linear prediction is not much better in
performance then simple energy smoothing: there is a
52 Hz swing in the predicted M from stimulus C to F,
which is a 13 percent change. Also, there is a slight
bias toward overestimating Fi1 because the first
harmonic amplitude is attenuated by the first
difference analysis calculation. The reason that
linear prediction does no better than the energy
smoothing model is that the autocorrelation method
uses a window of several pitch periods in duration,
which means that the model must try to predict not
only the damped vocal tract reasponse to the first
excitation at the beginning of the window, but alsoc
the time and magnitude of additional later glottal
excitations and damped responses to them (Atal and
Schroeder, 1975).



Perceptual Data. Does the human perceptual
apparstus employ processing strategies which make all
of these stimulil sound like exactly the same vowel {F1
the same) with the same loudness (vocal effort the
same)? MHaively, one might expect that if these
gtimuli are played in succession, one would hear not
only a change in pitch, but also changes in loudness,
spectral tilt, and vowel quality.

{1) First Formant Amplitude and Perceived
Loudness. To see whether formant amplitude changes
produce loudness differences across stimuli, Stimulus
E was synthesized in its astandard form and with
1,2,...6 dB added to the voicing sound source
intensity. This set of stimuli was compared with both
Stimuli A and I in unaltered form, using an "AX"
randomized sequence in which subjectq made a forced
choice as to whether the first or second member of the
pair waa louder. Results from four listeners indicate
a8 perceptual equal-loudness crossover at 2.0 dB. Thus
when the peir of harmonics straddling F1 are 8 dB less
intense (Stimulus E) than the single harmonic
identical to ™M (Stimulus I}, cne must increase the
level by only 2 dB to match subjective loudness.

Normally, it is said that lcudness of a vowel
depends primarily on the energy at F1, since this is
usually the most intense part of the spectrum. We see
thet this is not the entire story because Stimuli E
and I differ by 6 to 9 dB (depending on how energy
near F1 i{s estimated), whereas an increase of only 2
dB makes these stimuli sound equally loud. Other
possible determinants of vowel loudness are (1) the
intensities of harmonics below F1, (2) energy in
higher formants, (3) spectral tilt, and (4) the
inferred shape of the vocal tract transfer function,
i.e, the transfer function peak height instead of
physical energy present at F1. Any one of these other
potential cues could account for our loudness
Jjudgement results.

The variation in spectral amplitude of F1 as f0
is changed may be just as serious a deficiency of
these spectrel representations as mislocations of F1
in frequency. Any speech recognition device employing
a distance metric that is sensitive to differences in
relative formant amplitudes, such as the Itakura
{1975) linear-prediction minimum prediction residual
or a filter-bank-based Euclidean metric {Plomp, 19705.
will see considerable differences as f0 varies, even
though the vowel is phonetically constant. This
irrelevant veriability can swamp out an ability to
make fine phonetic distinctions in any current
recognition device employing filter banks or linear
prediction representations.

{(2) First Formant Frequency and Perceived Vowel
Quality., What kind of a perceptual effect on vowel
quaIIfy is tc be expected when f0 is changed? One
possibility is that the auditory system somehow is
able to extract the true T, so vowel quality is
unaffected. A second possibility is that the auditory
system ia fooled, or partially fooled, in exactly the
same way as our processing schemesz. A third
possibility, one that somewhat confounds the choice
between these alternatives, is that a change in f0
automatically invokes a kind of vowel-normalization
process such that vowela spoken at higher {0 are
assumed to come from shorter vocal tracts (Miller,
1953%; Fujisaki and Kawashima, 1968; Carison,
Granstrom and Fant, 1970; Schwartz, 1971; Slawson,
1968; Traunmuller, 1982; Syrdal, 1985). A listening
test was devised to distinguish among these
alternatives (Klatt, 1985). Results showed
convineingly that the auditory system is able to
recover the true F1 with no bias toward the strongest
harmonic, but there iz also an automatic normalization
process which makes it seem as iIf the vocal tract is
shorter as f0 increases.

DISCUSSION

Qur perceptual results are conaistent with those
of an excellent earlier paper that addressed the same
issues {Carlson et al., 1575). They too found a
regular shift in phonetic perception conaistent with
the view that f0 affects expectations of the vocal
tract length of a talker. The suthors examined their
data to determine whether any phoneme boundary shifta
could be attributed to perceptual biases toward the
strongest harmonic, or toward a weighted mean of 2 or
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more harmonics. The weighting scheme that they
employed was not the same as ours in that it did not
weight harmonics according to their energy, and they
did not exemine an f0 range where harmonic biases go
in en opposite direction from normalization biases,
but the conclusions were the same -- there was no
evidence of a bias toward the strongest harmonic as
opposed to M (see also Florin, 1979; Assmann and
Nearey, 1983; Derwin and Gardner, 1985).

So far this has been a largely negative paper: we
have isclated defects in most speech processing
algorithms that lead to unnecessary spectral
confusions, but we have not provided any solutions.
Three possible solutions are considered next.®

Pitch-Synchronous Short-Window Analysis. If the
analysTs window s Shorter Than & SIngls piteh period
(e.g. windowed dft with a fixed 2 to 4 ms Hamming
window, or covariance linear prediction during the
inferred closed phase of glottal period) one can
estimate the natural damped response of the vocal
tract transfer function in the absence of excitations
(Atal and Hanauer, 1971). This type of model is
attractive, but is not easy to implement in a
practical speech analysis system in such a way es to
avold occasional gross errors. If the window is
misplaced, some very irrsgular spectra can be
generated. The greatest problem with this kind of
model is finding the time of glottal closure.
Misplacements are particularly probable for high
pitches and in noise. Until such time as analyses of
this type can be made to mimic human perception
consistently, we will have reason to doubt the
velidity of the technique as a speech analysis tool.
An alternative might be to attempt to model the vocal
tract transfer function using linear prediction, while
simultaneously medeling the glottal waveform by some
other appropriate representation (Milenkovic, 1986).

Auditory Modeling: Synchrony Detection. Sachs et
al (15BZ7 have shown %hat a measure ol the tendency of
neural firings to be synchroncus with aspects of the
basilar membrane displacement waveform has important
advantages for speech precessing. The synchrony
measure is far less sensitive to changes in intensity
of a vowel than are the average firing rate data.
Synchrony data are also more immune to background
noise and reverberation distortions (Allen, 1985), and
they are not strongly affected by spectral tilt and
formant amplitude variation {Srulovicz and Coldstein,
1983) which agrees with data on phonetic perception
(Klatt, 1982). Processing schemes based on
synchronous responses are reviewed in Carlson and
Granstrom (1982), Delgutte (1984) and Seneff (1984).
Thus it is of interest to determine whether any of
these measures of synchronous response contains a
representation of F1, and if so, is the estimate
biased toward the strongest harmonic?

An answer comes directly from the Sachs et al.
data, and from theoretical analysis of the wavelorms
observed at the outputs of the low-frequency critical
band filters in this type of model. Physiological
data and current models agree that the auditory system
resclves individual harmonics near F1 for stimuli such
as our family of synthetic vowels. WNowhere in the
neural pattern are there time intervals between
firings that are the inverse of F1. Only intervals
related to harmonics are present. There is
essentially only a sine wave at the outputs of these
simulated mechanical filters because of a kind of M
capture effect that makes the strongest harmonic
dominate the synchrony response in any channel (Allen,
1985). It will therefore be up to the central nervous
system to figure out the firat formant frequency from
the relative proportions of fibers responding to each
of the harmonics (and perhaps the relative phases of
synchrony across channels). We can say little about 1
the existance or detalls of such a calculation at this |
point.

SE%ctral Pattern Equivalence Sets. One
interesting aslternative 8 not usually considered
in speech recogniticn devices is that the harmonic !
pattern in the synchrony response is not processed
centrally to recover an estimate of Fi, but rather
gerves as a pattern vector in its raw form [Dick Lyon
{personal communication) has expressed a similar
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viewpoint]. The CNS would then have to learn pattern
equivalence seta across different fundamenfal
frequencies, even though there may not be striking
pattern similarity for equivalent vowel tokens. The
total number of patterns in such a system would be
much larger than the largest current vector
quantization pattern set, but the approach, given
sufficient labeled training data (see e.g. Kopek, 1985
for one of a number of possible implementation
methods), could potentially overcome a number of other
puzzling aspects of cross-speaker variability, as well
as some of the distortions to a normal formant shape
caused by (1) truncation effects (Fant and
Ananthapadmanabha, 1982}, (2) other source-tract
interactions (Fant, 1985}, (3} breathy-normal-creaky
yoice quality variations zFant et al., 1985), and (4)
vowel nasalization (Hawkins and Stevens, 1985). These
four factors can introduce additional errors in
algorithms designed to measure formant frequencies
based on the detection of spectral peaks, and
forcefully call into question the desirability of
simple-minded approaches to the extraction of the
frequency of F1 from speech waveforms {Bladon, 1982),
although there can be no question of the importance of
changes in F1 for vowel perception (Klatt, 1982).
[This research was supported by ARPA. ]
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ABSTRACT

An adaptive model of the firing rates found in the
auditory nervous system was configurec as a signal proces-
sor for the IBM speech recognition system. The sig-
nal processor was tested on sentences drawn from office
correspondence. Several experiments were done in low
noise office environments using various microphones and
different speakers. The system performance improved
substantially compared to performance using a standard
signal processor,

INTRODUCTION

Speech recognition systems sample speech signals with

a signal-processing front end. One school of thought, sug-
gests that an auditory model ia the "ideal’ signal proces-
sor for such applications, but performance figures avail-
able to date do not support the choice of auditory models
over more standard signal analyses. This note reports
the development and testing of a signal processing algo-
rithm based on some aspects of the mammalian auditory
system.

COMMENTS ON THE IBM SPEECH RECOGNITION
SYSTEM

Information about the IBM speech recognition sys-
tem is widely avaliable (Bahl, Jelinek and Mercer, 1983;
Nadas, et. al., 1981). The 5000-word vocabulary isolated
word dictation system developed at IBM was designed
from & communications theory view of speech recogni-
tion. It is assumed that = talker formulates a complete
English sentence and transforms it into a noisy acoustic
signal. This acoustic zignal is then captured by an acous-
tic processor which produces a series of (vector quan-
tized) labels, discrete in both time and identity, from
which a decision is made about the most probable sen-
tence given the acoustic inpuf. The probabilistic im-
plementation of the system allows training of the linguis-
tic decoder, but the system performance depends on the
reliability of the acoustic processor.

The acoustic processor consists of two sub-systems.
A signal processor transforms the high-bandwidth speech
signal into a vectorized time signal sampled at a modest
rate, and a labeller quantizes the resultant vectors once
each centisecond. The standard system uses 30 filter-
bank energies once each centisecond as its signal proces-
sor, and labels are assigned on s minimum Euclidian dis-
tance basis relative to prototypical vectors derived from
training data. The signal processor reported here re-
places the filter bank with an auditory model.

THE MODEL

The auditory model consists of a frequency analysis
followed by perceptually motivated scaling and nonlinear
adaptation. The frequency analysia is performed by a 20-
band filter bank whose center frequencies and bandwidths
correspond closely to those of auditory critical bands
(Zwicker, Flottorp, and Stevens, 1957), roughly model-

ing the selectivity of the auditory system. A compressive

power-law transformation is applied to the output from

each filter, approximating Joudness scaling (Stevens, 1955)
and reducing the variability of the vector signal as com-

pared with the original. The compressed signals form

the inputs to a reservoir-type model of neural firings

(Schroeder and Hall, 1974) which relates stimulus inten-

sity to auditory-nerve firing rate, and which captures cer-

tain of the onset and offset characteristics of the neural

response, 8

SIGNAL ACQUISITION AND FILTERING

Speech is captured using a far-field desk-mounted
microphone (PZM-8). The speech signal is bandpass
fiitered (180 H3 to 8 kH3), and is digitized. Power spectra
are computed with an FFT. A critical band filter bank is
approximated by summing the squared Fourier coefficients
(intensity) in each of 20 non-overlapping bands spaced
one critical band apart.

The outpui of each filter is converted from inten-
sity to loudness level by mapping each output power
to its equivalent based on the Fletcher-Munson curves
(Fletcher and Munson, 1937) and an estimate of the gain
of the acoustic system. A conversion to loudness iz per-
formed by taking the third (in practice, the fourth) power
of the output energy, and scaling such that 40 dB =1
fsone.

SHORT TERM ADAPTATION

Following the lead of Schroeder and Hall (1974), short
term adaptation is modeled by assuming the existence of
a reservoir holding some amount (n) of neurotransmitter.
The change in the amount of neurotransmitter available
at time t is described by

dn/dt = A~ (8o + Sz + Dg)n(t).

A, D, Sy and Sy are constants (estimated from psycho-
physical data), g is the square root of the loudness from
each filter, and n is an internal state associated with each
filter. This equation states that the change in neuro-
transmitter is equal to the replacement rate A minus the
product of the amount of neurotransmitter available at
that time with the sum of the spontaneous rate constant
Sy, 8 decay constant Sg, and a scale D times the square
root of the input loudness. The firing rate of that channel
is expressed =s

J = (50 + Dag)n(t).

These transformations were incorporated into the test
gystem, and the output of the signal processor was sub-
stituted for the filter bank outputs of the previous stand-
ard process (Das, 1983).

RESULTS

Four talkers recorded the standard 100-sentence train-
ing corpus, and then recorded a 50-sentence test cor-
pus at a later time. Signal processing was done twice,
ence using the filter bank and a second time using the
auditory model front end. The system was trained for
each speaker using the standard forward-backward algo-
rithm. Resultz were as follows:



Table 1. Error rate and decoding times for four

speakers using two separate front end processes. FB =
Filter Bank, AM = Auditory Model.

Error rate for Decoding time
50 sentences (%) (min)
Speaker FB AM FB AM
JRC 6.3 4.7 T7 48
FRJ 7.9 44 7 | 38
LRB 4.2 2.3 43 32
PAF 6.8 4.0 99 81
Average 6.3 3.9 T4 45

Error rates are expressed as the percentage of incor-
rect words in the entire test corpus, counting homophones
of the correct word as incorrect. Decoding time is the
time for the search through the possible sentences, and
does not include signal processing time, labelling, cluster-
ing, training, and other overhead. Both erros rates and
decoding times are significantly lower using the auditory
model than using the standard filter bank. The over-
all error rate iz reduced by 40 percent. Informal ex-
perimentation using different speakers and microphones
confirmed the efficacy of the new front end. Several of
these experiments are summarized in Table 2.

Table 2. Decoding error rates for various speakers
and two microphones. All experiments were trained on
100 sentences of training data, and tested on 20 sentences
of test data (299 words). The test text was the same in
each experiment. ER = Error Rate (%)

Speaker Microphone ER ER
RLM lip 3.6 3.3
RHR lip T.0 46
MAP lip 6.0 33
RLM lavalier 22.0 28
MAG lavalier 9.3 6.0

The lip microphone was a Sure SMS-10, mounted
hear the corner of the talker’s lips, and the lavalier micro-
Phone was a dynamic mike hung from a standard lavalier
mount. The word error rates decreased for every speaker,
Although the decrease for RLM using a lip mike is quite
tmall, (Some of the errors in thiz corpus are "language
model” errors, in that the word strings are highly im-

robable given our particular 5000 word trigram model.
hus it is extremely difficult to demonstrate error rates
below 2 percent for this corpus and language model.) The

Uction from 22 percent error to 2 percent error for

.M’s recordings using the lavalier microphone is quite

, but in a different series of experiments using

only long- term adaptation, the error rate on this corpus
decreased to 5 percent; much of the decrease is due
.BAL normalization. Decoding times were always less

Wing the new front end than with the previous signal
Procesgr,

ot Speakers MAG and PAF are both female, the rest
m af'he speakers in the experiments reported here are
8.  No consistent difference has been noted in our

T®cognition results between male and female speakers.

e

SUMMARY

_A simple auditory model was developed and tested as
a signal processing system for the IBM speech recognizer.
It decreases the number of errors made by the system by
approximately 40 percent in controlled tests.
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Abstract

There are several ways that a computational model of auditory
processing in the cochlea can be applied as the front end of a speech
recognition system. For an initial round of experimentation, the fine
time structure in the model’s output has heen used to do spectral
sharpening, yielding a “cochleagram™ representation analogous to &
short-time spectral representation. In later experiments, fine time
structure will be exploited for a more detailed characterization of
sounds, and for sound separation.

So far, experiments have been done with only two words { “one”
and “nine”) spoken by 112 telkers, to limit the range of phonetic
variation to simple voiced sounds, while providing a good sample of
inter-speaker variation. The structure of the vector space of “au-
ditory spectra” has heen examined through vector quantization ex-
periments, which yield a measure of information content and local
dimensionality.

The inclusion of more dimensions of perceptual variation, such
as pitch and loudness, in a speech front end representation is both
an opportunity and & problem. Much larger vector quantization
codebooks and more training data may be needed to take advantage
of the extra information dimensions. A product-code approach and
an improved algorithm for finding the nearest neighbor codeword
are suggesied to belp cope with the problem and take advantage of
the opportunity.

Preliminary recognition experiments using a single codebook
per word and no time sequence information have shown a perfor-
mance of about 97% correct one/nine discrimination for talkers out-
side the training set, and 100% correct for second repetitions from
talkers in the training set. Further experiments are currently un-
derway.

1 Introduction

Our experimental cochlear model has been most recently de-
scribed in terms of its performance on simple “physiology™ experi-
ments [1]. Those experiments concentrated on the role of the AGC
stages, which serve to partially normalize the output representation
in the face of a wide dynamic range of overall amplitude and overall
spectrum variations. The dynamics of the gain control process help
to preserve perceptually relevant information about loudness and
spectrum, emphasizing short-term changes.

The cutput of the model is regarded as a sequence of vectors
in n-space, representing n-channel perceptual spectra. Silence maps
to the zero vector, and perceptually louder sounds map to points
further from zero. But detailed characterizations of this pattern
space are difficuit, due partly to its high dimensionality.

The number of important dimensions of variation due to pho-
netic and talker identity is an important issue in designing recogniz-
ers to work in this space, and is discussed in the next section. The
following section discusses a set of recognition experiments, includ-
ing comparisons with LPC. Finally, improved vector quantization
techniques to work in this pattern space are suggested in the last
seclion.

2 The Space of Cochlear Spectra

In the current version of the model, 92 bandpass channels are
used to span a range of about 23 barks (about 100 Hz to 10 kHz).
By modeling hearing, it is hoped that sounds will map into 92-space
in such a way that a simple Euclidean distance in that space will
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correlate well with perceptual distinctions. Therefore, it is expected
that a low-distortion vector quantizer desigued to minimize mean
squared Euclidean error will preserve mast of the relevant infor-
mation in a cochlear spectra. To explore this notion, codebooks of
different sizes and distortions were constructed from various traiming
corpora.

To make codebooks, a modified k-means algorithm was used.
In each pass over the training dats, new codewords were added to
the codebook whenever the distortion to a training vector exceeded
a desired distortion bound; at the end of a pass, each codeword
was moved to the average of the vectors that were closest to it.
Compared to a straight k-means with codebook size doubling, we
found convergence to about the same rms distortion for & given
codebook size, but in fewer iterations. Having maximum distortion
as an independent variable is also useful.

The resuiting data on codebook size vs. rms distortion and max
distortion for a training corpus of 112 talkers saying “one” and
“nine” are shown in Figure 1. The desired value of max distor-
tion, such that reconstructed cochleagrams have clear and continu-
ous formant and pitch tracks, is probably less than the lowest tried
so far,
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Figure 1: Codebook rms distortion (filled symbols) and maximum
distortion (empty symbols) va. codebook size.

The slope of the size vs. distortion curves (on a log-log plot)
should reveal the dimensionality of the subspace that the codewords
are packing into, Cutting the distortion by a factor of two will
require a factor of sixteen in codebook size increase il there are four
dimensions of variation to be covered.

The data show slopes corresponding to about 6 dimensions.
Since the phonetic variation in the test corpus is quite small, much
of this variation is probably due to talker differences. Since lower
pitch harmonics are resolved in the spectrum, and loudness is not
completely normalized out, these perceptually important dimensions
contribute important dimensions of variation in the data that would
not normally be seen in LPC and other common representations.

For the one/nine data, a codebook size of 1801 is barely ade-
quate for high-fidelity coding of cochleagrams of the talkers in the
training set. For the complete digit vocabulary, a codebook about
five times larger would probably perform similarly. The distortion
caused by using a codebook size of 383 is apparent in figure 2.

Based on these observations, it appears that representing a com-
plete range of phonetic variation {eight or more dimensions), with
reasonable fidelity would require a codebook size around 50,000 to
1,000,000, These sizes are far beyond normal practice in the speech
recognition field, and require new techniques if they are to be useful.

3 Recognition Experiments with Cochleagrams and
VQ Codebooks

Since training our existing recognizer [2] to use the cochlear
spectrum pattern space will take considerable time, a much simpler
test was undertaken first. Using the technique of Shore and Burton
[3], & codebook was designed for "one” and another codebook was
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Figure 2: Cochleagram and vector quantized cachleagram of two
digits by a talker outside the training set, with codebook size 383.

designed for “nine”, using a single repetition of each word from each
of the first 50 of the 112 talkers. Setting maximum distortion to 140
for both cases, the codebook for “one” reached a size of 261 and an
rms distortion of 45.2, while the codebook for “nine® reached a size
of 272 and a 5% higher rms distortion of 47.3.

Recognition proceeded by comparing quantization distortions
{rms or total squared distortion) using the two codebooks, without
compensation for the different codebook characteristics. No end-
point detection was done, so the generous amount of silence and
noise at both ends of the words was included in the distortion mea-
surements,

Testing on the second repetition of the same words from the
training talkers led to no errors (in 100 trials). This result is en-
couraging, since this recognition technique has not previously been
very successfully applied to speaker-independent or multi-speaker
problems.

Testing on the other 62 talkers showed a serious bias: there
were no misrecognitions of “one” as “nine”, but ten misrecognitions
of *nine” as “one” (5 on first repetition, 5 on second repetition,
mostly from different talkers). Overall, on this speaker independent
condition, there are 10 errors in 248 trials, or 96% correct. While
this does not approach the performance of a good speaker indepen-
dent isolated digit recognizer on the “one/nine” discrimination task,
it is quite respectable for this simple algorithm.

Using order 11 LPC as a parameterization for comparison, with
an ltakura distortion measure, we obtained at best 2 errors in 100
trials from talkers in the training set (98% correct), for various code-
baok sizes, and 14 errors in 248 trials on the other talkers (94.4%
correct). Surprisingly, even very small codebooks (2 to 16 code-
¥ords) performed well with LPC, so it was decided to go back and
try the cachleagrams with small codebooks.

With cochleagrams, it was found that for talkers in the training
Set, larger codebooks work best {sizes 32 and up gave no errors),

t Ehnt smaller codebooks do a better job of generalizing to talkers
Oulside the training set (size 32 was optimal with 7 errors in 248
227‘2% correct), while sizes 16 and 64 both were both slightly bet-

5 than. the initial large-codebook experiment, with 9 errors each.
£3e differences may not be significant.
ewefﬂr every codebook size except size 2, the cochleagrams gave
¢rrors than the LPC, usually by maore than a factor of two,

1 vq Algorithm Improvements

l"tﬂl:me of the encouraging results with small codebacks, it
3 'l to take full advantage of the information in cochlea-
b With large talker populations will require very large code-
very l;r here are (at least) two alternative approaches to making
‘Imﬁth‘e vector codebooks practical. First, better fast quantization

™2 can be used to reduce the time cost. Second, codebooks

«
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can be constructed as product codes built from a small number of
modcrate-size codebooks.

Our present quantization algorithm takes advantage of the tri-
angle inequality that applies to the Euclidean distance metric, so
that codewords too [ar from a current best guess need not be ex-
amined; this unfortunately requires a table of N? inter-codeword
distances, and so is impractical for much larger codebooks. The FN
algorithm [4] uses a tree structure with a branch-and-bound search
algorithm to take advantage of the same inequality with less stored
information. Another approach which looks promising is to store the
dua! of the multi-dimensional Voronoi diagram [5] of the code vec-
tors, so that each code vector is linked to its neighbors; in this case,
when the current best guess is better than any of the neighbors, no
further codewords need be examined. Using the last frame’s quanti-
zation index as a first guess is very effective in these algorithms. In
any case, the auxiliary data structures should be designed such that
they are easy to modify when expanding or iterating the codebook.

The product code approach [6] is an alternative way to encode
many bits of information per symbol with low distortion and small
codebooks. The code space is the direct product of smaller codes,
each of which encodes a separate part of the information in the
original vector. In the simplest case, the original vector to be en-
coded is simply split up such that some components (i.e., cochlea-
gram channels) are used as a small vector in one codebook, and the
other components are used with one or more other small codebooks.
But other vector processing operations could also be used to try to
separate the information more cleanly into feature vectors of lower
dimensionality. For example, one process could attempt to capture
pitch information, ancther could try to capture first formant infor-
mation, etc. As long as these “feature extraction™ processes don’t
lose information, the overall vector quantization distortion can be
made as low as desired (even if quantizing sub-optimally by inde-
pendently quantizing with each small codebook). If each feature
detecting process captures only one or two important dimensions of
variation, the resulting codebooks could be quite small. The struc-
turc imposed oo the code space by the product code may also be
useful in some kinds of recognition algorithms.

5 Conclusions

The cochlear model produces a spectral representation that cap-
tures important dimensions of speech signals. Preliminary experi-
ments show that cochlear spectra lead to about 50% fewer errors in
a very simple recognition technique, compared to LPC. Taking full
advantage of the extra dimensions of information in cochlear spectra
with a wide range of phonetic material and a wide range of talkers
may yet require very large vector quantization codebooks or other
techniques to extract the relevant features.
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INTRORUCTION

Speech recognition systems, however hetero-
geneous 1in their conceptions and’ schemes, share at
least one basic feature: the inclusion of a
vocoder-type front-end. While many of the early,
and some of the contemporary, systema adopted a
pragmatic design for their front-end filter bank,
thers were some efforts (e.g., Chistovich et al.,
1975; Searle et al., 1979) toward providing the
recognizer with an input stage that was modeled
after the human ear. The motivation for such a
design was the desire to optimize the recognition
process from the very first stage on. However, work
by auditory physiologists on auditory nerve
responses to apeech (Young and Sachs, 1979; Del-
gutte, 1980) signaled a welcome convergence of
interests by two groups of sacientliats on the prob-
tem of speech processing in the auditory system.
Morae recent work by several investigators, some of
which is included in the present symposium, has
been directed toward deaigning recognizer front-
ends that resembled the ear more-and-more closely,
and toward examining effects of model parameter
modifications on recognitlon performance.

Computational models of the auditory system
fall into two major classes, depending on whether
the calculations are performed in the time or in
the spectral domain. The advantage of time-domain
algorithms lies mainly in their speed, whereas
spectrally-based algorithms may more olosely
approximate the actual auwditory proeesses because
they are able to deal more directly with non-linear
filtering operations, The present model is spec-
tral in the sense that the filtering computations
are executed in the frequency domain.

DESCRIPTION OF THE MODEL

The present model has been bullt around the
physiologically-based and fine-tuned spectral model
proposed by Shannon (1979). That work stands out
{n that it computes the magnitude of peripheral
auditory activity across all frequency-apecific
channela, taking into account passive and active
cochlear filtering, compressive nonlinearity, and
suppression on both sides of a given channel. It
is, however, restricted to spectral processing.
The present modeling work uas undertaksn in an
alffort to see how time-varying signals can benefit
from spectral suppresslon, i.e., an enhancement of
the contrast between channels differing in thelr
activity level, as offered by the Shannon model.
The five stages of this model are connected in a
strict sequential order, 1.e., without feedback
loopa.

1. The Spectral Estimator Stage.
The physical contlinuum of frequaney was mapped

into 120 discrete channels between 50 and 10kHz
using the freguency-to-basilar membrane distance
transformation proposed by Greenwood {1961). The

purpose of the spectral eatimator was to provide
the inner ear simulator (that operated in the spec-
tral domain) with an estimate of the input
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high tones.

magnitude that excited each channel. Thia input
magnitide had to reflact the duration of the
assumed equivalent impulse response of the
corresponding lnner-ear filter, i.e., it had to be
gated using a window whose length was & function of
the inner-ear fIlter width. Thus, a separate mag-
nitude estimate hed to be made for the narrow
actlve- and the wider passive filters of each chan-
nel (see Stage 3). We adopted a Hamming window with
a skew that emphasized more recent events. We arbi-
trarily assigned a 10-lz maximum frequency resolu-
tion to our 50-Hz channel and calculated the window
length for each channel assuming linear impulse
response and applying the Greenwood mapping. We
also limited the minimum window length te 2 ms, in
order to account for an indelible neural refrac-
toriness., The actual estimation was represented by
Direct Fourler Transform ccefficients of the win-
dowed 4input at the [lrequency corresponding to a
glven channel.

2. The Quter- and Middle-Ear Response Simulator.

To account for ear canal resonance and middle
aar attenuation, we 1included a spectral shaping
algorithm gradually falling off below 2.5 and above
4 kHz. The attenuation (in dB)} was a linear func-
tion of basilar membrane distance.

3. IEE Inner-ggg Spectral Response Simulator,

This astage, the actual Shannon model, is
characterized by E!g concurrently working filter
banks. One of the banks consists of passive,
broadly-tuned, linear filtera having a hhigh (30-dB
SPL) threshold. Filters in the other bank are
active, sharply tuned, low-threshold rilters with a
nonlinear compressive response that makes any
activity increment beyond 40 dB SPL negligible.
The active filters ara followed by a asub-stage
representing the suppression of high tones by low

tones, The output of this sub-stage is linearly
added, channel-by-channel, to that of the passive
filter bank. The output of the mixer 13 followed
by the sub-stage of suppression of low tones by

— . ————

In sum, the output of the Iinner-ear
represents the magnitude of the activity
in the auditory nerve across tonotopically organ-
ized channela. This output compresses a 120-dB
dynamic range in the input into a 20-to-25-dB range
in the output.

simtlator

y, The Auditory Nerve Temporal Response Simulator.
Single unit astudies have demonstrated that
there 1s a sizable temporal adaptatlion effect in
the responsa of single auditory nerve fibers {(Smith
and Zwislocki, 1975). This effect is characterized
by a strong burat of activity at the onset of the
atimulus followed by a gradual decrease, and by a
moment of sudden decrease of the activity at

stimulus offset, followed by a gradual recovery.
We used Smith'as theoretical expreasion for this |
temporal process, noting that the effect 1is

independent in each channel and that the adapted
output 1is affected only by the magnitude of the

present and the immediately Esgpeding output epoch,
rather

than by the input. Thus, the eifect is not
unlike that of a high-pass filter with a floor
(1.e., the sapontaneous activity level). It was
implemented in our model as simple exponential dif-
ferentiators having different time constants for
adaptation (18 ms) and recovery (36 ms). This stage
enhances temporal contrasts in the input.

5. The Temporal Integrator Stage.

auditory psychophysical data, howeverbetdggigg
-]

the uditor system_as one with memory:
of signals a¥ th%eahold and detenttun-%f envelop®




fluctuations, for example, clearly sapeak for the
existence of a low-pass proceas, i.e., of a leaky
integrator. We implemented this stage as an
exponential integrator placed on each channel at
the output of the temporal adaptation stage. The
time constant we chose was short (1.5 ms) -- in
agreement with other workers (Penner, 1978). We
also noted that, because thls integrator operates
on. the compressed output rather than on the input,
a single, short time constant must be capable of
accounting for both temporal integration at thres-
hold and envelope discrimination at suprathreshold
javels.

EXAMPLES :

We have completed several tests with simple,
easily definable input signals, in order to obtain
an optimized set of model parameters. The output of
two 3aimple signals, a 100-dB SPL, 2-ms click and a
50-dB SPL 50-ms Gaussian white nolse burst, are
shown in Fig. 1. We have also examined the
pahavior of 2 model in reaponse to natural speech
sounds. One  example, thz  beginning of the
phonetically-balanced sentence "The goose was
prought straight from the old market™ is shown as a
gpectrogram in Fig. 2 and as a "neurogram", or
time-frequency channal model output, in Fig. 3. 1In
addition, we have also examined a large number of
pnatural CV utterances, in an attempt to search for
invariant cues (not shown here)}.

SPEECH RECOGNITION TESTS

In order to see whether the model could embody
an improved front-end to a cepstrum-based recog-
nizer, we conducted a serles of experlaents on a
natural sentence data base, Recognition performance
with the raw output of the model as input to the
recognizer was signifiecantly poorer than when the
front-end was a simple vocoder. Muech of the perfor-
mance degradation could be athrlbuted to the pres-
ence of individual low harmonies that dominated
the model output. It seems, therefore, that some
type of feature detection would be necessary before
the model could become a useful tool in automatlc
speach recognition.
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FIGURE LEGENDS

1. a: 3-D pleture of the model's response to a 2-m3
cllcik presented at 100 dB SPL. Frame size: .25 m3.
Only the first 10 ms of the responae are shown. b:
3-D picture of the model's response to a 50-ms3
burst of whita noise presented at 50 dB SPL. Frame
stza: 2 ma. Only the first 80 ms of the response
are shown.

2. Conventional spectrogram of the utterance ™The
goose wa(a)..." by a male talker.

3. Model ocutput (™neuragram") of the same utter-
ance. Diffarence between the darkest and the light-
est parts of the output 1= 13 d3. Frame size: 2
ms.
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THE AUDITORY PROCESSING OF SPEECH
SHIHAB A, SHAMMA
Electrical Engineering Dept & Systems Research Ctr
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abstract

‘The processing of speech In the mammalian audltory
periphery is discussed In terms of the spatlo-temporal
nature of the distribution of the cochlear response and the
novel encodlng schemes this permits. Algorithms to
detect specific morphologleal features of the response pat-
terns are also consldered for the extractlon of stimulus
spectral parameters.

I

The remarkable abllitles of the human audltory sys-
tem to detect, separate, and recognlze speech and environ-
mental sounds has been the subject of extenslve physlolog-
jcal and psychologlcal research for several decades. The
results of this research have strongly Influenced develop-
ments in varlous flelds ranging from auditory prostheses
to the encoding, analysis, and automatic recognltion of
speech. In recent years, improved experimental technlques
have precipltated major advances In our understanding of
sound processing In the auditory periphery. Most Impor-
tant among these 1s the Introduction of nerve-fiber popu-
lation recordings which made possible the reconstruction
of both the temporal and spatial distributlon of activity
on the auditory-nerve in response to acoustic stimull
[1, 2]. Sachs et al. utllized such data to demonstrate the
existence of a highly accurate temporal structure that Is
capable of providing a falthful and robust representation
of speech spectra over a wlde dynamlc range and under
relatively low signal-to-nolse conditions |3, 4], Thelr work
has since motlvated further research Into the varlous algo-
rithms that the central nervous system (CNS) mlght
employ to detect and extract these and other response
features, and the possible neural structures that underly
them [5, 8).

In pursult of these goals, we have constructed and
analyzed the spatlo-temporal response patterns of cat’s
auditory-nerve to syniheslzed speech scunds [4, 5]. These
patterns are formed by spatlally organizing the temporal
response waveforms (or PST histograms) of the audlitory-
nerve-ibers according to thelr characteristic frequency
(CF) [4]. The resultlng display highlights the Interplay of
temporal and spatlal cues across the filber array and sug-
gest novel ways of viewlng cochlear processing and encod-
Ing of complex sounds FT 5]. The avaliablllty of such
experlmental data, however, s at present llmited by
technical cofistraints and the masslve amount of process-
ing required to handle them. Thus, In order to analyze
new speech tokens, and to facllitate the necessary manipu-
latlon of stimulus andfor processing conditlons and
parameters, we have developed detalled blophysical and
computational models of the auditory periphery and used
them to generate spatlio-temporal response patterns to
natural and syntheslzed speech stimull. Varlous CNS
schemes for the estimatlon of st!mulus spectral parameters

are then Investigated based on these patterns.

The Cochlear Model :

Computatlonsal algorlthms for the cochlear processing
of speech are developed that are based on detalled blophy-
sical formulatlons of linear basllar membrane mechanles
and nonlinear halr cell transductlon characteristics [Slk
Basliar membrane analysls is based on detalled 3-
hydroelastlc models that are quite efliclent to compute
8, 9]. These models are used to generate the transfer
unctions at polnts along the cochiear length, which are
then employed directly In all subsequent processing of
speech sounds. The output (membrane displacement) at
each polnt Is transduced Into halr cell Intracellular poten-
tials through two stages representing the veloclty fluid-
cilla coupling and the nonlinear halr cell. The latier stage
can be approximated In most cases by a cascade of 2
compressive nonlinearity (of the form: V =
z.exp(au&/(1+exp(au)) where (z,axg are constants with
definite blophysical Interpretations) followed by a low pass
fllter (time constant=0.1 ms). The flnal outputs then
approximately represent the Instantaneous probablllty of
firilng of the auditory-nerve fiber array. Many more
detalied reflnements have often been included in this
model (e.g. synaptic adaptation mechanlsms, middle and
outer ear transfer functlons, and some form of automatlc
galn control} to reproduce the flner detalls of the
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Flg.l:‘Schemat.lc of the cochlear model stages (8].

responses, Nevertheless, the simpler model described
above captures the malor features of the experlmental
responses.

Examples of the model outputs are shown In Flgs
22,3 In response to a naturally spoken (female) /bit/ and
a synthesized vowel /fa/, respectlvely. In Flg.2a the
response s to the onset of the vowel portlon ol the
stimulus (whose spectrogram. is shown In Flg.2b{right)}).
The perlodic nature of the response Is evident at regular
intervals corresponding to the fundamental perlod of the
stimulus. Strong harmonics, located near the formants of
the vowel, dominate the response patterns over relatively
broad segments of the channel array. WIithin each seg-
ment (e.£.0.4<<CF<1.8 KHz} the travelllng waves exhlblt
two important characteristics observed earller In the
experimental data: (1) Rapld aplcal decay due to the
asymmetrical tuning of the basilar membrane amplitude.
(2) phase shifts or delays In the response waveforms near
the CF of the underlylng hatrmonle, due to the rapld accu-
mulatton of phase-lag In the travelling wave near its polnt
of resonance, The response to the plosive /t/ In /bst/ is
also shown In Fig.2a, with Its nolsy character and high
frequency content evident In the response patterns.
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The Central Processing of Auditory-Nerve Responses

is stage Involves the extractlon and utilizatlon of
the p’gi'lcept.ua{.,lly relevant cues from the response patterns
of the cochlear nerve. Conceptually, 1t Is a particularly
difficult preblem because the nerve patterns contaln a rich
variety of cues pertalning (l‘n unknown ways) to a.mulnl-
tude of perceptual tasks. Thus, In studylng a particular
encoding scheme on the auditory nerve, or in implement-
Ing algorlthms [or automatic speech recognltlon applica-
tlons, @ priert declslons have to be made as to the
appropriate response measures that need to be used and
the ways these are to be comblned. IFor Instance, In the
estimatlon of the spectral parameters of speech (e.g. for-
mants) several measures have been proposed that range
from purely spatlal, l.e. discarding the fine temporal struc-
wure of the nerve responses (e.g. using the distrlbution of
the average rale proflles across the tonotopleally organized
nerve-flber array), to purely temporal, l.e. utilizing pri-
marlly the perlodleltles in the response as measures of the
spectral content (e.g. the domlnant frequency algorithm
10}. Others In between Include the Average Locallze
Lynchmnous Rate iALSR) [3] and the Generallzed Syn-
chrony Detector [11

n aiternate approach Is Lo view the response pat-
ternsA essentlally as 2-D spatlo-temporal images with
speciflc morphologlcal features acting as spectral cues.,
One such feature, for Instance, are the edges In the
profiles ol actlvity across the spatlal axls created by one
or both of the amplitude and phase clmnges eluded to ear-
ller [5, 7). The strength and positlon of the edges along
the tonotoplc axls are related to the signal spectral param-
eters through the dependence of the above two response
characteristics on the frequency and amplitude of the
stimulus (or its resolved harmonles ln case of complex
sounds), [Edge detectlon algorithms, based on realistic
blologleal lateral inhibitory network (LIN) topologles, can
be used to extract these features and thus slgnlfy the
Spectrum of the underlylng acoustle stimulus [5]. The LIN
Possesses several desirable properties which Include: (1) A
Spatlally distributed structitre which 1s naturally sulted for
fast parallel processing implementations; (2) A robust per-
Urmance In the presence of certain severe stimulus and/or
channel distortlons. 'I'he Iatter polnt Is 1llustrated In the

outputs ol Figs.4 under three conditlons: {a)

oderate  stimulus levels where few channels are
Saturated, (b) 40 dB higher stimulus levels where most
channeis are 'saturated: Desplie channe) saturation, the
edges | the cochlear response patterns remain Intact, and
50 do the LiN outputs near I*1-F4 {These should be com-
Pared to the spectrograms of F‘lg.‘.!.bl). (¢) Fig .dc slmu-
3les the case where the channel non Inearlty has a large
Siope [a), and the response waveforms become highly
S8turated, The outputs here are derived by a spatial
St-diflerence operatlon evaluated onfy at the spatial zero
Srossings of the response pattern. The 1 and F2 are still
ext.ract.ed. though higher formants are now lost,
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USING AUDITORY MODELS FOR SPEAKER NORMALIZA-
TION IN SPEECH RECOGNITION

Anthony Bladon

University of Oxford,
Oxford OX1 2JF, U.K.

Phonetics Laboratory,
41 Wellington Square,

Auditorily-transformed versions of the
speech spectrum may well be a useful way of
reducing the apparently nonuniform physical
differences between speakers. A speaker
normalization technigque of this kind is
however Jjustified to different degrees by
different kinds of speech event. Does this
presuppose a need for higher-level (phonetic
class) information at the acoustic level in
speaker-independent ASR?

"It is obvious from our experiment that
the unqualified assumption does not hold -
auditory models used as speech recognition
front ends will not consistently improve
performance.”

Blomberg et al.'s (1984} ominous words
are ones which this symposium ought to take
seriously to heart. They conflict with our
initial theoretical expectations. This paper

will not attempt to investigate what reasons
lie behind the inconsistent results which
some authors have found. Rather, we will
focus on an aspect of the speech recognition

task where the prognosis for auditory model-
ling promises to bear some fruit, namely,
speaker differences (in speakerindependent
speech recognition}).

Speaker normalization for vowels

Normalizing the acoustic Jdifferences
found Dbetween speakers - to take the best
known example, differences of formant

frequency in male and female vowels - used to
be a formidable prospect. Fant showed how
formant frequency differences were not just
sex-specific, but also formant-specific and
vowel-specific too. Methods of normaltizing
these data based upon reconstructing vocal
tract shape fell foul of the problem that the
solution to this exercise is nonunique. But
if we apply auditory insights to the
question, and compare not measured acoustic
formants but auwditorily transformed spectra,
it can be shown that the nonlinearities which
plagued Fant's data largely disappear. We
argued {in Bladon et al., 1984) that the
application of an auditory model which
includes an auditory filter and a Bark scale,
together with a displacement notion which has
a simple physiological analogue, combine to
generate a high degree of spectral match

bhetween male and female vowels. A large
quantity of data, assembled by us and by
others across a range of dialects and

languages, has broadly supported this conten-
tion. Examples of vowels normalized in this
way can be found in the above reference, and
will be shown in the symposium.

How far is it worthwhile to extend an
auditory model of speaker normalization
beyond the vowel sounds? The theoretical
answer seems to be: in part. At the present
stage of research this answer has to be
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arrived at largely by inference from scatt-
ered pieces of the work of others, supported
by some sporadic experimental confirmation of
our own.

Voiceless vowels

Schwartz and Rine {1968) demonstrated
that listeners could confidently identify a
speaker's sex from individual steady-state
vowels which were whispered. This is a
finding of interest because it demonstrates
that the role of voice pitch in  speaker !
normalization is not a necessary one {though
this does not exclude the possibility that
pitch may have an ancillary role). As A&
result, the spectral characteristics of the
whispered vowels are firmly implicated as a
source for the listener's ability to identify
sex.

the Schwartz and Rine
whispered vowel spectra into auditory |
representations enables us toc judge thel
effect of normalizing them by our method. Tt |
turns out that this procedure neutralizes|
much of the male/female difference. |
Whispered vowels, then, should be encompassed
straightfowardly in an auditory model for
speaker-independent ASR. It is not Jjusty
voiced sounds which differ across speakers.

Transforming

Plosives
"7 %his being so, what of plosives (voiced
and voiceless)? & The burst spectrum, widely
believed to be of service as a differentiator
of place in plosives, appears not to bhe a
candidate for normalization. This statement
derives from work in progress at Amsterdam by
Weenink and remains to be fully confirmed.
Weenink is finding that, while the plasivae
burst spectrum is sufficient to identify the
plosive place in 85% of cases {thus
corroborating the position 1long held by
Stevens and others), listeners cannot!
identify the speaker's sex from the burst
spectrum. When we recall the well-known
templates for burst spectra, it is not
difficult to guess why plosive bursts
s0 1little speaker information. The ]
spectra are very variable, partly due to
phonetic context; consequently the templates
which fit each plosive are large, extensive
both in frequency and in amplitude.

Even so, there 1is some evidence that
normalization is appropriate for plosives, in
respect not of their bursts but of
transitional spectra. This evidence
from both production (0O'Kane, 1984)
perception (Rand, 1971}. Rand showed how, if
a synthetic plosive-vowel sequence,
of formant transitions was at a
position which varied with speaker type.
speaker types were “a large vocal tract® and
"a small vocal tract".} He deduced that thé
same applies to the plosive locus frequency:
in fact, unnoticed by Rand, the average [d
onsets needed to be 1.1 Bark different.
is striking, and unlikely to be coincidentall
that this difference is reminiscent of &
auditory displacement of the same magnitud
which we have been discovering in vowel
sounds.

The second piece of evidence is th
measurements by O0'Kane (1984) of
frequencies, from the Australian
plosives spoken by 5 males and 5
She reported the overall locus ranges only *



fairly gross terms: and, of course, ranges
can give a misleading picture of the typical
pehaviour. NMevertheless, once again, when
converted to a Bark scale, the female
measured plosive loci can he seen to exceed
the male values by a generally constant
amount. One Bark would be a representative
yalue. And so, while noting that plosive
eransitions have so far been only superfic-
jally investigated, it may be concluded that
Josive transitions look like conforming to
the normalizatibn pattern.

Liguids and nasals
For many other classes of speech event

there is at present no known evidence which
would indicate how far, if at all, they are
susceptible to variation with speaker-type.
and hence, how far normalization is called
for - This applies to laterals, nasals and
trills, for instance. Prima facie, since
these sounds have a prominent spectral
content, they may possibly also carry the
Bpeaker—type information in a similar way to
vowels. Alternatively, it may be that the
gpectral content in a nasal, with its large
pumper of heavily damped formants, may be too
elusive to have a clear auditory image which
could be used in a normalization role.
pPending further work, these matters have to
be left open.

Fricatives

— For fricatives, on the other hand, there
is some well-documented evidence. Initially
we will consider just the sibilant fricatives
such as [s, §J, ¢]. Schwartz (1968) published
illustrations of speaker sex difference among
voiceless English [s] and [f1. Once again,
we find that a conversion to auditory spectra
leads to a greatly improved congruence of
apectral shape.

Male and female [s] spectra were also
investigated by us in British English. From
a tightly controlled database and in an
identical linguistic context, 55 male tokens
{from five speakers) were compared with the
same number of female tokens. Auditory
spectra of these fricatives confirmed the
tendency to congruence noted in the Schwartz
data and further revealed that an especially
constant feature of [s] was the (15 phons/
Bark) low-frequency edge of the [s] peak. As
with vowels and other sounds, this edge is so
located as to suggest a constant male/female
normalizing factor in auditory space.
tiv Whether this behaviour extends to frica-
curis other than the sibilants mentioned is
ﬁbrkently-a matter of uncertainty: the basic
4 femains to be done. A fairly confident

_{:gﬁary would be as follows. It is known
H'PEake the study by Ingemann (1968) that
ﬁﬁtodu I sex is identifiable from steady-state
Bt Ctions of the glottal fricative [h],
' N accuracy comparable to that of the
. Also identifiable at better than

" Cha
gte“C: dccuracy, according to the same stuody,
‘thase VYular [y] and velar [x]. Spectra of

back fricatives show a somewhat vowel-

asuPErimposition of vocal tract cavity

_ Nces, and hence will be expected to

Vowe] g in speaker normalization very much as

lnce thO- This is especially likely of [h]

arkeq) © resonance patterns will not differ
Y

A the Othgrom those of a whispered vowel.

like

r hand the front fricatives [§, £,
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@] are not identifiable for sex. This 1is
understandable, given that the front frica-
tives with 1little or no resonance cavity
ahead of their friction source, do not have a
very distinctive spectral shape. Intensity
level is their prime cue. Speaker sex diffe-
rences do not seem to exploit this.

Conclusiocn

Extrapolating somewhat beyond the rather
superficial review above, it seems reasonable
to say that, as a useful basis for speaker-
independent ASR, an auditory model can in
general be used to normalize the running-
speech spectral shape. Fairly clear
exceptions to this are the front fricatives
{those which are more advanced than alveolar)
and the plosive bursts, whose spectra appear
not to be capable of signalling information
on speaker type.

If this is so, then in an actual speech
recognition system two empirically testable
alternatives can be explored. One is the
possibility that a decision on whether or not
to normalize the currently incoming spectrum
for speaker differences must be made,
depending on a decision about its phonetic
class. This alternative clearly implies the
intervention of some higher-level expert.
The other possibility is that no such
decision needs to be made at all: the
recognizer can safely normalize the whole
signal, because those phonetic classes of
event which do not show evidence of sex-based
physical difference are anyway spectrally
rather flat or heavily smeared.

In order to choose between these alter-
natives we propose to examine recognition
test results to see whether (or how far)
deterioration ensues, when the whole set of
phonetic events in speech (as opposed to a
partial set excluding front fricatives and
plosive bursts) is first subjected to an
auditorily-based normalization for speaker
sex.
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ABSTRACT

In order to test the performance of the
acoustic~phonetic decoding medule on the Serae-
Iroise expert system, we have lmplemented a lexical
analyzer, the function of which is te match each
word of the task vocabulary agalnst the phonetic
hypotheses lattice. A one-stage dynamlic comparison
algorithm, initlally designed for global
recognition of connected words, has been adapted.
Our knowledge-based approach makes it possible to
improve performance signiflcantly with the help of
heuristics, e.g. concerning local constraints and
the measure of similarity. Introducing
phonological, syllabic and prosodic information
into the lexlcon allows refinement of the strategy
by basing on islands of reliabllity. Such phonolo-
gical phenomena as merging, spreading, Insertion,
deletion and confusion are dealt with in a rather
Elexible way : likelihood weights, penalty factors
and thresholds of reliablility are determined
according to the wmost encountered recognition
errors. The object - and rule-based representation
gives advanced opportunities for system extension
and modification.

1. Introduction

Conclusions after ARPA SUR and subsequent
prajects have led to reconsidering approaches to
Automatic Speech Recognition {ASR). Separate
contribution of the different knowledge sources are
best modellzed using Artificial Intelligence (AIL)
knowledge represeantation tools such as Production
Systems (PS), that supply advanced features for
formalizing expertise, comparing strategies and
refining parameters and heuristics.

The KEAL system developed at CNET achieves
multispeaker analytical recognition and interpreta-
tion of isolated sentences taken from a few hundred
words'vocabulary. The SERAC system (Systdme Expert
pour la Reconnaissance ACoustico-phonEtique) has
been designed to structure the knowledge acquired
with Keal and to provide a flexible tool for
maintaining, Improving and extending it, eventually
leading to a new ASR model.

The lexical analyzer MODEM (MOdule de
DEteccion de Mots) is dedicated to both validating
the phonetic level and evaluating heuristics for
connected word verification and techniques for
representing lexical and phonological knowledge.

The Irolse system is a PS using an object-
oriented problem~driven rule-based language of the
0PS family, it counsists in three functional
components : the knowledge Base, the Inference
Engine and the Uger's Interface.

An acoustic-phonetic module : feature
extraction, sentence onset detectlon, centisecond
labelling, segmentation into pseudo-syllables,
segmentation into phones, hlerarchical consomnant
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and vowel recognition, and a prosodic module, which

datects the extrema of the pitch and vocalic
durations, and the type and main boundary of il
seatence, have now been implemented in Serac *
about 600 rules total.

2. Modem : a module for word detection

The principle of this detection is to @atch
the phonetic lattice against phonetic frames -taken
from the set of possible words at a given instant,
and finally keep the optimal sequence of words ;
our heuristic comparison approach is based on &
dynamic programming (DP) sequential algotithm and 3
measure of possible errors and similarity driven
from lexical and phonological assoclated knowledge.

A main feature of MODEM is the intervention of
phonetic, syllabic and phonological knowledge all
along the process. The phonetic lattice shows as 2
sequence of phonatic segments (or frames)
characterized with a set of weighed properties of
attributes such as phoneme type (consonant, vowel,
gemivowel), cues like mode of articulation
(fricative, plosive, nasal, 1liquid), place of
artliculation (labial, dental, velar, palatal,
pharyngal), segment duration syllable number, and
the best three phonetic hypotheses with assoclated
confidence scores. In the IROISE representation
language of structured objects, each phonetic frame
Is an instance of the frame class with fixed
attributes.

3,1. The Lexicon

Each word in the lexicoa slso refers to
centextual or phonemic Information. For
manageability's sake, the whole vocabulacy is
represented under the form of a unique list : the
Lisp basic structure is thorcughly used. The
functional notation makes access to the first
element much easier, so special information is
entered in the beginning of sublists referring to a
particular object.

Elements of a 'phonemic frame' sublist are the
possible realizations in decreasing likelihood
order, preceeded with special makrs such as :

- obligatory : states the frame {s an accen-
tuated syllable's vocalie nucleus, and thus
absolutely must be recognized within the
best three hypotheses, and may not be omit-
ted in any event ;

- optional : states the present frame can be
dropped without penalty, as it is often in
oral language 3

- pon=-optional : states the frames is to be
fully penalized whenever omitted or 111~
recognized.

The marks are very useful in determining the
type of treatment to be applied during the
similarity calculus. This highly modular represen-
tation makes automatlon easy when accessing very
large lexicons, and enables the expert to introduce
many other features of prosedic (pitch, duration),
phonological (elision, nasalization) of phonotactic
{phoneme combination rules) type.

3,2, Verification of words
3.2.1. The algoritha

It is originally a one-stage DP algorithm for
connected word recognition (CWR), where words are




considered as sequences of acoustic frames. The

search space 18 a finlte pattern of squares. The x-

axis I{s the pronounced sentence, divided in N

temporal frames {index 1), while the y-axis is

compogsed of M word templates ({ndex k), each

divided in J(k) frames (index j)}. A dissimilarity

measure d{i,j,k) 1s used and a cumulative distance

D{i,j,k) at point {1,},k) 15 to be minimized to

obtain the optimal sequence of templates (or

optimal super-template),

1. Initialize D(1,j,k)= d(1,1,k)+...+d(1,J(k) k) ;

2a.for 1:2..N do 2b-2e;

2b.for k:l..M do 2¢-2e; .

2e.D(1,1,k)= d(1,1,k)+min(D(i-1,1,k), D(1i-1,3(k"),
k') k':1..M);

2d.for j:2..J(k) do 2e;

2e.D(1,3,k)= d(1,3,k)+min(D{i-1,1,k), D(1-1,3-1,k)},
B(1, 3~1,k);

3.find k* such that D(N,j(k*),k*) be minimum, and
trace back the path leadlng to (N,J(k*), k*).

Problems of 1)} practical Implementation and
[1) adaptation to recognition from phonemes are
raised :

1) in order to reduce memory slze, we use two
column vectors Di(j,k) and Di-1{j,k) updated after
every comparison, and two backpolnter vectors
Bi(j,k) and Bi-1(j,k) that state the instant when
last template of the current supertemplate : T(1),
beglnning at frame F(1)}, terminates. The temporal
complexity {s M.N.J and the spatial complexity is
2(N+M.J) 1f J=moy(J(k))}.

i1) modifications are to be introduced at the
followiag levels :

- similarity measure (SM) between phonemes and
dealing with phonological variatlons in a balanced
way ;

- local constraints (LC) : choice of allowed
transitions, introduction of penalty factors for
phonological deformations ;

= normalizatfon for keeping the SM homogene and
optimal with the LC broadening ;

= heuristics ded{cated to pruning the search and
taking domain expertise into consideration.

3.2.2. Local constralnts

They define the transition mode between two
polnts of the search space. With Sakae and Chiba's
symmetrical LC, the path leading to (i,]1) may come
from :

(t~1,§): spreading ; {1,3-1): merging;

(i-1,3-1): normal ; (1-2,4-1): deletion;

(i-1,j-2): insertloa,

Begmentation errors and phonological phenomena
being the maln causes Eor abnormal cases. To
normalize the cumulative similarity (CS) along a
path, ve use the following method: the length of a
path always equals the sum L(i,j)=i+j of Its ending
coordinates. Penalizing abnormal transitions
induces a strategy based on islands of reliability.
Penalty factors depend on error type and template
length; deletions and insertions are much more
severely penalized as more likely to come Erom
segmentation deficlencies.

3.2.3. Similarity

Given a point (i,j), the best path leading to
it ts determined using €S at points (1',3') from
which transition is allowed, and simlflarity index
(SI) s(1,3) between templates and the lattice :
5(1,3)= 5(1",3") + (1-F) (LU, D-L{E,§%)) 8(4, )

where 8's factors are the penalty and normalization
factors. The origin is the fictive point (-1,-1,-1)
Points where a template terminates or almost
terminates need a special treatment : the best
among them are selected before being copled as
points of -1 or -2 ordinate from where they will be
ceached without introducing any discontinuity in
the DP process.

The SI is computed as the maximization of
punctual similarity on every pair (lattice phoneme,
template phoneme), the value of which is the
phonetic score multiplled with the similitude
between the two phonemes. The latter is computed
once for all using an empirical measure : the C-V
gimilitude Is generaily 0, while the V-V similitude
is function of additive formantic distance, and the
simllitude between consonants is the weigthed mean
of their hlerarchized cues similitude : voicing,
mode and place of articulatfon, with welghts of
(resp.) 3, 5 and 2, supposedly approximating the
reliability of these cues detectlon.

3.3. Implementation

The objects used are the template and frame
objects, representing {nformation assoclated to the
phonemfc segment in the lexicon or In the phonetle
lattice, and the path object, that charactarizes
the current search point : its attcributes are :
coordinates, type of transition leading to it, path
length in the supertemplate, backpointer values,
special marks, CS and SI. Loop control variables
are also represented as objects,

The strategy of detection holds three stages :
= process control problems for computing general
data {simiilitude matrices, simflarity thresholds,
penalty factors), loading flles, commanding the DP
loops, Instantiating objects, pruning the search,
displaying results and normalizing the distance :

- search for adequate transitions with anterlor
path, according to the LC and existing marks :

= path evaluation problems that compute the SI,
select the best transition and validate the pat,
with the help of heuristics For improving speed or
deleting 111 paths.

CONCLUS ION

This makes 10 problems for about 60 rules
total, calling a number of Lisp functions ; this
skeleton 1s presently belng extended to introduce
new knowledge and efficient heuristics. A very
useful development basis is supplied for evaluating
phonetic decoding and adjusting heuristics able to
improve lexical search in a general frame for ASR.
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ABSTRACT ’

We are presenting here an implementation of a
French vowel recognition program under IROISE, an
expert system for acoustic-phonetic decoding, used
in CNET. The rules for recognition are based on
polycontextual non-formantic cues ; the data are
output from 3 l4-channel vocoder. The algorithm {g
represented by a binary tree with 37 hierarchized
cues.

A rule under IROISE represents a branch of the
trea, The first one follows the branch defined only
by positive cues ; the second one puts the list of
the first rule in its contextual part by
eliminating the last cue. Tf the rule §s applied we
know that this cue 1s negative, because the
preceeding rule was not set off, and we nodify the
cue's polarity. With this methed, only the cues
tested in the recognition phase will have the value
"false"”.

Under IROISE, all cues are systematlcally
tested even If they are not all used in any
particular execution of the program. Then we call
the algarithm in which every rule represents a
branch.

We furnish the recognition results using this
program on an initial corpus of 330 words
pronounced by five male speakers and the results
ualng rules under IRQISE on digits pronounced by
other speakers.

1. PRESENTATION DE SERAC-IROISE

SERAC est le module de reconnaissance
acoustico-phon&tique ut{lisant le langage du
systéme-expert IROISE.

SERAC réBerit, en utilisant av mieux les
possibilités de formalisation des connaissances
offertes par IROISE, le module de reconnalssance
acoustico-phonétique du systdme de reconnaissance
de 1a parole KEAL, actuellement implant& en langage
C sous UTS (IBM 3083).

En outre, 11 le compldte en lui adjolgnant de
nouveaux modules de reconnalssance Ecrits par
d'autres experts.

Le module de reconnaissance phon&tique "KEAL-
SERAC" commence par lire les Echantillons spec-
traux ; les donnfes acoustiques soat fournies par
les analyses spectrales numériques effectuBes
toutes les 13,3 ms, par un vocodeur & 14 canaux ;
i1 en extrait les paramdtres acoustiques. Le
paramdtre le plus important, pour les programmes
que nous implantons, est le vecteur des &nergles,
appel® "en”, qul est constituf de la valeur de
1'&nergie dans chacun des 14 canaux du vocodeur
pour un Echant{llon temporel doan€.
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tue
Le module actuel de reconnaissance efi:“

l'stiquetase phon&tique des &chantillons, e
Segmentation en syllgbes et en noyaux vocallgues
1a reconnatasance des macro-classes... Nous noyaux
intervenons apras le module de détection des
?Ocﬂliques.

2. RECONNAISS ANCE DES VOYELLES
2.1. Le programme de reconnalagﬂﬂsﬁ_gfg-zgxsllsg

La recherche des indices a &t& mene.de deuxu
fagons : (1) par la méthode d'essai-erreur, (2) d
moyen d'une analyse factorielle des correspondan
ces. Le corpus comprenait 300 mots de forme cvev
enreglstrés deux fols par 5 lacuteurs masculins
d'une mayenne d'age de 25 ens.

La reconnaissance s'effectue selon un mode
binaire dans une arborescence ol tous les indices
sont hiérarchisés : au total, 37 indices
représentant essentiellement les traits Ouvert/
FermE, Aigu/Grave, BEmolis&/Non bémolisé, Nasal/Non
nasal, PEriphBrique/Non pEriphErique. Ils sont
fond&s sur les variations d'&nergie dans le spectre
et calcul@s soit sur la partie centrale de la
voyelle, goit sur plusieurs parties de celles-ci,
dans le cas des voyelles nasales par exemple,
caractérisfes par la prEsence de deux segments
distincts, un segment oral et un segmen nasal
localis& dans les deux derniers tiers de la
voyelle. En g&n€ral, les voyelles sont tronquies de
20 % aux bornes afin d'&viter de prendre en compte
les parties transitoires et de ne coaserver que la
partie stable de 1a voyelle.

Les indlces portent, par pure commodité,
1'&tiquette d'un trait, mais il n'existe pas de
relation biunivoque entre indices et tralts. Les
voyelles ne sont pas reconnues par traits mais par
configurations d'indices.

2.2. Détermination des indices dans SERAC

Nous avons cr&E un nouvel objet, "phone-voy”,
qui reprEsente la voyelle.

Chaque indice est un attribut de "phone-voy"
et prend la valeur "vrai”, "Faux™ ("inconnu” au
lancement du programme). L'indice est dé&tect& sur
une partie d&terminfe de la voyelle ; les limltes
temporelles sont &galement des attributs de “phone~
voy”.

On teste si 1'indice, ou plutdt son aceribuc,
est "vral" par un probl2me particulier qui porte le
nom de 1'indice test&. Nous avons regroup® dans unm
méme fichier tous les probl2mes qui testent 1a
valeur d'indices d'un mdme trait.

Cing fichiers sont cré€s pour ; (1) les
indices d'acult&, (2) les indices de b&mol isation,
(3) les indices d'ouverture, (4) les indices de
nasalité, (5) les indices p&riphé&riqueas.

Dans 1a plupart des cas les indices sont
détectés par des r2gles simples. Le langage Lisp
peut coexister avec IROISE pour les rdgles plus
complexes qul exigent en particulier des
it8rations.

2.3. Algorithme de reconnalssance des voyelles

Aprds 1'@valuation de "nl0", dernier indice
test€, 1'ensemble des attributs deg indices
positifs possddent la valeur “vral”. Les autres
sont implicitement "faux". On peut alors déclencher
1talgorithme de reconnalssance,



Chaque rdgle de celui-ci correspond 3 un des
chemins de 1l'arbre défini dans le par. 2.1. La
premidre rd3gle reprsente le chemin qui est d&ftnt
uniquement par des indices positifs : la partie
"contexte” de la rdgle est Ecrite de la manidre
suivante :

el (phone-voy ?pv (indicl vral) (indic2 vrai)...)

La deuxidhe r2gle veprend dans sa partie
“"contexte” la liste de la premi2re en Eliminant le
dernier indice de celle-ci. On sait alors, si la
régle est appliqude, que cet Indice est négatif
pulsque la régle prBc&dente n'a pas &t& dEclenche
- les régles sont incompatibles entre elles - et on
modifle la valeur de 1'indice. Par cette mEthode,
seuls les indices effect{vement test&s lors de la
reconnaissance d'une voyelle déterminée auront la
valeur "faux”, les autres resteront 3 "inconnu”.

On réitdre le processus jusqu'd ce que
l'algorithme soit tout entter &crit sous forme de
régles. On peut, de cette fagon, créer un seul
probldme qui traite l'ensemble de 1'algorithme.

2.4, Les indices fondamentaux d'ant8rioritd (acui-
t8) et d'ouverture (compacit®)

Le premier axe de 1'analyse factorielle des
correspondances reprfsente le trait Algu/Grave,
1'&tude des corrflations eatre les groupes de
voyelles et les canaux permet de diviser le spectre
en deux bandes fréquentielles : 650 & 1600 Hz, 1600
4 3400 Hz, A partir desquelles est calculé le
principal indice d'acuit® appelé AIGUl. L'indice
recherche et compare les maxima spectraux dans
chacune des bandes alnsi d&limit6es. En effet,
1'énergie caract&ristique des voyelles graves
[uy0,0] est situfe dans la bande 650-1600 Hz tandis
que celle des voyelles algu¥s est situfe au-deld de
cette bande. Il semble que 1'&nergie
caractéristique de [a] soit situfe 8 la frontidre
mals cette voyelle peut apparaltre dans 1'une ou
1'autre classe en fonction du contexte. [a] se
comporte comme les voyelles vElaires sauf au
contact des consonnes vElo-palatales [k-g] derridre
lesquelles apparalt sa variante algud. La
reconnalssance de la voyelle [a] dans la classe des
/+ouvertes, +alguds/ est accompagnfe de 1a
spécification du contexte vElo-palatal qui se
trouve vErifiSe dans 90 ¥ des cas.

Le trait d'ouverture n'est pas représenté par
le deuxi®me axe, plus complexe, mais 1'examen du
spectre des voyelles fermBes met en Svidence
l'existence d'une zone d'anti-résonance dans les
canaux 3 & 4 (650-1050 Hz) qui disparait au fur et
3 mesure que Fl s'Elive et que la voyelle devient
plus ouverte. D'oli 1'indice d'ouverture “ouvl" :

sl EXls EK3 + EK4 alors -ouvl
Ki : i2me canal. EKf : &nergle dans le i2me canal.

Les seules voyelles dont la classification
pese un probléme par cet indice sont [ ] et [u].
Pour [u], cet &chec s'explique par la présence du
F2 dans les canaux 3 et 4 qui r&duit 1'importance
relative de Fl.

Un second Indice est alors propos& pour forcer
[u] dans la classe des voyelles fermBes. Cet
indice, appelg “ouv4” permet de mettre en relief la
proéminence du Fl1 :

si (EKL - EK2) (EK3 + EK4) - EK1l alors =-ouvéd

Pour certains locuteurs, la voyelle [ ] est
produite comme une voyelle ferme, en cons&quence
8a reconnaigsance est pr&vue dans les deux classes
vocaliques, ouvertes et fermfes.
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Le taux de reconnaissance des voyelles par
1'ensemble des indices sur le corpus défini dans le
parag. 2.1 est &valuk 3 86 ¥ : 1 candidat est
présentE dans 60 % des cas, 2 candidats dans 40 %
des cas.

2.3, Reconnaigsance des macroclasses

Le module de reconnaissance des traits
vocaliques pour la reconnalssance des consonnes
occlusives (A. Bonneau 1984), vise 3 regrouper les
voyelles en quatre grandes classes vocaliques,
selon les traits "ocuvert-ferm&” et "algu-grave" :

a) Voyelles algulls : fi,e, ,y/

Voyelles graves : fu,0, , , , /

[a, , oe, ] peuvent, selon le contexte
dans lequel ile apparaissent, appartenir §
1'une ou 1l'autre classe.

b) Voyelles fermBes : /i,u,y,(e),(d),(0)/

Voyelles ouvertes : / , , ,a, ,( ),( ),(oe)
11 est difficile de dé&terminer a priorl si,
dans une syllabe donn€a, en particulier les
syllabes atones, le locuteur a prononcé& la
variante ouverte ou fermée de [e, ] ;

[o, 1 ; [é,0e], c'est pourquol ces
phonémes, mis entre parenth2ses ci-dessus,
ne sont pas pris en compte dans les % de
reconnaissance selon 1'indice d'ouverture.

3. RESULTATS ET CONCLUSIONS

SERAC-TROTSE est &ccit en Lisp dans le
dialecte COMMON LISP, sur VAX 11/780, sous VMS. Le
corpus choisl pour 1'&valuation est constitug de
139 nombres (de 0 & 999) prononcés par 6 nouveaux
locuteurs masculins. L'application des rdgles de
reconnaissance & ces nouveaux locuteurs permet de
tester dans quelle mesure les indices utilisBs sant
indépendants du locuteur :

Le pourcentage de reconnaissance pour les
voyelles, pour ce nouveau corpus s'&tablit comme
sult :

* 72 % de reconnaissance pour les nombres prononcés
en parole continue. Le fort pourcentage des
voyelles nasales { ] dans les nombres est respon-
sable de la chute du taux de reconnaissance ;
cette voyelle, en effet, est la moins bfen iden-
tifife du systime frangais. Sans la présence de
cette voyelle, le taux de reconnaissance s'éléve-
rait & 86 Z. Une ou deux r&ponses (deux dans
37 X des cas) sont donn&es pour 1'identification
de la voyelle & reconnaltre. Le pourcentage de
reconnalssance pour les traits aigu-grave et
ouvert-ferm& est de 97 %.
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I. INTRODUCTION

Le systéme présenté fait partie d’un ensemble complet
de Reconnaissance Automatique de la Parole Continue. Il
fait suite & I'étude présentée par {(Méloni 1985).

Son but est de permettre la reconnaissance de mots
A partir d'un treillis de phonémes produit par le décodage
acoustico-phonétique.

Le systéme porte sur la composante phonétique du lex-
ique ; la composante graphique nécessaire a la sortie des
résultats sera ajoutée ultéricurement sous forme d'un nou-
veau module.

Les régles de Phonologie Générative, énoncées décla-
rativement, permetient la dérivation des formes phonétiques
des mots a partir de leur forme sous-jacente construite par
combinaison d'éléments lexicaux. Parallélement, des régles
morphe-syntaxiques permettent de déduire les informations
diverses provenant du regroupement des morphémes.

Les accés aux mots représentés par ces structures sont
codés séparément. Ils sont constitués au moyen d'informa-
Lions syntaxiques et phonétiques, et des donndes fournies par
le décodage Acoustico-Phonétique.

Le codage du lexique est automatique ; toutefois, cer-
taines ambiguités doivent étre levées manuellement.

Un ensemble de prédicats permet d'extraire toutes les
informations codées : structure phonologique, morphémes,
caractéristiques syntaxiques, forme phonétique.

1. CONNAISSANCES UTILISEES

On ne peut envisager de coder explicitement chaque
mot sous sa forme phondtique pour conserver au lexique un
volume raisonnable. I} convient donc de se tourner vers un
systéme linguistique tirant partie des parentés entre mols
différents, construits a I’aide d'un radical et de préfixes et
suffixes éventuels.

Dans le cas des conjugaisons, (Bescherelle 1980) four-
nit un catalogue des particularités verbales, selon une ap-
proche descriptive. J. Pinchon (Pinchon 1981) opére quel-
ques regroupements et aboutit & un ensemble de formes un
peu pius restreint.

La Phonologie Générative (Chomsky 1973) offre un
cadre analytique dans lequel les parentés entre mots Lrou-
vent des explications par le biais de variations phonologiques.
Nous avons done choisi cette approche, pour laquelle on
dispose, pour le Francais, des travaux de (Schane 1968).
(Plénat 1981,1985) et {Dell 1973,1984). On traite également
des connaissances lexicales :

e découpage des mots en morphémes,

e groupements de morphémes possibles ou interdits,
et des connalssances grammaticales :

e catégories et attributs syntactico-sémantiques.

III. CODAGE DES REGLES

Les régles utilisent les traits articulatoires suivants :
consenantique vocaligue haut bas avant rond nasal tendu.

Chaque phonéme dérivé ou sous-jacent est décrit par
une clause associant son identificateur & son vecteur de traits,
dans 'ordre ci-dessus.

Exemple :
<aa,vocaligue.bas.tendu=> —» ;
<Aa,vocalique.bas> > ;
Aa représente |e phonéme /a/ sous-jacent lache.
phonéme /a/ tendu, sous-jacent ou derivé.
Des prédicats permettent :

e d’atteindre un trait dans la liste, pa :
cons(l,c) donne la valeur positive ou negatly
consonantique de /,

» de caraciériser des classes de phonémes (
consonne ...).

e de modifier la liste de traits selon les b
{négation, affirmation, échange ...).
Les régles sont codées a |'aide de claus i

une forme trés proche de celle proposée par les linguistcs.
La téte de clause présente ia séquence de phonemes |_nll,lil|e
et celle qui en dérive. La queue de la clause détermine —
contraintes contextuelles d'application de la régle et les liens
existant entre les deux formes.

Exemple :

nasalizalion(v.c.qv’.q) —*
voyelle-orale(v)
consonne-nasale(c)
nasaliser(v,v’)
non-vocalique(q) ;

et aa lt

r exemple trat
e du trait

voyelle-orale,
esoins des regles

es Prolog sous

IV. INTERPRETATION DES REGLES

Les régles que nous utilisons sont {partiellernent) or-
données. Des méta-régles déclaratives décrivent cet ordre.

Chaque régle, a son tour, est appliquée de toutes les
maniéres possibles sur la chaine a transformer. La slratégie
de synthése force I'application d'une regle des ['instant ou
son environnement est satisfait. puisque ceci correspond a la
possibilité d’un phénoméne phonologique.

Par contre, en analyse, il ne convient pas d'appliquer
systématliquement toutes les regles possibles. Fn effet, cer-
tains phonémes sont & la fois sous-jacents et dérivis @ ks
peuvent figurer tels quels dans la forme phonologique ou bien
atre obtenus par dérivation. 1l existe donc diverses forines
sous-jacentes conduisant & la méme forme phonétique. Les
connaissances phonologiques ne peuvent reésoudre cette am-
biguité. qui est levée par consultation du lexique.

Le svstéme doit étre capable de reconnalitre une phrase,
méme prononcde en violation de certains phénomenes comme
par exemple les liaisons. Les régles qui décrivent ces
phénoménes pourront étre facultatives. On admettra ainst
des formes phonétiques fausses sur le plan théorique. mius
d'emploi assez fréquent.

V. CODAGE DU LEXIQUE

V. 1- Représentation des Morphémes

Les éléments lexicaux sont des morphémes. Ils sont
représentés par des clauses indiquant la nature du morphéme
(prefixe, radical, marques de genre et de nombre, ...) et des
données dépendant de cette information.

e L'identificateur du morphéme est construit avec les
phonémes qui le constituent,

¢ les suffixes portent une information indiquant la caté-
gorie syntaxique qu'ils produisent,

e les radicaux décrivent I'ensemble des mots construits
autour d’eux, grice & un terme qui indique les préfixes
et suffixes possibles. Ce terme est constitué de dou-
blets <préfixesuffixe>, des opérateurs et et ou et de
la fonction event {éventuellement),

e tous les morphémes peuvent comporier des données
particuliéres sur i'emploi des régles.



Exemple :

ddOoll{ radical,ou{ < vide,ou(vide, et ( Qorr,event( Oozz) }) >,
< Aann,et( Qorr,iirr) >))) = ;

Oorr(suffize,nom) = ;

Oozz(suffize,adjectif} = ;

Aann(prefize,appris) —» ;

tirr{suffize, < verbe(3) ,appris>) = ;

V. 2- Codage des acces

Le radical permet d’accéder & tous les morphémes
constituant les mots qui lui correspondent. Par contre, les
préfixes et suffixes n'offrent pas cette possibilité, le nombre
de radicaux associés & chacun étant trop grand,

Pour la décomposition d'un mot, il est préférable
d'avoir accés & chacun de ses morphémes pour éviter de
rechercher le radical n'importe oti. L’analyse se fait de
gauche a droite par identification de préfixes, puis du radical
et enfin de suffixes. Cette recherche est bien entendu non
déterministe,

Le phonéme le plus & gauche dans un morphéme donne
un acceés naturel pour une analyse de gauche a droite.

Exemple :

acces-morpheme(Oo, Oorr,Co.rr.nil) =
acces-morpheme(dd,ddOoll,dd. Co.ll.nil) — ;
acces-morpheme(Aa, Aarn, Aa.nnnil) — ;
acces-morpheme(iz,arrgirr.al) —
acces-morpheme(Oo,Q0zz2,00.zz.ns) — ;

VL. TRANSFORMATION DES REGLES

Les résultats présentés par (Gispert 1986) montrent |la
nécessité de transformer les régles.

L'utilisation d'une régle choisie sur un contexte totale-
ment indéterminé, produit les formes les plus générales trans-
formées par cette régle. En appliquant a ces formes toutes
les régles possibles de fagon non déterministe, jusqu’a obtenir
d’un coté une forme phonologique et de ['autre une forme
phonétique. on définit Lous les usages qu'il est possible de
faire de cette régle. A chaque solution, on [ait correspondre
une macro-régle qui représente 'enchainement des régles qui
'ont produite.

L'usage de ces macro-régles est possible grice i des
acceés définis sur les phonémes gauches des deux formes con-
cerndes. L'analyse d'un mot se fait maintenant ainsi :

e accés a4 une macro-régle par le premier phonéme,

¢ unification de la forme phonétique donnée par la régle
avec le mot & analyser,

® accés a une autre macro-régle par le premier des
phonémes restant a analyser, etc.

Avec ces méta-régles, les temps de calcul sur VAX 750
sont de 'ordre de la seconde,

Le remplacement des régles phonologiques par des
macro-régles revient a déduire un catalogue des différents
cas particuliers. Cependant, ce catalogue est obtenu au-
tomatiquement & partir des connaissances que les linguistes
souhaitent manipuler. Il ressort donc que ce systéme peut
convenir & la fois 4 la mise au point d'un jeu de régles et &
son exploitation en situation de reconnaissance. Ceci justifie
le détour par les régles de phonologie.

VIL. CONSTRUCTION AUTOMATIQUE DU LEXIQUE

Un mot nouveau est proposé au systéme sous sa
forme phonétique, avec ses attributs syntaxiques (catégorie,
type d’emploi...). Le systéme en fait d'abord 'analyse
phonologique, qui propese une forme sous-jacente dont il
Pourrait dériver.
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{.’analyse en morphémes de cette forme ne peut étre
envisagde de toutes les maniéres possibles sans référence &
des morphémes connus. On imposera donc que les préfixes,
suffixes et désinences soient tous répertoriés & priori dans le
lexique. Seul le radical pourra donc étre inconna.

Ainsi ne peuvent subsister que certaines ambiguités
d'analyse résultant de la confusion d'une partie du radical
avec un préfixe ou un suffixe existant. Le choix de I'une ou
'autre forme est déterminé par d’autres mots de la méme
famille, qui possédent le méme radical. Ces ambiguités sont
levées par {'utilisateur qui doit fournir au systéme un mot de
méme famille.

VIII. CONCLUSION

Cette étude met en évidence certains aspects de "ap-
proche choisie par rapport au traitement automatique du
probléme :

e l'interprétation des connaissances proposées est délica-
te, certains aspects n’étant pas explicités,

e ii est difficile de mélanger des régles provenant d’au-
teurs différents, celles-ci utilisant par exemple des jeux
de traits différents,

¢ le systéme a permis de valider 'hypothése de faisabilité
sous Prolog (moyennant la compilation des régles),

e il constitue un outil de test pour de nouvelles théories
phonologiques que l'on pourrait appliquer de la méme
maniére.

¢ ] est utilisable en reconnaissance
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[ - INTRODUCTION

Le systéme que nous présentons constitue une phase
d’acquisition automatique de connaissances symboliques en
vue du décodage acoustico-phonétique de la parole. A par-
tir d'un ensemble d'exemples constitués par un codi;ge de
portions de signal issues des réalisations de phrases types.
'apprentissage a pour tiche de fournir une caractérisation
du concept induit par le choix de ces exemples.

Les régles de stratégie, de réécriture et de génédralisa-
tion sont définies en PROLOG Colmerauer 83, de méme que
celles permettant de décrire les objets propres 4 I'application
ou les contrainies de généralisation.

Les régies produites par la méthode comportent une
information contextuélle et sont valudes en fonction du
nombre d'exemples qu'elles vérifient et de la préeision de
détermination des objets qu’elles utilisent |Michalski 80a,.

[l- CODAGE DU SIGNAL

Notre systéme opérant un apprentissage par acquisi-
tion de concept (événement acoustico-phonétique, phonéme,
trait acoustique, etc.}), les exemples sont constitués d'une
représentation symbolique d’une portion de signal. Celle-
ci est obtenue grice 3 un ensemble de prédicats évaluables
permettant, pour chacun des paramétres du signal, de
déterminer maxima, minima, moyennes, pentes afin de
modéliser les évolutions temporelles sous la forme de collines,
vallées el portions monotones reliées entre elles par des re-
lations situationnelles (coincidence, succession, chevauche-
ment, etc.) [Meloni 86/

A l'issue de ce traitement, nous disposons done d'une
part, de formes élémentaires issues de l'analyse du signal,
représentant I'évolution dans le temps des divers paramétres,
et d’autre part, de la chaine phonémique associée. A partir
de ces données, le module d’apprentissage détermine les con-
figurations des diverses formes caractéristiques du phonéme,
de la classe de phonéme ou du trait acoustique que ['on désire
étudier.

Il - PRESENTATION DE LA METHODE

L’apprentissage inductil que nous réalisons sur les
données définies précédemment s’effectue sur des exemples
positifs. Si nous avons choisi dans un premier temps de
n'opérer que sur de tels exemples, c'est parce que nous
doutions de la pertinence et de la validité de contre-exemples
dans le domaine étudié. Toutefois, on note des ambiguités
sur les régles produites caractérisant des classes proches.
Afin de les réduire, nous utiliserons pour préciser une classe
donnde, des contre-exemples constitués de représentants des
classes concurrentes,

II1. 1 - Structures des Exemples

Congu dans l'optique d’étre indépendant de [I'utili-
sation qui en sera faite, le systdme admet des exempler
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Toutefois, dans
& prévue el ils
ROLOG. Plus
liste de n-
de relations

dont la syntaxe est peu contraignante.
un but d'efficacité, aucune interface n'a ét
doivent donc avoir une structure de termes P
précisément, chacun d’eux est constitué d'une
uplets décrivant une conjonction de propriétés et
s'appliquant sur des objets. 1
Les propriétés sont des doublets formés d'une part d,un
prédicat générique et d'une spécification, d'autre part.d 2
objet identifié¢ par un terme. Les relations sont des triplets
dont le premier élément est le symbole relationnel, le second
un objet et le troisidme une liste (de longueur quelconque)
d’objets en relation avec le précédent.

Ezemple :
<phoneme(if) ,61>.< conterte-gauche(tt) ,56>.
<contezte-droit(tt) , 76> .< colline-rO(niveaul) 62>.
< coincide, 61,62> ...

Il . 2 - Organisation du Systéme

L’ensemble des régles constituant le systéme se sépare
en deux parties totalement distinctes :

e une partie constituant le moteur d'induction pro-
prement dit et dont les régles de production ou de
stratégie présupposent uniquement les exemples mis
sous la forme décrite précédemment ;

» une pattie contenant |z base de connaissance propre au
domaine étudié (BCD) constituant un module facile-
ment modifiable ou méme interchangeable et qui per-
met de fournir des informations qui seront utilisées par
le systéme (description arborescente des propriétés
nécessaire a la généralisation par hiérarchie, modeéle
imposé i la forme généralisée, propriétés des relations,
etc,),

EHI . 3 - Principe de Fonctionnement du Systéme

Le principe de fonctionnement s'inspire de la méthode
proposée par R. 5. Michalski Michalski 80b|. La carac-
térisation d’un concept a partir des exemnples s’opére pas-i-
pas. A chaque étape, disposant d’une forme généralisée FG
(issue de I'étape précédente) constituée d'une disjonction de
régles, un nouvel exemple est proposé.

Dans un premier temps, le systéme s'assure que celui-
ci n'est pas déja inclus dans une des régles de FG. Ceci se
fait trés simplement sous PROLOG en transformant chaque
rerme de I'exemple en une clause unaire el en démontrant
FG sur I'ensemble ainsi obtenu. Si I'exemple est vérifié, il
est ignoré. Dans le cas contraire, le systéme va I'introduire
dans chaque élément de la disjonction constituée par FG. En
cas d'échec sur l'un d’entre eux, celui-ci demeure inchangé
dans la nouvelle forme généralisée. En cas d'échec total,
I'exemple est signalé a I'utilisateur.

Nous décrivons ci-dessous les étapes successives de I'intro-
duction de 'exemple dans FG.

1) On procéde tout d’abord & une factorisation de
’exemple en regroupant les arguments d'une propriété par
conjonction interne :

PfA[AP/B] » PlAAB]

2) On considére ensuite |a disjonction de I'exemple
factorisé avec chaque régle de FG transformée de la méme
maniére. En utilisant la distribuuvité de A par rapport &



v et la disjonction interne sur les arguments, on dégage les
propriétés communes.

En supposant, par exemple que la régle considérée de
FG est de la forme : P/ A / A R et ’'exemple de la forme :
P{ B | A E, on aura la transformation suivante :

{PIA/AR}YV{PIB]AE} -

g PfAVB]A{RVE}

A noter que A et/ou B peuvent étre des conjonctions intro-
duites par la factorisation préliminaire.

3) Des disjonctions d’arguments ainsi obtenues, on
déduit des couples (formés d'un objet dé FG et d’un objet
de ['exemple considéré) qui sont ensuite valués en fonction
du nombre de propriétés puis de relations vérifides. Cette
valuation correspond a4 un degré de pertinence du couple
considéré, nécessaire lorsque 'on ne dispose que d’exernples
positifs. Seuls ceux dont la valuation est supérieure i une
valeur fixée par ['utilisateur dans la BCD seront retenus.

4) Les couples restants peuvent &tre regroupés en
classes d’équivalence, deux éléments d'une méme classe vé-
rifiant des propriétés et des relations déductibles les unes
des autres ou compatibles, voire identiques. Pour cela, le
systéme utilise les connaissances de la BCD indiquant les pro-
priétés des relations (symétrie, transitivité, inclusion, etc.).

Ezemple :
St le couple <A,B> verifie PIPATA QB A B(AB)
Sile couple <C,D> vérifie P/ C /A Q D/ A R(D,CY
SiP= P
Si R est symétrique

. alors, seul < C,D> sera retenu
puisque P'est plus genérale que P.

5} Il peut étre nécessaire selon I'application réalisée
d'imposer des hypothéses sur le contenu de la forme généra-
lisée. Ce modéle minimum sera déerit dans la BCD. Dans le
cas ol ce dernier est non vide, et aprés regrouperment des cou-
ples liés par une relation, seuls ceux verifiant les propriétés
et 'ou les relations contenues dans le modéle sont conservés.

6) A l'issue de cette sdrie de filtres sur les couples,
une forme généralisée est produite pour chaque regroupe-
ment obtenu. Elle est déterminée par la conjonction des
propriétés et relations vérifiées par chacun des couples con-
tenu dans le groupe.

A ce stade, chaque couple étant remplacé par une va-
riable, si les propriétés de méme prédicat générique ont une
méme spécification pour chaque élément du couple, le terme
correspondant de la forme généralisée aura une structure
identique. Dans le cas ol les spécifications différent, c'est
leur disjonction qui spécifiera la propriété apparaissant dans
la forme généralisée.

Ainsi, aucune information n'est perdue dans la géné-
ralisation, méme si les propriétés différent par leur spécifica-
tion, chose que ne permettent pas certaines autres méthodes
[Hayes-Roth 78, Guizol 851,

7) La généralisation par hiérarchie s'effectue en fin de traite-
ment. On dispose pour cela dans la BCD d'autant de
descriptions arborescentes des propriétés que de prédicats
génériques, la spécificité des nceuds augmentant avec la
profondeur. Les feuilles constitucnt en fait l’ensemble des
valeurs possibles de la spécification d’une propriété dans les
exemples de départ.
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Par exemple, dans notre application, [’arbre décrivant
les propriétés "phoneme®, "contexte-gauche" ou "conlexte-
drotl", est structuré selon la décomposition en traits acous-
tiques de Jakobson.

Cette généralisation va intervenir sur les propriétés
dont [a spécification est une disjonction. Aprés recherche du
nceud de plus bas niveau, dont dépendent tous les éléments
de la disjonction, elle s’opére de la fagon suivante :

- 8i ce noeud est la racine :

o si tous les identificateurs de feuilles sont présents dans
la disjonction, la propriété, devenue non significative,
est alors supprimé.

s dans le cas contraire la propriété demeure inchangée.

- 5i ce nceud se situe en dessous de la racine, la disjonction
est remplacée par |'identificateur affecté i ce nceud.

1V - CONCLUSION

Le systéme d'apprentissage que nous avons présenté
constitue un outil trés utile pour caractériser des concepts
de fagon automatique, En particulier, dans 'application que
nous en faisons, il nous permet d’obtenir des régles décrivant
des réalisations d'unités acoustiques ou phonétiques propres
a un locuteur, nous dispensant ainsi de la laborieuse mise au
point de régles ad-hoe.

Les temps de calcul sont assez conséquents, mais ce
traitement devant étre effectué une seule fois par locuteur,
nous jugeons que cela ne constitue pas un réel probléme et
compense de toute maniere le temps passé i déterminer les
regles "a ia main™. [Yautre part, le caractére systématique
de la production des regles constitue un net progres.
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[- INTRODUCTION

Les travaux que nous avons accomplis dans le cadre
de la reconnaissance de la parole (Méloni 1982, 1984, 1985)
séparajent assez nettement les traitements numeériques, exé-
cutés dans un langage algorithmique classique, fes traite-
ments de données symboliques effectudés en PROLOG. Cette
dichotomie artificielle interdisait l'interaction et 1'optimi-
sation contextuelles des deux processus. Afin de permet-
tre une coopération simple entre toutes les sources de con-
naissances, nous proposons, sous la forme d'un ensemble
de prédicats du langage PROLOG II (Colmérauer 1984),
un environnement souple et efficace pour i’acquisition, la
manipulation, I'évaluation, la représentation et le traite-
ment d’informations acoustiques. phonétiques et linguis-
tiques. Les outils développés permettent, de maniére in-
teractive, de produire diverses paramétrisations du signal,
de décrire et reconnaitre des formes simples, de définir et
identifier des événements, des propriétés, des indices et des
traits acoustico-phonétiques, de coder ces informations et les
stratégies qui les utilisent et de structurer I'ensemble des
résultats produits sous la forme d’un treillis d’unités valudes,
Nous illustrons les possibilités nouvelles de cet environ-
nement en présentant quelques particularités d’un systéme
de décodage acoustico-phonétique réalisé entiérement sous

PROLOCII.
I1- PARAMETRISATION DU SIGNAL

Le but visé & ce stade du traitement est de carac-
tériser de maniére précise et peu coiiteuse une portion de
signal au moyen d'une suite de vecteurs de paraméires. Les
limites de la zone codée, la nature des atiributs retenus ainsi
que leurs conditions d'évaluation sont détermindes en exa-
minant des connaissances de niveau acoustique, phonétique
ou phonologique.

T -1 - Prédicats évaluables pour la paramétrisation

Nous disposons de 2 prédicats évaluables qui ef-
fectuent le calcul des paramétres et leur chargement dans
une meémoire accessible & d'autres fonctions réalisant des
opérations numeériques complexes. Chaque vecieur, produit
a intervalles réguliers de 10 ms, est constitué d’une ving-
taine d’attributs temporels et spectraux (répartition spec-
trale de I'énergie, densité des passages par zéro, position,
amplitude, émergence et largeur des pics. etc.). Les spectres
lissés sont obtenus & partir des coefficients cepstraux ou de
LPC dont un ensemble de variables definit les conditions de
calcul (portion de signal traitée, méthode utilisée, nombre
de coefficients, préemphase, rayon, ete.}.

[ -2 - Utilisations des predicats de paramétrisation

Les prédicats de paramétrisation du signal ont été
employés, dans la phase d'acquisition des connaissances
acoustiques, pour évaluer les conditions optimales du codage
des sons correspondant aux diverses phases de phonémes
segmentés semi-automatiquement dans un ensemble de 130
phrases prononcées par 2 focuteurs.

La stratégie du systéme de décodage conduit & une
paramétrisation globale d’un énoncé au moyen des 14 pre-
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miers coefficients de LPC, mais ces attributs sont localement
recalculés lorsque certaines régles de niveau quelconque exi-
gent d’autres conditions d'évaluation. C'est le cas notam-
ment pour I'identification des traits des voyelles nasales, le
traitement des explosions d’occlusives ou de portions sourdes
du signal.

III - RECONNAISSANCE DES FORMES

Les outils proposés dans ce cadre ont pour objectil la
modélisation et la symbolisation des évolutions temporelles
de certains groupes de paramétres.

HI -1 - Prédicats évaluables de reconnaissance de formes

Sur un intervalle de temps, ils définissent des fonc-
tions simples d’'un paramétre telles que la mesure de ses ex-
trema, le calcul de sa moyenne, la caractérisation de son
instabilité. 1ls déterminent également des fonctions com-
plexes d'un ensemble d'attributs comme la recherche de for-
mants, la valuation de la continuité ou de la monotonie d'un
phénoméne. Enfin, ils désignent et identifient des schémas
de formes parmi lesquels les modéles de collines ou de vallées
sont les plus utilisés. Des variables permettent de préciser
les contours d’une forme ; ainsi, la définition d’un type de
colline, pour un paramétre quelconque, sera donnée par sa
largeur et son minimale, son émergence limite & gauche et &
droite, le seuil maximum de déviation acceptable ainsi que
le seuil de bruit au dessous duquel le parameétre n'est pas
significatif.

II - 2 - Utjlisations des prédicats de R.F.

A partir de schémas de formes simples, appliqués
pour l'ensemble des paramétres sur les phrases de référence,
nous avons sélectionné quelques dizaines de formes repré-
sentatives de portions de sons déterminées. Ces éléments
(collines, vallées, zones monotones ou stables, etc.} concer-
nent, souvent de plusieurs maniéres. la plupart des attributs
temporellement continus.

Dans le systéme de décodage, les formes retenues
définissent des événements acoustiques et phonétiques et
constituent des repéres pour guider le processus de recon-
naissance vers les phénomeénes les plus saillants.

[V - NIVEAUX SYMBOLIQUES DU SYSTEME

Les connaissances acoustico-phonétigues formelles
d’'un méme type sont regroupées en niveaux pour leur
présentation. mais chaque régle peut étre sollicitée indépen-
damment de sa classe,

[V - | - Prédicats prédéfinis de {'environnement

Ces outils contribuent & rendre plus naturelle 'ex-
pression de la connaissance et définissent pour |’essentiel les
fonctions suivantes :

- relations tempotrelles entre des unités du treillis de
résultats (coincidence, intersection, succession, union, adja-
cence, etc.),

- démonstrations particuliéres d’une liste de prédicats
pour la gestion du contréle et la visualisation des par-
cours (effacement déterministe ou complet, vérification de
I'existence d’une ou de plusieurs solutions, saturation des
effacements, impression de traces, etc.),

- opérations logiques sur des listes de prédicats (con-
jonction, disjonction, négation, implication, ete.),

- opérations arithmétiques diverses acceptant des
fonctions en paramétres,

- manipulations complexes sur les arbres.



IV - 2 - Evénements acoustiques et phonétiques

Les événements acoustiques sont définis par re-
groupement de formes au moyen des prédicats qui décrivent
des relations temporelles entre les éléments de base. Les
unités engendrées ne recoivent pas d’interprétation phonéti-
que ; elles mettent en évidence la conjonction de propridtés
acoustiques du signal et caractérisent généralernent des seg-
ments infra-phonémiques.

Les événements phonétiques, identifiés & partir des
événements acoustiques, des formes et des relations, cons-
tituent des unités que 'on peut associer directernent i des
phases spécifiques de phonémes et de transitions (constric-
tion, occlusion, explosion, etc.) ou & des regroupements de
segments acoustiquement proches. Des régles contextuelles
réunissent ensuite ces éléments pour désigner les limites des
phonémes ou décomposent certains d'entre eux a partir de
critéres plus fins pour séparer certaines voyelles des con-
sonnes vocaliques qui les entourent.

Les quelques dizaines de clauses qui définissent ces
connaissances opérent dans des contextes souvent trés dif-
férents suivant qu'il s’agisse d’événements "évidents" ou de
segments tributaires de l'identification préalable de I'envi-
ronnement. Ces régles sont indépendantes du locuteur, elles
opérent une partition peu ambigué d’un énoncé en macro-
classes pseudo-phonétiques. L’exemple ci-dessous décrit et
évalue un type particulier d’événement vocalique :

evenement-voc(<vac(3) ,z>) ->
Jorme(<colline-er0,z>)
inferieur(5 longueur(z))
voise(z)
ou (ecorneidence-sur(z,collinel-ebf) ,
eoincidence-sur{z,collinef-apl) ) ;

IV - 3 - Traits pseudo-phonétiques

Chaque événement pseudo-phonétique est ¢caractérisé
par un faisceau de traits hiérarchisés dont chacun est défini
par un ensemble de clauses. Les régles qui représentent
ces connaissances utilisent de nombreuses informations con-
textuelles sur la nature, les paramétres, les propriétés. les
indices ou les traits des sons adjacents. Cette étape de la re-
connaissance fonctionne comme un filtre phonétique limitant
le nombre des phonémes candidats. Le choix des solutions
les plus vraisemblables résulte de I'évaluation d’un score a
partir de paramétres sélectionnés et ajustés en fonction de
caractéristiques des segments contigus.

L’acquisition et [’évaluation de ces régles sont ef-
fectuées de maniére interactive sur les phrases de référence.
Une étude statistique des parameétres ou de certaines fonc-
tions de plusieurs d’entre eux permet de désigner les attributs
les plus discriminants pour la détermination d'un trait d’un
phonéme dans un environnement précis. Les régles qui en
résultent sont immédiatement testées sur {'ensemble des si-
tuations ol elles sont susceptibles de s’appliquer. La clause
suivante décrit et évalue un indice du trait grave pour les
occlusives sourdes :

acutte-occ-sourde(z,grave(2)) ->

inferieur(cgh(z),8200)

inferieur{afmedian{z),ebf(2)}

inferieur{afhaut (2) ,ebf(2))

si-alors(inferieur (moins(fois(2,ebf(2)),10),

plus(efmedian(z) ,afhaut(2))),

tnferieur(afhaut(z) ,afmedian(z)))

st-alors(inferieur(800,fbas(z)),
inferieur(afbas(z) ,plus(6,ebf(2)})) ;

27

V - TREILLIS DES RESULTATS

Certains résultats, considérés comme définitivemnent
acquis au cours du décodage d'un énoncé. sont conservés
dans un treillis constitué de clauses PROLOG. Cette struc-
ture est rendue souple et efficace au moyen d'un ensemble
de prédicats qui permet de réaliser des opérations telles que
I’ajout et la suppression d'unités en un point quelconque, des
parcours multiples, le repérage des zones libres. des accés di-
versifiés & une unité {par la position de ses bornes, par son
Lype ou ses caractéristiques, ete.}, la récupération des argu-
ments et des limites d’un élément. etc.

Dans la phase de décodage acoustico-phonctique, la
stratégie conduit a executer non séquentiellement les éLapes
suivantes :

- calcul des paramétres sur I'ensemble de 'énoncé,

- reconnaissances des [ormes constituant les noyaux
néeessaires i la délinition d'événements sars,

- identification ot mémorisation dans le teeillis des
événements acoustiques évidents,

- recherche dans les zones libres des événements se-
condaires et transitoires,

- regronpement des segments étiquetés pour produire
et ajouter des événements consonantiques,

- affinement de la segmentation des noyaux vo-
caliques pour déterminer, quelquelois de maniére ambigué,
des événements vocaliques qui vont enrichir le treillis,

- identification des traits pseudo-phonetiques puis
ajout des phonémes les plus vraisemblables aprés filtrage et
calcul du score,

- interprétation des zones non reconnues au moyen
de 'ensemble des unités du treillis.

VI - CONCLUSION

La briéveté de I'exposé ne donne qu’une image im-
parfaite de la puissance polentielle de I'environnement pro-
posé. Son utilisation pour les tiches d’apprentissage et
d’acquisition des connaissances acoustico-phonétiques nous
a permis de constituer trés rapidement un important en-
semble de régles dont certaines demeurent perfectibles. Le
traitement de ces connaissances fournit des résultats bien
superieurs par certains aspects & ceux que nous obtenions
au moyen de techniques classiques. La durée du processus
de décodage demeure tout a fait raisonnable sur un mini-
calculateur, et nous pouvons envisager de réaliser sous PRO-
LOG un systéme complet de reconnaissance automatique de
la parole.
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The wultimate goal of automatic speech
recognition {ASR) is obviously to replicate the human
capahility of speech processing by machine. Research
of ASR will thus profit very much from investigations
into the human processes of speech
perception/comprehension. Few studies, howevér, seem
to have been made along this line. The present paper
summarizes a series of psycholinguistic experiments
conducted to elucidate certain aspects of human
speech perception, especially in relation to the
units of processing. On the bases of these
experiments, we propose a new system for continuous
specch recognition utilizing multiple units,

AN EXPERIMENT ON HUMAN SPEECH PERCEPTION

Objective and Method

While it is desirable to design a psychological
experiment that would directly disclose the size of
the unit of human speech perception, the difficulty
of the problem led us to adopt an indirect approach.
We first designed an experiment which would show that
certain segments are not processed as independent
perceptual unit in human speech recognition., In the
following experiment, we investigated perception of
connected speech in the presence of deleted syllables
to find out whether such deletions are always noticed
by the listener[1,2]}. If they are not noticed by the
subject, one would be able to infer that the subject
is not treating the deleted syllables as independent
perceptual units, but is recognizing the input speech
as a sequence of larger units, The fact that the
deletion of a certain syllable is not noticed would
indicate that it does not impair perception of a
larger unit containing the deleted syllable.

The original speech material was one minute of
speech recorded by a male speaker reading a Japanese
text at a normal speech rate of approximately 7
morae/sec, The speech signal was low-pass filtered
at 4.8 kHz, sampled at 10 kHz with 12 bit accuracy
for processing by a digital computer. A total of
25 CV syllables was deleted on the basis of visual
inspection of the speech waveform on an X-Y plotter,
In order to avoid artifacts, only CV syllables, each
starting with an unvoiced consonant and being
followed by an unvoiced stop consonant, were selected
for deletion, Figure 1 illustrates an example of
syllable deletion. In order to examine the effect
of context on the noticeability of the deletion, the
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Fig. 1. An example of syllable deletion. The
syllable [se] of the word "on'setsu"
(meaning 'syllable') is deleted from the
original signal.
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following four types of test stimuli were prepared
after deletion of the syllables. .

(1) Segmented into lexical words and randoml@ed-

(2) Segmented into prosodic words and randomized.

(3) Segmented at every pause and randomized.

(4) Without segmentation and randomization.

These stimuli were presented to each subject through
a binaural headphone in four test sessions.

The subjects were three male adults with ncrmal
hearing. The subject's task was to count the total
number of deleted syllables he could notice under
each of the four test conditions., Each subject sat
for the four test sessions at least five times.

Results and Interpretation

The results of the experiment is shown in Table 1
and the averaged results of the three subjects are
shown in Fig., 2. The averaged probability of noticing
the deleted syllables is approximately 707 under test
condition (1), i.,e., when the speech signal is
segmented into lexical words and randomized, it drops
only slightly under condition (2), but drops rather
drastically below 40% under conditions {3) and (4),
i.e., when the speech signal is either segmented at
every pesuse or not segmented at all, The difference
of results for condition (3) and for condition (4) is
quite small,

Table 1, Probability(Z) of detection of syllable
deletion of each subject.

SUBJECT  LEXICAL PROSODIC  CLAUSE  SENTENCE
WORD WORD
A 77.3 77.3 40.8 40.8
B 69.3 54.7 34.4 32.8
c 69.3 64.0 40.8 37.6
AVERAGE  72.0  65.3 38.7 37.1
%
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Fig. 2. Results of the perceptual experiment.
Relation between size of given context and
probability of detection of sylliable
deletion. Each circle expresses mean
value of three subjects.

These results indicate that human listeners pay
more attention te syllabic units in a word context,
but pay much less attention when the context is as
large as a clause or a sentence. In other words, the
unit of speech perception is more likely to be
syllable-sized when the available context is of the
size of a word, but the unit is more likely to be
word-sized when the context is as large as a clause
or a sentence. Although further experimental studies
are necessary, the result of the present experiment
suggests that the unit of human speech perception is
not unique, but is rather multiple.



FURTHER EXPERIMENTS

Although the above-mentioned experiment revealed
the multiplicity of perceptual units, we still need
to know the actual size of the units as well as the
exact conditions at which one type of units is
predominantly used. In this section, we describe
some of further experiments being carried out or
planned to investigate more deeply into the human
processes of speech perception.

Size of Perceptual Units

Granting that the unit in perception of connected
speech is larger than a syllable, we need to know
whether it is a morpheme, a lexical word, or a
prosodic word. The following experiment was designed
to answer this question.

Since it has become clear that deletion of a
syllable is more easily noticed at the initial
position of a perceptual unit than elsewhere, the
following three types of stimuli were prepared,

(1) Stimuli in which syllable deletions occur only
at the morpheme-initial position which is not the
word-initial position.

(2) Stimuli in which the same number of syllable
deletions occur only at the word-initial position
which is not the inicial position of a prosodic
word.

(3) Stimuli in which the same number of syllable
deletions occur only at the initial position of a
prosodic word.

The experimental procedure is the same as in the
experiment described in the previous section, If
there is no significant difference in the detection
rate of syllable deletion among the three types of
stimuli, we may infer that the perceptual unit in
this case is most likely a morpheme. If the
detection rate for the type (1) stimuli is
significantly lower than for the type (2) stimuli,
but the latter show no significant difference from
the type (3), then we may infer that the perceptual
unit is a lexical word. In the same vein, if the
detection rate is significantly higher only for the
type (3) stimuli, we may infer that the perceptual
unit is a prosodic word or a still larger unit. Our
preliminary results suggest that the latter case is
most likely, although we still need more experimental
data to confirm it.

Effect of Syntactic Roles on Detectability

Assuming that the unit in perception of connected
speech is a prosodic word, one can naturally ask
whether all the prosodic words in a sentence receive
the same degree of attention and thus show
approximately equal detection rate of deleted syl-
lables, or they show different detection rate de-
pending on the difference in their syntactic roles,
This question can be arswered by investigating the
dependency/independence of the detection rate on the
syntactic role of the prosodic word containing a
deleted syllable, Preliminary results indicate that
there are significant differences in the detection
rate depending on the syntactic role.

Size of Context on Syllable Recognition

While it is true that most of the evidences and
discussions in the foregoing sections are in favor of
the use of units larger than the syllable, there are
also cases where one has to rely on syllable
recognition[3], If, for example, we are to deal with
a very large vocabulary, or even with an unlimited
vocabulary, the system will occasionally have to
recognize (or transcribe) unknown words syllable by
syllable, just as a human listener will do when
presented with an unknown word,

In order to design a recognition system whose
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performance is comparable to that of a human
listener, it is thus necessary to know human
perception of syllables in connected speech. It has
been shown that a human listener needs a context of
one syllable each immediately before and after the
target syllable in order to be able to recognize with
high accuracy the target syllable in connected
utterances of one speaker[4). Likewise, syllable
recognition by machines will have to take into
account the influences of the context of similar
span.

OUTLINE OF AN ASR SYSTEM USING MULTIPLE UNITS

From the evidences and discussion in the
foregoing sections, we have proposed a new system for
continuous speech recognition based on template
matching of multiplicity of liguistic units {idioms,
prosodic words, and syllables)[2]). The system
operates in the following four steps:

1} Extract acoustic parameters of input speech.
(formant frequencies, fundamental frequency,
band-limited power, etc.)

2) Detect syllable nuclei, prosodic word
boundaries, and clause/sentence boundaries.

3) Detect and recognize frequently used idioms and
prosodic words in the continuous speech signal
by using their templates. For the portions of
input speech where the template matching fails,
syllables are detected and recognized by using
context-dependent syllable templates.

4) Construct a lattice of (prosodic) word
candidates based on the results of the preceding
step. Syntactic and semantic coherence is
evaluated for all combinations of candidates.

If real-time processing is not required, the system
performance would be still more improved. When
ambiguity remains, it can also be checked for global
coherence to reduce the candidates and to obtain the
most probable output. Global coherence is alsao
utilized to re-examine and revise the results of
recognition already obtained for a prier input, This
is only possible when real-time processing is not
required.
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In this paper, we try to compare several
distortion measures with the human's perception
using synthetic sounds. Correlation and another
measure of coherence is used. The goal of this
research is to study the coherence between
mathematical distortion measures and the human's
perception. The results show there are some
differences between them. But Itakura distortion
measure is the best in the case of our isolated
vowels,

I. INTRODUCTION

Distortion measures of speech is an important
problem for speech processing: speech recognition;
speaker ldentification; speech coding...etc.

Generally, there are 2 kinds of distortion
measures. The first one is defined by means of a
mathematical criterion, such as Itakura-Saito;
cepstral; likelihood ratic and weighted Itakura-
Saito[1,2 ... etc. The second is perceptually based
measures, such as weighted slope metric(WSM)[3];
euclidean distance of critical-band spectra[5] and
weighted likelihood ratio[86] ... etc.

The first approach is purely mathematical
without any perceptual constraint. The second
approach try to make use of perceptusl properties
with some model made from human's perception.

An early study has been done with difference
limens of formants(7]. A recent study has been done
on: perceived phonetic distancef3].

Another more global type of comparison{8] was
carried out between human performance (presented by
confusion matrix) and an automatic recognition
algorithm.

The work presented here tries to examine and
to compare the previous 2 kinds of distortion
measures with the data of a test of psychoacoustics
which was especially designed for this goal.

II. EVALUATION OF DISTORTION MEASURES

Different Tested Distortion Measures

*Itakura distertion[10) is gain optimized
Itakura-Saito measure which was originally
introduced as an error matching function in maximum

likelihood estimation of autoregressive spectral
models.
1 ==
dita(x’x ) = log(u/cm)
where o is any residual energy and e is

minimal residual energy.

*Cepstral distortion measure is an approxi-
mation of the L, norm of the log spectral distertion
by first N terms.

dcep(x'x') _ig-ﬁ ey-e’yl2

*2 other kinds of distortion measure a priori
bad are tested: euclidean distance of linear
prediction coefficients and autocorrelation
toefficients (from LPC preprocessing).
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“Weighted slope metric proposed by Klatt is @
perceptually based distortion measure[3] -

0'12
dwam(x’x') = Ke|E-E!'| +121K(11*[5(1)‘s (1)

Ke and K(i) are coefficients. We take Ke=0,K(i)=l
{according to {9] error is minimal with  these
values). Here Q=18 (Some values differ from Klatt).

*Another perceptually based distortion measure
was proposed by Plomp|[5' . Late it was used by
Carlson (1979) and Blomberg(1983).

dplm(x.x') = (igllLi—L'il )1fp

where L. is critical band spectra in band 1
and p=1 or 2.1

*Another simple slope distortion measure
(called here D ) is defined by a Hamming distance
on a set of Fn parameters[4] . Where

F = 1 if X(n+l)>=X(n)and X{n+1)> =threshold

n
0 otherwise

and X(n) is smoothed spectrum either in linear
or in Mel frequency scale.

A classic method of evaluation of different
distortion measures is to test them in a recognition
system. So one can judge their performance according
to their error percentage of recognition. This is
often expensive and time consuming.

Psychoacoustic Tests

A test of psychoacoustics has been designed to
produce pertinent histograms which can be easily
compared with the curves of distortion measures.

The test was carried out with steady state
synthetic vowels. 12 pairs of french veowels have
been chosen. Each pair vowel is close so that there
is not a third vowel between the vowels of a pair. A
series of 11 sounds has been synthesized for each
vowelpair by linear interpolation of their formants.
The data of formants are from Mrayati {1976},

During the test, an auditor had to listen to
the previous series of scunds between 2 references
(these 2 references are phonetic references, that is
vowels labels and the sounds were not given in the
test) and discriminate every presented sound to one
of the 2 asked references with forced choice. 12
histograms have been built with 9 auditors from 132
sounds (12*%11).

In fact this is a similarity measure of the
tested sound to vowels. Auditor will discriminate a
sound to one class if it seems mare similar to its
reference than another one.

Distortion Measure Curve

The same signals have been used for distortion
measure calculation. Fer reason of comparison we
calculate

Ds(x.Vl.VE) = d{x,v2)-d(x,V1)

where V1, V2 are 2 references and x is any
sound of the series of sounds synthesized by linear
interpolation between V1, V2, d is a distortion
measure.

The evaluation is made by correlation and
percentage of errors which will be defined in next
section.

III. EXPERIMENTAL RESULTS
Normalized Correlation Measure

It is often used to compare
measure and human perception.

a distortim



If x and y are regarded as Euclidean vector,
r =cost = (x,y) / ([Ix]].]ly]])

Percentage of Error

*For human perception, there im a statistic
frontier (an arrow below} between 2 vowels. Every
auditor made some error with respect to thise
frontier. The mean of this error for all auditors is
denoted by E_. For example, a histogram is presented
in Fig 1, E "is the sum of shaded region.
*For Bistortipn measure, a percentage of error
Ed' is defined. This percentage is computed by the
ratlc of 2 lengths: the length of the interval
between the distortion measure frontier (zero
crossing) and human statistic frontier, -~ and the
length between 2 references in Fig 2.

Some Figures
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Some Results
We present here a part of results about the
correlations and the percentages of errors. All

results are means of 12 tests. This correlation is
between all points of 2 curves: DS and histogram of
human perception.

Correlation Percentage

Auditors 9.6%

Itakura 0.857 10.1%
Cepstral 0.832 13.7%
Plomp{city-block) 0.824 15.3%
Ri{euclidean) 0.77 17.0%
Plomp(euclidean) 0.80 17.6%
Hamm. slopf{linear)}0.74 18.3%
Hamm. slop{Mel) 0.77 19.6%
WSM G.70 21.0%
Ak (euclidean) 0.64 22.6%

Another type of correlatien can be computed
from the Jdifferent frontiers. For example
correlation between frontiers of Itakura and these
of cepstral over 12 tests is 0,993, it corrresponds
to an angle of 6.7°; and correlation between Itakura
and Ri is 0.9, it corresponds te an angle of 25.8°,

Iv. CONCLUSIONS

The main mathematical distortions are better
than perceptually based distortions but the test we
have done is favourable to mathematical distortions
{the sounds vary by formants shifts only). As it was
expected the Ak coefficients are not good ones.
Somtimes very bad frontiers are obtained which are
difficult to explain. A very high correlation
between Itakura and Cepstral measures is observed.

The most difficult cheoice, in this work, is
the set of formants of references. The chosen set is
considered as representative of french vowels.
Surprisingly it is very well adapted to Itakura
distortion.
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THE SYLLABLE AND LANGUAGE PERCEPTION

Geoffrey S. Nathan

Department of Linguistics
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This paper proposes that languages have an active
proceas of syllabification that takes a string of
phonemes as input and organizes those sounda into a
hierarchical syllable structure. This proceas acts
as a filter on perception of input, such that native
gpeakers hear both thelr own and foreign languages as
if the sounds had been organized to follow the
syllabification processes of thir own language. The
results of several psycholinguistic research programs
can be offered as evidence for this claim.

Thia paper is an exercise in 'armchair
phoneticse’, in which T will argue that
syllabification in language is an active process, in
the sense used by Natural Phonology (see, e.g. Stampe
1973, Donegan and Stampe 1978). That is, T will
argue that the asaembly of segments into syllabic
units is an activity carried out by the apeaker in
real time ns speech im produced--a process governed,
among other things, by rate of speaking, degree of
cara in the production of the speech and the purpose
to which the speech ims being put. PFurthermore, the
setting of segments ianto suprasegmental organization,
although governed by universal tendencies, allows
certaln options which speakers may, on occasion,
choose to exercise.

Although the syllable has had a tenuous position
in recent linguistic and phonetic theory, many have
argued eloguently for its existence. The earliest
modern discusaion of the concept of syllable,
including an extensive discussion of the basis of
ayllable division and the idea that the shape of the
syllable ia governed by the sonority hierarchy, can
be found in Sievers (1885:179-183). BSievers is also
the first to argue that syllabification is a
heuristic rather than an algorithm: 'Equally, one
can, to a certaln extent, give arbitrarily different
ayllabifications to any one of several sounda of an
assembled string like Taia].' (179, my translation).

Since that time, numerous scholars have argued
that the sounds of language are assembled into larger
units that appear to be actively used in the
production and perception of speech. An extensive
discussion appears in Stetson 1951, although some of
hias contentions have since been disproven {Ladefoged
1982). Kozhevanikova and Chistovich (1965) argue that
inatructione to the articulators are sent in
syllable-sized chunks (122), while several
regearchers have recently presented functional
arguments based on the nature of the speech-producing
mechanism for the syllable as a unit of sound
organization--Studdert-Kennedy 1975 and,
particularly, Lindblom 1983 are two notable receant
works on the subject.

I will begin by discussing a Hebrew prayer,
known as the Shma. The prayer is sung to a
traditional melody, and coneists of two linea. For
the first line, there is only one possible setting
for the words, but for the second line, there are two
possible ways in which the words and the music can be
coordinated, and both are used, apparently
interchangeably:

1 a) boru.uch shem kevod ma.slchuto leclam vaed

b) boru.uch shem kevod malchuto.o leolam vaed
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additional

Since there ara mors notes than syllables,
there are

syllables must be created, and aa 1) shows,
two possibilities for the creation of the extra
syllabies. My primary argument is that rules of
syllabification meiiate between storage of sound
their production {i.e. they are used in
'derivationa’) and between perception of sounds and
their storage (i.e. thelr 'underlying
representationa').

My primary sources of evidence for this elaim
involve investigstions that have been done in
examining the acquisition of second lanjuage, whers
there appears to be conflict between %ie processes af
syllabification in the languages lnvolved.

An early paper on this subject is Briére et u}.
(1983). The authors note that, although neither 72/
nor /q/ cen begin words in English, anly one, ./g/

appears to offer any problems for native uspeakers of
English learning a second language. They therefore
suggest that the correct restriction on distribution
of these phonemes is stated in terms of syllable
distribntion--/%/ may occur in ayllable-initial
position (although, by accident, not in word-initial
position), while /w/ only occurs in syllable-Tinal
position, and hence may never occur word-initially-
To study this issue they hed native speakers of
English produce words one syllable at a time
following the beat of a metronome. (The words wers
controlled for such things as spelling and stress
placement). They then studied what their subjects
did with various consonants at the induced pauses
occasioned by the enforced divisions the metronome
produced. As one might expect, they found that while
speakers produced such forms as 'lei.sure’, they
always divided ‘'sing.ing’.

For our purposes, however, a much more
interesting result occured with words like 'ecity’.
Although this word is normally pronounced with a
volced alveolar flap in American English, it was
always pronounced as a voiceless, agpirated stop in
their experiment. Various researchers (Stampe 1973,
Kahn 1976) have argued that the choice of flap versus
stop is coantrclled by syllabification. Syllable
initial steps are sapirated, while syllable final (or
ambisyllabic) /t/'s are flapped. Syllabication
itself is driven by stresa, with a atressed syllable
attracting single consonants leftward away from an
adjacent unstresaed syllable. Since the highly
unnaetiural isochronic stress pattern induced by
apesking with a metronome made all /t/'s initial, it
is not surprising that they came out aspirated. But
thias is to be expected only if the sounda are atored
as /t/'s, with syllabification, and consequently
segmental processea dependent on syllabification,
occurring at the time of apeech production.

In a much more recent publication, Eckman (1981)
argued tnat there are 'natural processes’ that
speakers use when attempting to acquire s second
language, even though these processes do not occur in
any known natural language or historical change~-
ordinarily twe major sources for the naturalness of
phonological processes. He studied how native
speakers of Spanish and Mandarin dealt with sound
sequences that do not occur in their native languages
but do in English——final wvoiced stops. Spanish
speakers appear to begin using the well-known process
of fipal devoicing, a traditional candidate for a
natural process, and one that does not, as far as we
know, occur in Spanish. Mandarin speakers, however,
frequently deal with final obstruents through the
insertion of a final schwa. Since the theory that
Eckman follows (a version of generative phonology)
requires that any systematic difference between
target language and output be attributed to the
presence of a rule, he is forced to posit a rule of
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'schwa paragoge’, which he alsc argues must be a
natural process, since it occurs neither in the
source nor the target language, and consequently
cannot have been learned.

There is, however, an alternative explanation
for the frequently attested action of learners (and
borrewers) of adding syllables te foreign words to
avold unacceptable consonant configurations. The
Japanese borrowing of 'baseball' as /beisuboru/ is a
parallel example.

Let us suppose that principles of
syllabification, as 'well as other phonological
processes mediate between mental storage and
pronunciation, and between hearing and mental
storage. Foreipgn words, especially at the beginning
of the study of a foreilgn language, will be storable
only in native language terms. If the sounds
perceived are, when produced in the L1, subject to L1
processes, then they will be so proncunced--thus
native speakers of French unaspirate initial English
voiceless stops and native speakers of English do the
reverse. Lf the perceived sounds occur in positions
in which they do not in the native language,
unsuppressed natural processes which have never come
into play in the first language may well do so in
attempts at the L2, This explains the final
devoicing of native speakers of Spanish. However,
Spanish does have some final obstruents. Mandarin
has no final obstruents at all. This forces native
speakers to attempt something that I propose to term
second language restructuring. They increase the
phonetic substance of the target so that segments
(such as final obstruents) that their native language
patterns forbid them from producing will be retained.
This creative restructuring of the input is not the
same as the application of a natural phonological
process, but 1s rather the invention of input which
will be sufficiently immune to the natural processes
the speaker already possesses that the otherwise
deleted consonant will remain intact. Since the
syllable-structure processes of Mandarin do not
permit final obstruents, the creation of an
additional syllable, particularly when it is made up
only of the threatened conscnant and a schwa, is a
natural strategy for keeping phonic information that
Mandarin and other universal processes would
threaten.

A similar claim is made by Broselow (1984), who
argues that the syllabification processes in English
and Egyptial Arabic differ with respect to whether
word boundaries play any role, with the result that
English speakers misperceive word boundaries in
Arabic and vice versa.

In conclusion, I will argue that the process of
syllabification—that is, of setting strings of
consonants and vowels to syllables--cccurs as an
active, ongoing, mental event in the speech
production process. It is partly contrelled by
universal factors (more sonorant socunds are more
likely to be syllable nuclel than less sonorant
sounds), but also subject to language particular
constraints. English allows syllabic nasals under
certain limited, unstressed, circumstances, while
French does not. French allows syllable-final
consonant clusters (for example in 'quatre') that
English does not. These processes apply to whatever
"underlying' (that is, mentally stored) strings the
speaker has, whether native or foreign, and act as
input filters constraining the possible set of
underlying strings in the first place. However,
despite their filtering effects, they allow for some
slippage, particularly in differences between careful
and 'sloppy' speech.

Finally, for speakers of one language learning a
second, when input is encountered that would lead to
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impossible syllabifications (from the point of view
of the native language) the input can be adjusted,
either through the deletion of segments, or through
the addition of supplementary segments which will
allow the retention of the offending segments
{usually consonants) by permitting the consonants to
act as syllable onsets rather than codes. The
addition of such 'epenthetic’ consonants is itself
not a natural process (i.e., serving neither
morphophonemic nor allophonic speech adjustment
roles) but is rather a creatlve use of language
perception, adapting the input to the constraints the
native speaker brings to the language.
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PREPLCSIVE F@ IR THE PERCEPTION OF /d&/-/+/
IN ENGLISH

K.Jd. Kohler

Institut fiir Phonetik, Universitét Kiel,
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ABSTRACT

The importance of level vs. falling F¢
contours on prestop vowels for the voiced/
voiceless categorization is discussed in the
light of perception test data for English
"widen/whiten" and compared with corres-
ponding datsa from German. Over the same set
of complementary vowel/stop closure dura-
tions, level FP leads to a greater number
of /t/ responses than falling F{.

INTRODUCTION

Kohler (1982, 1985) presented data from
German which support the following points:
1. & measurable F@¢ contour is related to two
factors: a global utterance intonation
and local perturbations due to articula-
tory constraints.

In uttersnce-final disyllabic words of

the type "leiden/leiten® ['1a®dn/'l1a®tn]

a Talling terminal F@¥ contour changes its

global character end consequently its

meaning when the F@ peak is located
either before/at the initial consonant/
vowel boundary or right inside the
stressed vowel.

3. In the case of a central pesk on the
stressed vowel, the F@ fall is delayed
by a following voiceless vs. voiced stop
consconant.,

L, In the case of an early peak on the
stressed vowel, the local F@ differences
before voiced/voiceless stops disappear.

5. In perception, level vs. level+falling F@
patterns on the stressed vowel favor /t/
and /d/ responses respectively, compared
with a continuocusly falling F@ through-
out the stressed vowel.

This paper discusses comparable per-
ception data from English.

]
.

PROCEDURE

The sentences "I am telling you I said
widen/whiten.™ ['wa®dn/'wa®tn] with focus
stress on the final word were the point of
departure for constructing & listening ex-
Periment according to the principles out-
lined in Kohler {1985). Fig.1 represents the
speech wave and fundamental freqguency of the
original sentence "I am telling you I said
widen.", which was used for deriving the
test stimuli. The duration of [a®] was re-
duced from its value of 265 ms in the orig-
inal "widen" to the value in the original
"whiten" by six 10-ms steps (=7 Stimuli).

To these vowels closure silences were
appended which vere increased from 70 ms in
six 15-me steps complementary toc the vowel
shortening. Three F@ patterns were generated
with each vowel duration. (&) Level+falling
{119-123-85 Hz)}; the level section re-
presents the naturelly produced fluctuation
over the first 100 ms of the original [a®];
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the proportion of level to slope sections
steyed the same in all the 7 stimuli.

(b) Level (119-123-122 Hz). (c¢) Linearly
falling throughout the vowel (119-85 Hz).

. The same ranges of vowel and closure
Sllence durations and very similar F§ pat-
terns (as regards absolute values and tim-
ing) were used in the Engiish stimuli as in
the German ones.

A group of 12 netive Southern British
speakers were given the task of classifying
the stimulus utterances as "widen" er
"whiten" sentences by ticking the appropri-
ate boxes on prepared answer sheets.

RESULTS

Fig. 2 shows the identification fune-
tions, as well as the binomial confidence
ranges at the 5% level. The response curves
for falling and level+falling patterns are
very close together, except for the dura-
tion ratio of .6%, and they are significant-
ly different from level F@¢ at the low and
middle duration ratios: level F@ leeds to a
higher number of /t/ responses.

DISCUSSION

Basically, the same results as for
German have been replicated for English.
There are two differences, however:

(a) There are generally more /d/ responses
in the English test: the functions are
shifted towards shorter ratios.

(b) The curves are closer together, and
they are no longer separate for falling
and level+falling.

These differences could, of course, be
attribtuted to the different languages, and
it might even be objected that sueh a com-
parison across languages and test groups is
not legitimate, But it is possible to ex-
Plain the divergencies of the German and
English dats by reference to Raphael, Dorman
and Liberman (1975), who showed that the
status of the prevecalic consonant influen-
ces the voiced/voiceless perception of post-
vocalic stops. Their results indicate that
the longer the initiel voiced formant tran-
sitions, the greater the lengthening of per-
ceived vowel duration. In the case of Eng-
lish "widen" wvs. German "leiden" the same
argument applies sinee the sequence
[wl+[a®] constitutes s voealic continuum
with extremely long transitions and fuzzy
segment boundaries, whereas [1]+[a®] hes sa
much clearer division. Consequently, [w]
increasses the perceived vowel durastion more
than [1]. The general strengthening of [&]
responses in the English test is in line
with these considerations.

Furthermore, a section of about L0 ms
before the segmentation point set between
[v] and [a®] in the original stimulus has
a level F@ of 119 Hz. It was not affected
in the stimulus construction and therefore
stayed the same in all three F{¥ sets. Thus
the linearly falling pattern is preceded by
a short level F@, which, together with the
fuzzy segment boundary, prevents it from
becoming a different global pattern: linear-
ly falling and level+falling F§ across the
segmented [a®] lead to identicsl response



funections.

In conclusion, Wwe can say that the pro-
sody of the entire stressed syllable, i.e.
its totel temporal structure as well as its
pitch contour, determines segmental voicea/
voiceless recpgnition.
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Fig, 1

Speech wave and fundamental frequency of
the original sentence "I am telling you I
said widen.", which was used for deriving
the test stimuli.
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Fig. 2

Percentage /d/ responses as a function of
vowel/(vowel + closure) duration retios for
three F@ conditions, and binomial confi-
dence ranges at the 5% level; 12 listeners.
At each data point N = 120.
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Introduction

Al though listeners commonly hear speech as
rhythmical (Donovan & Darwin, 1%979; Lehiste, 1972) it
is not the case that the perception of rhythmicity
arises from acoustic onset isochrony. For example, if
sequences of monosyllables whose initial consonants
differ in manner of articulation, are presented to
listeners so that the acoustic onset-to-onset intervals
are isochronous, the rhythm of the sequence will sound
irregular, These sequences will sound regular to
listeners only i¥ systematic deviations from acoustic
isochrony are introduced (Morton, Marcus, & Frankish,
197é6; Fowler, 1979, 1983). Talkers behave in a similar
manner in that when required to produce rhythmic
sequences of monosyilables which contain different
initial consonants the same Kinds of deviations from
isochrony are found (Alten, 1972a,b; Rapp, 1971
Fowler, 19793 Fowler & Tassinary, 1981), The term
“stress beat" or “"perceptual center® has been used in
the literature to reference that point tor
psychological event) in a stimulus upon which
listeners/talkers base their rhythmic judgments.

In the past 15 years, a number of experimental
studies have been directed at identifying the
parameters which determine the location of this stress
beat in both perception and production. Experimental
results have supported the assertion that the
stress-beat location is not universally linked to any
particular articulatory or acoustic event, but rather
can be shifted by the acoustic/articulatory
characteristics of the entire syllable. For example,
we have been engaged in research over the past two
vears examining the influence of several different
phonetic parameters on the location of the stress beat
in stressed CV or CVYC monosyllables in both production
and perception tasks. UWe have found that final
consonant variations can shift the location of the
stress beat for both talkers and listeners-~an effect
opposite in direction, but smaller in degree than, the
shifts obtained by Fowler (1979; Fowler & Tassinary,
1961) when manipulating the initial consonant (Fox &
Lehiste, 1985a). Similar resuvlts have been obtained
when the medial vowel was modified (for both listeners
and talkers); namely, that the stress-beat location
shifts to a point Tater in the token as vowel duration
increases,

The present study is a continuation of this line
of inquiry and examines the effect of unstressed
prefixes and suffixes upon the stress-beat location of
stressed syllables in American English. Although the
results to be presented today stem from a production
task only (which we considered to be, necessarily, the
first step in our research program}, we anticipate that
the tistening tests will again show a similar effect.
These data, then, should provide information about the
relative timing of syliables in both production and
perception and thus will provide relevant information
about speech timing for speech recognition purposes.

L
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Jalkers: There were three highly practiced
American English talkers—-two female, one male-—naive
to the purposes of the experiment.

Stimuli: The basic stimuli consisted of sets of
seven-token sequences similar to those used by Fowler
(1%79; and Fox & Lehiste, 1985a,b), Each sequence was
composed of 7 identical tokens, such ast

peer  peer peer peer peer peer  peer

appear appear appear appear appear appear appear
The tokens were either stressed monosyllables (the
basic form) or 2-, 3-, or 4-syllable tokens. The
latter were formed from the monosyllable by adding an
unstressed prefix (e.g., a-, con-/com-, de—, be-) or an
unstressed suffix (e.g., -er, ~ing, —able), or hoth, to
the basic form. Where possible, a prefix which, when
appended to the basic form, produced a real word was
chosen. The syllabic structure of the basic form
included CV, CVC, CCVC, and CVCC. The initial and
final consonants of the basic form included oral and
nasal stops, fricatives, and liquids., 1n all cases the
stressed syllable of the multisyllabic tokens
corresponded to the basic form. Altogether 401
different tokens were constructed. The sequences were
put into random order and presented to subjects on a
CRY screen under the control of a PDP 11/23 computer,
one at a time, in blocks of 52 (including distractor
sequences},

Procedure: Talkere were instructed to read the
7-token sequence which appeared on the screen and to
produce them in a rhythmic fashion "in time™ with the
timing pulse. If a talker was dissatisfied with
his/her production on any trial, the talker was
instructed to repeat the sequence. After successful
completion of a trial, the talker hit the return Key on
the terminal which replaced the old sequence with the
next sequence. Intersequence intervals were thus
self-timed but averaged 2 sec in duration. The timing
pulse was a 1000-Hz pulse, 100 msec in duration., The
stimulus onset asychrony (504> between the timing
pulses was 1000 msec. TalKers heard the timing pulses
continuously throughout the experiment. Talkers were
given a short break after every third block of stimuli.

Heasurements: For each different basic form an
acoustically defined point in the stressed syllable was
selected which would, presumably, not change in its
basic nature when prefixes and/or suffixes were added.
These points included stop consonant release in those
stressed syltables beginning with a stop (e.g., do,
bide, pose, tone, broad), onset of medial vowel in
those syllabes beginning with a fricative (e.g., cede,
seal/-ceal), etc, The onset of this measurement point,
relative to the onset of the timing pulse, was
determined for each token. OF interest in this study
is to determine whether or not the position {in time)
of these measurement points shifted as a function of
adding unstressed prefixes or suffixes, Although the
stress beat does not seem to correspond to any
particular acoustic event (cf. Fowler 1979; Marcus,
1981), we assume that if the position of these
measurement paints shifts in affixed toKens, relative
to the unaffixed, basic form, it will indicate a
concomitant shift in the stressed syllable’s stress
beat location.

Results and Discussion

Since the location of the acoustically defined
measurement points differs across different stressed
sytlable types (e.g., those having syllable-initiatl
stops vs. fricatives vs, liquids), it makes little
sense¢ to compare them directly across all affix
conditions. However, if we take the tocation of the
measurement point relative to the timing pulse in the
basic form as a baseline location, we can calculate the
shift of the measurement point, relative to the basic



form, for atl affixed versions of each basic form. To
do this, the onset of the measurement point (relative
to the timing pulse) of the basic, monosyllabic form of
each token was subtracted from the onset of the
measurement point in each of that form’s variations.
For example, the onset of the stop release (relative to
the onset of the timing pulse) of the [pl in peer was
subtracted from the stop release onsets (relative to
the timing pulse) of the fpl in peer, peerer, peerin y
appear, appearer, and appearipg. The resulting number
indicates the shift of the measurement point relative
to the basic, menosyllabic form. Shown in Table 1 are
the mean shifts obtained for those toKens which were
prefixed with a-, de-, and con-. Positive numbers
indicate a shift of the measurement point to a position
tater than that of the basic form, negative numbers a
shift to an earlier position.

Jable 1. Mean shifts in “"measurement points* in
affixed conditions. Data are normalized relative to
onset of measurement point of unprefixed, unaffixed
basic form (with defined shift of 0.0). All data are
in msec.

Syffix

None -er ~ing -able

a~ no prefix 0.0 -3.7 -2.9 -5.9
(N=137> prefixed 26,6 22.1 11.5 e
de- no prefix 0.0 =-12,7 -4,3 -7.9
(N=35) prefixed 34,7 31.4 34.0 ——--
con- no prefix 0.0 -14.4 -18.5 -5.2
(N=22) prefixed Bé&.3 56.7 59.5 AL
MEAN no prefix 0.0 -4.5 -4.8 -b.2
prefix 34.0 28.4 22.5 e

Although only of borderline significance in each case
(p<.0B, I-tailed t-test and Wilcoxon), there is a small
mean shitt (to an earlier point) of the measurement
points in the suffixed forms relative to the unsuffixed
forms. This indicates that the location of the stress
beat may occur later in the token when additional
phonetic elements are appended and the overall duration
of the token is increased. This result is consistent
with the data obtained by Fox & Lehiste (1985a,b) who
demonstrated that such shifts can be obtained by
manipulating the medial vowel and final consonants of
stressed monosyllables.

There is a much Targer mean shift of the
measurement point (relative to the basic form) in the
opposite direction (i,e., later) when tokens have an
unstressed prefix; all these shifts are significant at
the .001 level (2-tailed t-tests)., This indicates that
the addition of a prefix shifts the location of the
stress beat to a paint earlier in the token. It is
interesting to note that the a-, de- and con- prefixes
produce a progressively greater shift of the location
of the stress beat, respectively., This is most likely
explained by the fact that although all three prefixes
can be considered "unstressed," they are really not all
unstressed to the same degree. The a- prefix usually
has the least amount of stress and the con~ prefix the
most.,

In order that these data can be examined globally
in terms of the relative contribution of prefix,
suffix, and prefix+suffix combinations, analysis of
variance was done on a subset of these data—-pamely the
3- data, The dependent varizble used in this analysis
was the time of the release of the initial stop
consonant of the stressed syllable, relative to the
onset of the timing pulse. These raw data were used
Instead of the normalized data because (1) one cell of
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the normalized data would have a variance of zero and
(2) the stop release measure represents the same
articulatory and acoustic event in all toKens. Shown
in Table 2 are the relevant data averaged over basic
forms and suvbjects.

Table 2. Mean onset of initial stop release of
stressed syllable relative to onset of timing pulse in
a~ prefixed tokens., A1l measurements are in msec.

Suffix
Mone -er -ing MEAN
no prefix -31.9 -39.4 -34.0 -35.8
prefixed 2.0 -1.0 =-14.4 -4.2
HMEAN -15.0 -20.0 -25.,3 =20.0

A two-way, repeated measures, analysis of variance
(using basic form as the random variable) with the
factors PREFIX and SUFFIX was done. The results showed
a significant main effect due to PREFIX (F(1,28)=34.2,
p{.001), a marginally significant matn effect due to
SUFFIX (F(2,28)=2.28, p=.05), but no significant PREFIX
by SUFFIX interaction.

These results suggest that the tocation of the
stress beat in stressed syllables in English can be
affected by the addition of either an unstressed suffix
or an unstressed prefix or both. The effects of such
affixes on the stress beat are additive and independent
of each other. In addition, the prefix seems to shift
the stress beat differentially, as a function of its
degree of stress. We are currently analtyzing these
data in terms of how well the durations of the prefix,
affix, stressed syllable, etc. can predict the shifts
in the measurement points (and, indirectly, the
stress-beat location) and are conducting the
appropriate, corresponding listening tests.
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Abstract- In the present paper some evidence’ is
given for the existence of a gradual phonetic change
{n Italian stop conscnants from the point of view of
their defining distinctive features.

The four featureas of Mode 1 (Voicing), Mode 2
(Continuity), Place and Timing are assumed to be
perceptually effective and are examined from the
point of view of their significant correlation.

The experiment used synthetic stimuli for CV
groups of phonemes obtained from an acoustic model
which allows one to vary continuously the acoustice
characteristics  assoclated with the distinccive
features that are being examined.

1.Foreword

This paper is based on the assumption that the
acoustic or articulatory categories detected on the
physical continuum are not homogeneous with the
corresponding perceptual ones; in order to define
such categories, it is essentilal to describe the
relative variation of the significant parameters
{see also [8]) on their own perceptual scales.

We have prepared a table (see table 1) of the
relative values of the four most significant
perceptual features for Italian consonants: in this
ayatem Timing 18 considered as a feature in itself
which varies in combination with the others, but
along a typical continuum.

It is thus obtained the "intrinsic'" time of
each perceptual entity {or "res percepta").

The table shows all the possible ratios between
the relative values fixed for the experiment but it
could be expanded (within given houdaries) to give a
more suitable frame for the complex reality of a
natural language.

2.Theoretical approach

Multivalue features scales commonly used (see
{31, improvement on [7], etc.) are based on
extrapolation from experimental observation on
articulatory processes.

Such proceases are effectively gradual: thelr
graduality is 4implicit to the performance time of
mescular commands.

The basic assumption of such approaches is that
the sum of wvalues (no longer conceived in binary
terms) of a fixed number of features that are
gelected on the hbases of their economicalness or
"naturalness" defines each phoneme.

Scales are defined by giving fixed values to
the beginning and end of peossible continua which are
segmanted into different vange groupings according
to the language in questicn: e. g. possible cuts
along a place of articulation continuum are:

¢ 1 2
@) say English, Italian, Finnish.
el Jel I/
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Y 1 2 3

;) say Albanian.
el el fel e/

0 1 2 3 4
N say Classical Arabice.
el Ief &I 19/ 17/

We evince from (a ) ~ (¥) that the possible
continuum that defines the Front - Back, Frontedness
or Place features 1is composed of the following
positions that define phoneme ranges:

However, rather than claim that such levels or
possible ranges of a continuum (cut into a graded
plane or Gradatum) - and we can allow that levels
may be only two (usual for Voicing) at the
phonological level, as in English or Italian, or
even only one as in Finnish, though n - valued at
the phonetic level - are bound to the production
level of our model (articulation), we would claim
that when in fact we say that the Frontedness or
Place features has three levels in Italian we are
really referring to the perceptual interpretation of
a position of the articulatory-acoustic space, to a
process in which speech production categories ate
mapped on to corresponding perceptual categories.

The scheme we propose to represent the three
phases of the whole process involved is as fin
Diagram I.

We can admit that the gradualness of features

is effectively codified at the 2nd LEVEL, where
perception takes places on the basis of a set of
perceptual features that refer to the constant
relations between physical values individuated along
a perceptual scale formed of acoustlc parameters
given in the LEVEL ONE INPUT (i.e. capacity to
select given parameters of the human ear). This has
a filter function with respect to the acoustic
signal and allows for the trasmission of only
certaln components of the complex signal.

It is at this level that binary choices (see
[21) operate and are observed effectively to
operate, though uniquely on the acoustic form of a
given feature.

The scope of the present paper is = by means of
straightforward perceptual experiment of
identification - to give a demostration of the
non-categoricalness (or gradualness) of perceptiom,
that, as we shall see, operates on the basis of

precise rules connected in the neural topology and
functioning.

This renders discrete the continuum of
acoustically selected parameters and combines
segments obtained as a parameter of time (this
parameter at the 2nd LEVEL corresponds to the

intrinsic timing factor in [1].

The full set of these perceptual rtelation
(particularly complex = we shall skip over details
here, but the question is being studied) furnishes a
definition of three phonemes belonging to the class
of STOPS based on the reciprocal wvalues of three
essential perceptual features that we have so far

identified.
Phonemes are organized on the basis of the
values evinced from the perceptual scales for each

features that describes a phoneme as a res percepta;
this organization is schematized in table 1.

Humbers are not numbers in a set a natural
numbers, but exist unliquely in a relational plane.



3.Method

We have varied a first parameter (F2) along a
continuum composed of constant intervals of 100 Hz
each obtaining 13 variable stimuli ranging across
three levels  identified respectively as the
articulatory categories; LABIAL, ALVEO-DENTAL and
VELAR.

The V.0.T. of the components of this sequence
was also varied in 10 ms steps for negative V.0.T.
and in 5 ms steps for positive V.0.T., affecting the
first part of the transitions.

On such a sequence a simple labelling test was
performed with a set of 18 unexperienced native
italian listeners; a straightforward fdentification
test was chosen as in our experience on sequences
involving the variation of a single feature ranging
within the classes of Stops, Fricatives and
Affricates, any kind of discrimination tests, both
ABX and 4TAX, gave poor results.

Thia is due to the procedure of the test in
itself cthat affects perception in presenting too
long sequences with respect to the temporal capacity
of STM [4], in fact the initial part of the signal
are lost and ean’t be processed in relation to the
last parts.

Several other experimental procedures { [8],
[10]) seem to give some evidence for a non
categorial perception at the acoustic (our lst)
level, while categorical perception at the phonetic
(our 2nd) level.

We are actually interested in verifying 1f the
relative degrees attributed to the perceptual
features in table 1 play #n effective role 1in the
perception process.

From our standpoint it is thus enough to check
the 1labelling thresholds through an identification
task.

4.Results and Discussion
The mean results of the identification tests

are shown in Diagram 2. We assume that the correct
proportion among the amounts of the cues for each

perceptual feature involved must be maintained
constant to obtain a definite categorization,
otherwise the identification scores will not be

significant, resulting in misunderstandings or even
no labelling at all of the stimuli.

Timing is assumed to be fixed for all the
consonantal parts of the syllables. It pertains to
each phoneme and is calculated from the relative
times of the parameters (see bhelow).

Table 2a ghows the values of the actual cues of
the three features along the acoustic continuum;
Table 2b shows the combinations of the actual values
of the perceptual features as obtained from Table 1
with the corresponding labels attached to every
stimulus according to their labelling rate in the
test,

As shown in Table 2b the phoneme /g/ 1s
characterized by the triple 0 1 0. While Mode 2 is
unaltered, the cuea of Mode 1 and Mode 3 are
changed: Voicing moves, through regular intervals,
from value 1 to value 0 and Place from 0 to 3.

The two extremes are characterized in Diagram 2
by the categorization as /ga/ for stimuli n. 1 to
ae 5 and as fpa/ for na 11 to n. 13. In the
intermediate range (stimuli n.6 to n.10), the bias
to perceive a /ka/ at the 5th and 6th steps can bhe
explained considering that the variation of the cue
of Volcing to the value 0 is not yet strong enough
to interact with that of Place and to polarize
identification in the Alveolar area. In the range
of stimuli with a set of values similar to the
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only the variation of Volcing {ia
¢o0.

initial one,
relevant in perception (/ka/:

Stimuli n.7 to n.l10 are either perceived as
/da/ or nonidentified at all as a speech sound.
Perception of /da/ (triple 2 1 0) is explained as an
interpretation of an ambigous Place value 1 {only

values  to 2 are distinctive for Stops) as a level
2, coupled with a previous level 1 of Voicing

The possible evaluation of a level 1 of Place
corresponds to the occurrence of nonexistent

triples, either 1 0 Oor 1 1 0 , that determines the
exit from the speech mode, given that this situation
is not predicted in the subsystem of Italian we
already described. The interval where there {s a
restructuring of unexpected values with a fictiticus
combination or quite none is considered a black hole
in perception.

5.Conclusions

The results are consistent with the assumption
that each single amount of any acoustic cue i3 not
relevant in itself to select a feature, as the
auditory system filters the signal transmitted by
the receptors using a special code, activated when
the listener 18 1in the speech mode ( see [9] ).
This code is a structure Fformed by the relation
between the temporal amounts of every significant
parameter in input and the whole temporal frame of
the actual segment as it is realized. This means
that a special rule binds the relative times of
every s8ingle parameter among them, and with the
global time that they share to form a " res percepta
"; the correct proportions can be predicted from
the relations of a complete model of perception and
production { P.Bonaventura,"Preliminary studies for
an MCC model of perception", to be published ).

This could be a tentative explanation also for
the insertion, erasure and reajustement of phonemes
along the speech chain.
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A MODEL OF THE PERCEPTIVE FHONETICS, ATT ENDED
BY THE HUMAN MEMORY

S.JMrchev
ul."Jordan Mighev" 214,8600 Jamhol,Balgaria

The Lfluence of the perceptive phoneti-
ca for gystems with AT is actualized,in mo-
del describing: 1)HUMAN MBIORY (sensor and
imagine-bringing instantaneous memory; short-
term memory - direct,operative,buffer;long-~
term memory,super long-tem and meta memory)
2)PERCEPTIVE PHOKETICS (The zmone perceptive
basis of the natural language has been reser
ved in the long—term human memory like stan-
darts and principles of these standarts,with
the segmental and supersegmental common and
complicated language units and their featu-
resg)e.

Recent developments in perceptual pho-
netics - part of the study of human percep-
tion of speech are associated with advances
in the fielda of psycho-linguigtiecs,kimol e~
dge engineering and applied AI,pattern re-
cognition, etc.

We asswie a zonal organization of tem-
plates in long-term memory (ITM) with the
following structure :

- there are some primary (atomie?) phonetic
units expressed by some domain of the space
of values of certain parameters (each of
then corresponding to a single meagurable
physical characteristies)the rest of the un
lts belng compound and corresponding to com-
bosite systems of domaing of the parameters;
~ to compound tenplateg there correspond pa-
rameters of two types (type A and tape H),
The units of type A are compound units for
which the get of characteristics 1s the ga-
me for any two opposite units and these are
digtinguished only by the integral value of
the compound parameters, e.g. the compound
characteristics of accented and unaccented
8yllable: they both have the same set of pa-
ramebers, such as duration of the vocal part,
duration of the consonant part,intensity of
the syllablic peak,frequency of the basic to-
ne, etc.;they have mon~intersecting regions
of values of tho compond parameters (so th-
at gyllables with or without accent could
he told appart).The units of type B are dis
tinguished from opposite units by the exi-~
stence of a parameter vhich is absent in
the repregentation of the counterpart (any
phonemne is an example of this type of unit);
~ thus in contrast to units of type A the
identification of units of type B may be
based on a specific set of characteristics
and mot on an integral compound characte-
ristics (as happens in case of units of ty-
Pe A).Based on experimental data,a hypathe—
gla ig put forward in 2 that the compound
rarameters of units of type B can thensel~
ves be composed by units of type A.In par-
ticular,distinct differential characteris-
tics of the phonemes,occurins in different
units, can be established by summing up the
valuesg of its components ;

~ the templates in LTM of the phonetic uni-
ts which correspond to sound images in EIN
can be represented ag zonesg of identical pe-
reeption (2IP),These ZIPs correspond to regi
ong in the space of parameler values in whi-
ch any two realizations are id entified.o

any change of the values of the parameters
within the Iimits of the region leads to pe~-
reeptually indistinguishahle resliszations.
Sach a2 view on the functioning of the temp~
lates is founded on igmoring in the percep-
tual basls of the language of the variati-
gns which are small.0n the other hand iden-—
tical reaction to phisical features that are
mear" enough is phisiologieally nmatural.In
this respect it resemhles the law of "all

or nothing" ;

~ an immediate neighbourhood of a ZIP ia the
zone of gimilarity to the template (Z5F).The
Z21Pg of disctinct phonetic units do mot in-
teraect,moreover they have non-interecting
closures in the topology,zenerated by the
notion on nearmess,while the ZST may well
have non-empty common parts and this ias one
of the explanations for amhipguous percepti-
on ;

= Torunits that do not have a corresponding
sound images the exisgtence of a zone of i-
dentical reactions can also be conjectured
as well ag of zones of slmilarity ;

~ the categorical character of speech soun-
ds” perception is rejected,i.e. we do mt
need the notion of different speech sounds
being comprehended in two completely diffe-
rent ways: "categorial” and "nmon-categorial '
~ the boundaries of the zones (in particu~
lar of Z3T) are quite unstable,M™is could
explain the process of chage of the phone-
tical background of a langmage.The unstabi-
lity of the boundaries have besn establi-
shed by experiments and it seems to be a re
sult of different extralinguistic factors.i
very substantial shift in the boundaries can
be observed when a specific psychological a-
ttitude i3 adopted during the experiment -
a fact that leads sometines to assimilative
or contrastive perceptual illusions,and for
this matter should be taken into account
when deteminins templates” boundaries by
nhonetic experiments.

Under units of primary perception we
understand templates for guch segments and
supra-sefments of the speech flow that are
operative in establighing the "sounding of
an utterance.In experiments with uncommon
conbinations of consomants the atimili have
been comprehended with big digtortion.This
fact shows that the units of primary percep-
tion are not the phonemes,i.e. in thepercep-
tion of umsual combinations of congonants
couparison 1s carried out not with the tem~
Plates of some phonemes,but with templates
of thelr combinationg.If in the set of tem—
Dlates in the perceptual basis of the human
mind there s o suitable tamplate (exachly
fitting) the sound image is mapped to all
the nearest such templates (in the topology)
and to all combinpations of them until a su—
itable combination is found and a satisfac—
tory similarity is established.0f course,a—
nother posaible explanation is that phone-
mic tenplates are indeed the templates of
rrimary units and un the perception of a so-
undimg word a simultaneous correction is ta-
Ring place,But data from 2 and 5 supporbs
the view that this is not the case and that
the units of primary Perception are mot the
phonemes,but aertain their compounds,in par-
ticwlar — the syllables.One more reason for
this ig the fact that in experiments with
perception of syllables the reaction time



for single phonemes is much greater than the
reaction time for syllables themselves.Thus
one 1g bound to insist that the real forma-~
tive units are the gyllables.
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Fig.2. A flow-chart of a part of the verbal
phonetic perception based on the system of
human menory (1.Frhronetic units as speech ch-
aing in 5IM and IEIM;2.Tenplates in LTM;3.Is
the phonetic unit a gesment or a suprasep-
ment?4.Sezment; 5. Suprasesment;6.00 the ten-
plates correspond to sound images or not?7.
Corresponding to sound images templates;P.
Otherwige;9.Comparison in O0S5TH of gegments
from ZEIl with templates from EIM with templ-
ates from LTM; {0,Are the compared images si-
mple or compound?{1.Simple; 12. Compound; 13.Co
mparison of the simple sesment imaze (coming
from FEIM) with primary templates;14.Is the
compared compound image of type A or type B?
15.Type A; 16.Type A comparison (using inte-
gral values);17.Type B; 12, Comparison of type
B(coincidende of all component narameters
and nearness of their valuea);19.1s the ima—
ge-unit from EH an intonation model?20.Is
it a2 thythmic structure?21.Comparison with
approporiate templates from IT;22.The same;
23. we have a perfect £it (i.e.we are inp-
gide the ZIP)724,In the ZIP;25.In 257;26.In
teracting O0STM and ITM recosnize the unit of
the semantic zonal space of TTM;27.4 simila-
rity is egtablished;28. Are parameter compen-
gating?29.Compengating parameters; 30,1t the
case;31.The conpound undt ia a2 "syllable/ty-
pe A";352.The supragesment unit has atenpla-
te of sound inage? 33.5und image;34.M0t a
gound image;35.Comparigon with templates
which are mot templates of sound images;3f.
Simple or comupound? 37.Simple;38. Compound;
39.Type A or type I7 40.Type A3 41.Type Bid2.
Conparison in OSTY of the ginple image, com-
ing from IV, with tenplates from LTM; 43.Com-
parison of compound images of type A;44.Com-
parison of compound images of type B;45.1s
this unit-image a feature of phonemes? 46.1s
it a bemolity? 47.Is it a diffusion? 48.Es-
tablishing the corregponding property;42.Es—
tablishing a benolity; ®0.Establishing a dife-
fugion; St.Is the fit exact? 52.Yes,it iz in
2IP;53.¥o,it is in Z3T;54.Bvaluation of the
nearness; 5%.Interacting OSTM and LTM recog—
nize the coposition (identity reaction);56.
Forming the recosnized unit-percept; 57.Re~
ady for a new round.).



SYLLABLE-BASED PHONOLOGICAL RULES AND THEIR
IMPLICATIONS FOR SPEECH RECOGNITION
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Abstract

Rules can be written which describe with fair accuracy the perceived
syllabic structure of English. Once syllabic structure is established, many
important phonoelogical rules find natural expression in terms of this
structure. In particular, phonemes tend to be modified under the influcnce
of conditions that exist within the syllable in which they reside or when
they play a particular role within their syllable. These observations provide
support lor the sylluble-based approach to speech recognition, but the
explicit rules that arise from syllabic phonology are applicable to
phoneme-based recognition as well,

1. Introduction

Phoneticians as well as workers in the ficld of automatic speech
recognition (ASR) arc well aware of the lack of anything close to a one-
to-onc correspondence between the phonemes of a language and acoustic
cvenls, While the complexity of the mapping from phoneme to seund does
not preclude the creation of an cllective ASR device whose basic unit of
recognition is the phoneme, it is clear that the success of such an
undertzking is dependent vpon discovering the large set of relevant
conicxi-sensitive rules, making them explicit, and encoding them in the
recognizer. Even proponents of such an approach recognize the enormity
of the task (cl, Zue, 1985),

Wholc-word template-matching (cf. Itakura, 1975; Rabiner &
Levinson, 1981) is an approach to ASR which appears to obviate the need
for the long and difficult program of discovery of the details of the
phoneme-1o-sound mapping. In this technique, no explicit decision is made
regarding where in time each phoneme lics and what its identity might be,
Rather, for each word in a vocabulary, a reference template is created
consisting of a set of spectral representations computed at regular intervals
in time, on the order of every 10 msec. The scquence of spectral
representations of n word to be recognized is then compared 10 each of the
templates (afier time-normalization) and the enknown word is taken to
have the same identity as the template to which it has the least total
spectral "distance,” appropriately computed.

Whole-word matching works very well for recognizing small
vacabuiaries of words spoken in isolation, As vocabulary size increases, a
disadvantage of (his approach become apparent: a new templale must be
created, stored, and included in the distance calculation for each additional
word in the vocabulary. In addition, much of the advantage of whole-word
matching is ost in continwous speech, since word boundaries are not easiiy
determinable and, in any case, cross-word-boundary phonology can greatly
alter the isolated form of words.

It has occurred to several ASR researchers that most of the advantages
of the phoneme-based approach (finite vocabulary size, straightforward
cxiension 10 continuous speech in many cases) and of the whole-word
template-matching mcthod (no need for explicit representation of many
complex contextual effects) can be combined in an approach to ASR in
which the basic unit is the syllable or demisyllable. Inherent in the
advocacy of syllable-based recognition is the assumption that most
contextual varintion on the part of phenemes is duc to the influence of
other phonemes within the same syllable, and that the effects of the
environment outside the syllable in which a given phoneme lies can for the
most part be considered second-order (cf. Fujimura, 1975; Mermelsicin,
1975; Kahn et al, 1984).

In the last ten years several groups have taken important first steps
toward the implementation of high-performance (demi)syllable-based
recognition systems (e.g., De Mori et al, 1976; Ruske & Schotola, 1978;
Zwicker et al, 1979; Hunt et al, 1980; Ruske, 1982; Rosenberg et al,
£983}, and it is 1o be hoped that this work will continue.

I 100 have performed some (very preliminary) work in syllable-based
(Kahn, 1982, 1983) and demisyllable-based (Rosenberg et al, 1983; Kahn
¢t al, 1984) recognition, but thc present paper is concerned with the
linguistic motivation for the use of (demi)syllabic units in ASR. 1 believe,
however, that not only does the phonological analysis discussed below argue
for the wisdom of the (demi)syllable approach, but also that the explicit
rule formulations that arc an output of the syllable-based analysis can
profitably be used in phoneme-based recognition.

2. The syllable in English phonology

In many languages it is abvious to native speakers how words of their
language are 1o be syllabificd, but English has both clear (reply = re—ply,
not rep—ly or repl—y) and unclear {(pony = po—ny or pon—yp?} cases.
This apparent indeterminateness has led the authors of many formal
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accounts of English phonology to deny the syllable a rale in linguistic
descriptions. This is unfortunate, because the concept of “syllable” is
intuitively meaningful even to speakers of languages like English, and also
because many phonological rules call out for descriptions in terms of the
syllable, if only the concept could be formalized.

In Kahn (1980} I suggested an analysis of English syllable structure
that 1 feel accounts well for both the clear and unclear cases of word
syllabification, as well as for the syllabification of phrases in the case of
continuous speech (where a syllable may extend across 2 word boundary).
Most impaoriant, once syllabic structure is established in accordance with
this analysis, many important phonological rules {sound modifications) can
be expressed in a natural and compact way in terms of the syllable. In the
limited space available here | will try to outline the aunalysis of English
syllabification and discuss some examples of syllable-based rules. In all
cases, | will have to omit details which may be significant but which do
not, | believe, affect the correctness of the basic analysis.

2.1 Analysis of words and phrases into syllables

There is little controversy as to how many syllables a normally-spoken
word contains. At the core of each syllable is exactly one vowel or other
“syllabic* phoneme (like [n) of butron). Each sylable will also contain
zero or more non-syllabic phonemes (which | will imprecisely refer 10 as
“consonants”) beforc and after the vowel, Clearly any word-initial (-final)
consonants must reside in the first (last) syllable of the word. Thus the
question of interest is whether, in words of more than one syllable, to
associate consonants that stand between two vowels with the preceding or
following syllable.

In this regard, it is surcly significant that any polysyllabic word of
English can be broken down into syllables each one of which could stand
alone as an English word without breaking the constraints on permissible
word-initin) and -final clusters. Thus English has werds like hamster,
corresponding 1o the permissibility of word-final /m/ and -initial /st/, but
nonc like kamkter since there is no analysis of /mkt/ into permissible
clusters. A natural conclusion from this observation is that English simply
has a set of permissible syllable-initial and -final clusters, from which the
focts about word-initial and -final clusters fall out as an immediate
consequence.

The question remains how 10 correctly predict syllabifications in cases
where more than one analysis is consistent with the cluster constraints
(why re—ply, not rep=Iy?). The answer appears 1o reside in the
"maximal initial cluster” (MIC) principle: a syllable boundary is placed in
u sequence of between-vowel consonants as far left as possible, consistent
with the initinl/final cluster constraints.

The MIC principle alone will, in general, predict correct syllabifications
for what were referred to above as the "clear” cases. Even in the unclear
cases, MIC appears to be correct, pravided we look at overly precise, very-
slow-speech pronunciations. In such spcech we observe po—ny, not
pon—y, ci—ty, not cii—y; Pa—trick, not Pat—rick,

Before returning to normal-rate syllabifications, it will be helpful to
introduce a graphical representation of syllabification. Fig. 1 indicates that
the word reply consists of two syllables, re and pfy. Nole that if we
impose the natural constraint that the lines connecting syllables and
phonemes may not cross, a whole class of syllabifications, like that in Fig. 2
in which the /t/ of reply is a member of the second syllable, become, quite
appropriately, impossible to represent.

Now suppose that there are ne further constraints on linking syllables
and phonemes (aside from the onc-syllable-one-vowel principle mentioned
earliec), Then in addition to the syllabification of pory shown in Fig. 3,
which, as noted above, is appropriate for the slow-speech pronunciation of
this word, we might try to interpret the syllabification of Fig. 4. In Fig. 4,
the /n/ of pony is shown as belonging simultancously to bath sytfables, i.c.,
as being "ambisyllabic." | would suggest that this is the normal-rate
syllabification of the word. The native speaker's inability to assign the /n/
of pony unambiguously to one or the other syllable in the normal-rate
pronunciation of the word would then be atiributed 10 the /n/ being
ambisyllabic at normal rates (and in fact some phoneticians, in informal
descriptions of English syllabification, have suggested that such consonants
might be shared by two syllables). We can formalize the structural change
in going from slow 1o normal speech as the addition of the line of
association between /n/ and the first syllable.

The consequences of such an analysis go well beyond formalizing the
intuition that certain consonants in English do, and others do not, reside
fully in onc syllable; there are phonological implications as well. For
cxample, the simple rule "vowels become nasalized in English when
followed by a nasal consonant in the same syllable* accounts for the /5/ of
fone and normal-rate pony alongside the /fo/ of poke and slow-speech
pony. French nasalized vowels are the result of o similar rule {an vs.
année). Sect. 2.2 is concerned with examples of this type of rule.

We have not yet discussed under what conditions we observe
ambisyllabicily; for ex., as opposed to pony, the syllabification of reply has
the simple form givea in Fig. 1 for both slow and narmal speech. As
discussed in more detail in Kahn (1980), it appears that the initial
consonant of an unstressed syllable becomes ambisyllabic with a preceding



vowel-final syllable. Thus it is the stress on the second syllable of reply
that blocks ambisyllabification of the /p/.

To this point we have been discussing the syllabification of words in
isolation. Turning to continuous speech, let us note first that it is always a1
least possible to pause belween words, so a reasonable approach to
continuous  specch would bc 1o postulate an initial level at which
syllabification is in accordance with the “word-is-an-island” rules of the
preceding paragraphs, with additional lines of syllabic asscciation across
word boundaries added by "continuous-speech rules." The most important
of these rules appears (o add a line of associntion (e.g., the datted line in
Fig. 5b) between the final consonant of a word and the initial syllable of a
following  vowel-initial word. This rule of “trans-word-boundary
ambisyllabification® {TWA) can be understood when it is recalled that the
clearly preferred syllable structure among the warld’s languages is ...CV-
CV.., not ..VC-VC,,, Within words, this lact is reflected in the MIC
principle. MIC is powerless, however, in the case of a word that happens
to start with a vowel. In continuous speech, the unnatural situation of a
vowel-initial syllable is remedicd, where possible, by TWA. Thus rocker
and rock i1, syllabically distinct in slow speech {solid lines of association in
Fig. 5), become homophonous at normal rates {addition of dashed lines).

2.2 Rules sensitive to syllabic struciure

Many important phonological rules of English (and other languages)
are best deseribed in terms of syllabic structure. The outline of English
syllabic structure given above is sufficient to iflustrate several of these
rules.

1t is well known that the voiceless siops, and in particular /1/, lake very
different form as a funclion of environment. For example, A1/ is an
aspirated stop in tack, ar unaspirated stop in stack, a "flap” in city (Am.
and Can. pronunciation) and is glottalized in sit. | would suggest that the
rules responsible for these forms state that /t/, underlyingly an wnaspirated
stop, is aspirated when only syllable-initial, Rapped when ambisyllabic, and
glottalized when following a vowel and not syllable-initial. It s
straightforward to confirm that these rules operate properly in simple cases
like the words just cited. but the rules make other iestable predictions.
Thus in the phrase Let Ann do it we expect - and observe - glottalized /t/
in fer il there happens 1o be a pause after the word but flapped /1/ in
continuous speech, where TWA has applied.  Similarly, in overprecise
speech, where the {within-word) ambisyllabification rule fails 10 apply, the
/t/ of ciry, normally ambisyllabic and Mapped, has syllable-initial
association only, and is aspirated. OF course, rules such as the ones that
account for the various allophones of /t/ could be stated without reference
e syllubic structure, but they would be grossly complicated, and would in
fact be restating the independently-needed rules of English syllabification
within the specific silophonic rules {cf. Kahn, 1981).

In standard British English and in paris of the Eastern U.S., /t/ is
deleted in cerizin cnvironments where spelling and the more “conservative”
dialects would have it pronounced. The rule accounting for these facts, as
it entered the language, is clearly sylluble-conditioned and takes very much
the form of the /t/-gloualization rule. Thus /r/ is lost when not syllable-
initial, as in form, for me, for(pause) Ann, but is retained in foress, where
frf is syllable-initial by MIC (and, irrelevantly, also syllable-final at
normal rate by ambisyllabification), and for(no-pause)Ann, where /r/ is
syllable-initial by TWA. French “liaisen” is a more complex, though
clearly related, phenomenon. If we regard a word like vous as consisting
of the phonemes /vuz/ at an abstract level, and deletc /z/ when not
syllable-initial, then the TWA-like rule of French will account for vous
avez Ivuzave] vs. vous laver [vulavel.

There is another very large class of rules which are clearly syllable-
conditioned but differ in having been "frozen” at the lexical level. In most
dialects of English, the vowcl of car, through the influence of the following
back phoneme /r/ {which uniil quite recently was pronounced in aff
dialects}, has a distinctly more back quality than the vowel fac/ of cat,
cap, cic. (As sugpested by the spelling, the vowels of car, cat, cle. were
at onc time identical) The fae/ of words like carry, however, was
unatffected by the rule that modified car. We can account for these facts
by imposing the natural condition that /t/ be fully in the syllable of the
vawel it follows for it 10 have the backing ¢ffect. In accordance with this
rule, words like card also have the backed vowel. The rule is *frezen” in
the sense that words whose base form became subjcct to the rule now show
the backed vowel cven in non-base forms which should not be subject to
the rule. Thus srarry has the vowe! of siar, not of carry. Similar rules
have affccted other vowels: her, herd (vowel modified by /r/) vs, hem,
herring (nat}.

A similar rule, but in the domain of consonants, accounts for the loss of
/g/ in fong [loq) vs. its retention in longer [ngl. Basically, /qg/ is
simplified to /f/ except when /g/ is syllable-initial. In the case of ‘words
of the ferm YngC..V, this rule correctly predicts [9) without [g] (e.g.
angstrom and ¥ngve) except when C is such that /gC/ ferms a
permissible initial cluster: amgry (cl. grow), limguist ["ling-gwist"] (cf.
Gwendofyn).  Previous, non-syilabic analyses of ag did not properly
account for these facts and could be made to only through explicit
reference 1o the differential behavior of gs cic. vs. gr ctc.; but clearly the
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carrect course s to state the latter distinction once and for all in the
(independently-required) permissible-cluster rules. . .

Additional cxamples of syllable-conditioned rules could casily be cited.
At this point, however, let us note that a common feature of the rules that
have been discussed is that they involve major changes, s viewed by the
phonctician. That is, these rules delete scgments ar replace onc well-
defined phonetic clement with another. Another class of rules, not
gencrally considered to be in the realm of traditional phonology, deals with
phenomena at a lower level. Thus, for ex., the phonetician (and the native
._spcukcr) hears the /if's of hee and Dee to be identical, cven though the
initiat parts of the two vowels are specirally quite distinct, due to the
formant-transition phenomenon. Although the separation between
phoncme causing an acoustic modification and.the modificd phoneme is
sometimes surprisingly large, it is probably [ait to say that the strongest
effects are found within the syllable and thus might be regarded as simply
very-low-level  syllable-based phonctic  rules  {cf. Malmberg, 1955,
Fujimura, 1975, 1976).

3. Conclusion

This paper has been concerned with syllable-bused phonetics and
phonology and their relevance 10 ASR. Whether onc is attempting to
predict what phoncmes arc allowable in a particular environment or the
precise acoustic shape of a given phoneme, local syllabic structure is most
often found 1o be significant, In ASR systems based on syllabic units, such
dependencies come "built-in." Even 1o the worker commiticd to phoneme-
bused ASR, however, syllable-bused phonology is relevant because it offers
compact and explicit formulations of many phoneme realization rules.
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Syllable Network for Phonemic Decoding of Specech

V. Gupla, M. Lennig,” J. Marcus, and P. Mermelstein®
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The decoding of apeech into phonemes for large vocab-
ulary speech recognition is made more reliable by reatrict-
ing phoneme sequences to those which compose valid sylla-
blea. To apply this restriction when decoding a sequence of
phonemes, we use a syllable network representing the valid
ayllables in Websler’s 7th Collegiale dictionary.

Since major allophonic varianis of a phoneme are de-
termined by the phoneme’s position within the syllable fe.g.,
prevocalic va. postvocalie /r/}, the syllable network ean be
used lo represent allophonic variation by employing distinet
allophone models of a phoneme in different poaitions within
the network. A preliminary ezperiment using the ayllable
network in large vocabulary recognition o select appropriate
Markov models for allophones shows promising reaulls.

1.0 Intrcduction

In this paper, we describe the use of & syllable network
when decoding speech as a sequence of phonemes in large vo-
cabulary speech recognition. Phonemic decoding of speech
without any restriction on valid phoneme sequences leads to
a large number of hypotheses which do not obey the phono-
tactic constraints of the language. We have used a syllable
network to restrict the possible phoneme sequences to corre-
spond to sequences of valid syllables. The syllable network
also serves to control the choice of positional allophones. Al-
lophonic variation is represented by using different Markov
sources (Bahl et al., 1983} for a given phoneme depending
upon its position within the syllable network.

2.0 Sylable Network

A syllable network for English which generates all and
only the 8157 English syllables is necessarily complex. Such
a network can be obtained by first constructing a tree of
all possible syliables and then merging the tree from both
ends. Simpler networks overgenerate the English syllabary.
We have constructed a syllable network of intermediate com-
plexity to achieve a compromise between network complex-
ity and overgencration.

The syllabic onset, nucleus, and coda are the subunits
of the syllable within which the tightest phonotactic con-
straints obtain (Selkirk, 1982). Thus, our syllable network
includes separate subnetworks for cach of these three sub-
units. The syllable network generates phoneme sequences
of the form

(01{02(O3))) N (C1{C2(C5(C4))))
where O; stands for a consonant in the syllabic onset, N for
the vowel in the syllabic nucleus, and C; for a consonant in
the syllabic coda. The parentheses imply that the segment

* Also with INRS-Télécommunications, University of Quebec.
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is optional. Only the nucleus is compulsory in the syllable.
The subnetwork for the onset allows a maximum of three
consonants, while that for the coda allows a maximum of
four.

The syllable network was created based on the 60,000
phonemic transcriptions contained in Webster’s 7th Colle-
giate dictionary (henceforth, the dictionary). Starting with
a rudimentary network, branches were added iteratively to
account for syllables in the dictionary not generated by the
network. The resulting network has 76 nodes and over 300
branches.

The phonotactic constraints can be tightened further by
using a separate syllable network for each syllable position
within the word. The maximum number of syllables for any
word in the dictionary is 10 (except for one word which was
excluded). The number of valid syllables decreases with in-
creasing syllable position number within the word (Table 1).
Note that the set of syllables which occur in the first position
ineludes all syllables which can occur in any position.

[ Syllable posttlon in worleumber of distinct syHables
1st 8157
2nd | 6181
3rd 3931
’ 4th 1718
5th 724
6th 306
7th 110
8th 36
9th 12
L om e
Table 1. Number of distinct syllables

possible at each position within the
Enghsh word.

3.0 Use of the Syllable Network to Select
Allophones

Allophonic variants of a phoneme are often determined
by the phoneme’s position within the syllable {e.g., prevo-
calic, postvocalic, intracluster). For example, the phonemes
[tr w/ differ significantly in their prevocalic and postvocalic
realizations. First and second formant trajectories move up-
ward in most contexts when these phonemes appear in pre-
vocalic position, while the formant trajectories move down-
ward when these phonemes appear in postvocalic position.
By using separate Markov sources for allophones which dif-
fer in position, we can account for such variation.

In some cases, allophones are conditioned by a more de-
tailed positional specification. For example, the allophones
of the nasal consonants which occur in the syllable-initial
clusters fsm/ and fsn/ are realized as partially devoiced
with a very short nasal murmur. Also, devoiced allophones
of the phonemes fw j r 1/ occur when preceded by a voice-
less fricative as in switeh, few, three, and slide. Allophones
which are difficult to account for with the syllable network



are those which depend on larger contexts than the syllable.
For example, {r]), the flapped allophone of /t/, occurs ambi-
syllabically after a stressed and before an unstressed vowel,
as in bulter, pronounced (bara].

4.0 Preliminary Recognition Results

In a series of speaker-dependent, isolated word recogni-
tion experiments using the syllable network, the unknown
word is decaded as a sequence of syllables, where each syl-
lable corresponds to a path through the syllable network.
Each of the syllable network’s transitions is mapped to a
Markov source allophone model. In the experiments we
report, we vary this mapping. First, all occurrences of a
phoneme are represented by a single Markov source. Then,
separate Markov sources are used to represent a given pho-
neme occurring in the syllabic onset and in the syllabic coda.
We use statistical decoding to compute between 200 and 600
most likely syllable sequences carresponding to words in the
60,000-word dictionary. Since our system does not employ a
language model, all 60,000 words are assigned equal a priori
probability. Thus, the perplexity of this task is 60,000,

The training set consists of 800 word tokens from arbi-
trary texts, 60 distinct words chosen to contain consonant
clusters, and 100 distinct CVC words, where C stands for a
stop or a liquid, i.e., one of the consonants /fptkbdgrl/.

Two test sets were used (see Appendices). The first,
denoted Chrysler, is a 90-word automobile advertisement.
The second is a 100-word list of CVC words where C is a
stop or a liquid, having no words in common with the cve
training list. 59% of the words in the Chrysler test set and
6% of the words in the CVC test set are represented in the
vocabulary of the training set. Training and test sets are
disjunct.

Two experimental conditions are compared:

(1) One Markov source (one allophone) for each of the
39 phonemes in the syllable network.

(2) Stops and liquids are represented by two allophones
each. One Markov source is used in the syllabic on-
set, the other in the syilabic coda. Other phonemes
are represented by one allophone ench.

The recognition results in Table 2 show the percent cor-
rect recognition in the top n phonetic transcriptions, where
n is either 1, 5, 20, or 100. Use of distinct allophones for
the stops and liquids as they occur in the syllabic onset and
coda improves the performance only for the CVC test set.

test set | condition [n=1|n=5|n=20 n =100
(1) 60% | 81% | 01% | 04%
Chrysler
(2) 62% | 81% | 89% 94%
e (1) 15% | 36% | 54% 67%
(2) 21% | 56% 7% 88%

Table 2. Percent correct recognition in top n
choices.
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5.0 Conclusions

The syllable network provides a convenient framework
for the selection of different allophonic models depending
upon a phoneme’s position within the syllable, Separate
allophones of stops and liquids for the syllabic onset and
coda lead to a significant improvement in recognition of
CVC words. The fact that no significant improvement is
observed in recognition of arbitrary text suggests that a
more general representation of allophonic variation in the
multisyllabic environment and more complete training ap-
Propriate to that environment are necessary.
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Appendix: Chrysler Test Set

begin paragraph here is the confidence of front hyphen wheel
drive comma the security of advanced elecironies and the
quie! comma smooth ride you ezpect in a fine luzury car
period begin paragraph and here are the luzurics you de-
mand period automalic transmission comma power windows
comma power sicering comma power brakes comma power re-
mote mirrors and individual reclining seats standard period
begin paragraph and finally comma here is the new technol-
ogy of turbo-power period more power {o move you period io
accelerale period {0 pass period (o cruise in serene comjort
ellipsia yet with remarkeble fuel efficiency period.

Appendix: CVC Test Set

but could back write put god book cut dead pull bed role top
bad deal date doudt care look rock lip tool lack pair tear cup
pale load pour dare dear kick tip leap cop lobe rob rub cab
tub gale gag tag pig log bog rogue gab goat guile ball lower bil
roll bird beal cool tall root coal rout luck core cat rare lale
Paul ecal pike beer pot peer tail eape robe lab goad dug gape
tug dip rot rat cot cod light tide tuck tack Iull roar lure rope
ripe reap rip pile tile curd peard,
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In this paper we present a large vocabulary,
speaker dependent, isclated word recognition
system with diphones as basic units, so that
the training session is much faster and

useful for any application. The system,
tested on a vocabulary of 910 words on one
speaker, gave a word recognition rate of
78%, slightly lower than an Itakura
recognizer with whole word templates
{WRR=B5%) .
INTRODUCTION

In a template-matching recognition

system for large vocabulary applications,

speaker dependence still seems to be an
essential regquirement for a satisfactory
performance. Oon the other hand the
classical and most common approach to
isolated word recognition, the whole-word
template matching, presents a serious
drawback. 1In fact a training session where

the whole vocabulary has to be uttered, even
only once. becomes time consuming.
Moreover, one or more repetitions of each
word will be necessary for the extraction of
reliable templates. The only practical
solution to the problem is to use some kind
of sub-word units to represent words. We
chose the diphones, that, in our definjtion,
include transitions between two phonemes,
small portions of steady~-state sounds and
some longer transitional elements embracing
three phonemes [1,23. These units provided
good performance in speaker-dependent
connected speech recognition experiments
with small and medium size wvocabularies L[31.
Moreover the diphones proved to be robust
and economic units, as they are quite
invariant with the context and a set of
about 300 of them (corresponding to less
than 400 templates) is sufficient to cover
the whole Italian lexicon.

ISOLATED WORD RECOGNITION USING DIPHONES

The use of diphones is particularly
appealing in speaker-dependent applications,
as the training session for a necw speaker,
consisting in the wutterance of a set of
meaningful sentences, is only few minutes
long. By means of an automatic technique
C41, a diphone template inventory suitable
for any application in the Italian language
can then be derived from the collected
speech material.

In the language model with diphones as
basic units we assume that time warping may
be allowed only during stationary diphones;
templates for these unjits consist of a
single spectral state, and appropriate lower
and upper duration bounds ensure the time
alignment capability. No warping is allowed
on transitional diphones, whose templates
consist of a sequence of spectral states of
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specified duration.

The medel of a word consists of a lattice of
diphones, where appropriate duration bounds
are associated to each diphone. Alternative
paths are present 1In order to deal with
different possible pronunciations or
phonetic variations C11. Building up a word
prototype as a lattice of diphone templates
gives an accurate representation of the
word, that is expected to work as well or
better than the relevant whole-word
template, as was shown in experiments on
small-vocabulary connected word recognition

L33. As an example, similar words should be
better discriminated as their
representations coincide except for the

actually phonetically different portions.
However, in the recognition of isolated
words with no syntactic constraints, the use

of a general lattice model becomes
unsuitable, as the computational load and
memory requirements of the decoding
strategies may sensibly grow when the

vocabulary size increases, making it hard to
achieve a real-time performance. A
compromise solution may be obtained if we
consider that, in a classical isolated word
matching, faster strategies can be
implemented; in fact, as the speech model
within a word consists of a regular lattice
of spectral states, the same transition
rules can be applied to any state.

Our approach then makes wuse of a diphone

description of word templates in order to
minimize the storage requirements, but,
during the recognition phase, a spectral
state description is recovered to speed up
the matching. When building a word
template, its lattice representation is
translated into as many single path

prototypes as needed, #ach one composed of a
sequence of diphone labels and associated
duration bounds. Each diphone label is then
a pointer to the beginning of the spectral
description of a diphone template in a
common area containing the inventory. 1In
the current implementation each spectral
state description consists of 12 LPEC
Cepstral parameters computed every
centisecond on a 25.6 msec portion of a 10
KHz sampled signal.

When a word prototype has to be
the recognition phase, its
sequence is used to fetch the appropriate
sequence of spectral states and to build in
a work area a synthetic prototype according
also to the duration bounds of each diphone.
The input word, isolated by an end-point
detection algorithm, can then be matched
against each expanded prototype using an
isolated word recognition approach and
producing a cumulative distance score.

In a preliminary stage of our work, two
Dynamic Programming algorithms were tested.
cbtaining essentially the same results. The
former is derived from classical Itakura
D.P. equations where weights are attached
to skip and duplication transitions; the
duration of stationary diphones is adjusted
to the wvalue that approximately gives the
estimated duration bhounds for that sound
when the 2:1 warping of Itakura‘s eguations
is applied. 1In this way a sort of synthetic
whole-word template is built, and the
matching strategy loses any information

matched in
diphone label



about the diphones that originated it. The
latter algorithm (the one used to carry on
the experiments) is more closely related to
our diphone language model, as it allows
time warping to be performed on stationary
diphones only, giving a broader range of
compression ratios than the usual 2:1 . In
this matching strategy the transition
portions of the reference pattern, as well
as the mimimum duration portions of
stationary diphones, are always completely

traversed (no duplication, no skip}), while
skipping to the next diphone is only
permitted on stationary diphones when their

minimum allowed durations have already been
reached.

The implementation of this technique has
shown to be very efficient and less time
consuming than the conventional ones:
dynamic programming choices are not made at
every frame of the reference pattern, but
only on limited portions of it,
corresponding to the variable length part of
stationary diphones.

EXPERIMENTAL RESULTS

The complete approach was tested on the
recognition of isolated words from the
vocabulary of 910 names beginning with the
same consonant “B". In a whole-word
template training session made by a
cooperative speaker it would take about 4 or
5 hours (with no breaks) to collect a single

repetition of the entire vocabulary. Stress
effects were not considered.
In our experimentation, a female speaker

uttered a set of 36 meaninugful sentences in
a connected way, which constituted the
training speech material for the extraction
of the spcaker-dependent diphone inventory.
This session lasted ten minutes only.

An automatic bootstrapping procedure was
then applied to extract the diphone
templates: a forced recognition step was
employed to determine the boundaries of each
diphone occurrence in all the training
sentences; the first occurrence of each
transitional diphone was chosen as a
template, while for each staticnary diphone
a clustering technique was applied to choose
among all 1its occurrences onhe or more
"representative” ones as templates.
Generation of the templates for the words in
the vocabulary was then automatically
obtained by translating their orthographic
forms into corresponding diphone sequences.
Two repetitions of the 910 words of this
vocabulary were also collected from the same

speaker, and an end-point detection
procedure was applied to each word; we will
refer to them as SET A and SET B.

In the first experiment a classical Itakura
isolated word recognizer was run using in
turn sets A and B as test or reference
patterns (tests Il and I2). Both of these

experiments, as shown in Fig. 1, gave a Word
Recognition Rate of 85%; in both cases,
also, in 97% of the times the correct word
was classified within the tenth position.
These numbers were used as reference scores
for the following experiment, where the
diphone based isolated word recognizer was
tested. Using SET A as test patterns, the
diphone based templates gave a WRR of about
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78% (see Fig. 1, test D} which 1is
significantly lower; anyway - correct
classgification score within the N top

candidates rapidly converges to that of Il
and 12 tests, indicating that the adopted
approach should still be refined in order to
achieve a better discrimination among
similar words.

In fact, a qualitative inspection of the
classification errors occurred, convinced us
that, while the diphone language model seems
to be adequate, in most cases misrecognition

has to be ascribed to local confusion
generated by diphone templates for some
particular elasses of sounds {such as

liguids). We believe that a more accurate
generation of the template inventory will
yield more satisfactory WRR results.

This problem will be the focus of future
work, together with the implementation of a
sub-system that should restrict the number
of word prototypes to be matched by means of
a gross preclassification algorithm based on
classes of diphones.

100 T T T T T T T T T !

95

Fig. 1: Word recognition rates within the N
{N= 1,..., 10) top candidates in the

experiments Il, I2, D (see text).
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Abstract: The paper describes methods for an explicit
segmentation of the speech signal into demisyllable
segments by evaluating the output of a loudness model.
Syllable nuclel are indicated by maxima of a smoothed
loudness function. Consonant clusters and vowels are
introduced as decision units din order to reduce the
inventory of classes. Two methods for classification
of consonant clusters are compared: template matching
and a feature extraction approach based on acoustic
cues. Sentence recognition operates on phonetic word
models adapted to the demisyllable structure.

1. INTRODUCTION

An important question in automatic speech recog-
nition is the choice of basic units which have to be
processed basically by the system. A segmentation
procedure tries to divide the speech signal into indi-
vidual parts (segments) in such a way that they can
be processed as independently as possible. The seg-
mentation can be performed implicitly when classifi-
cation of che segments and determination of the seg-
ment boundaries are carried out in common. However,
this usually requires an enormous expenditure of com-
puting power. On the other hand, segmentation can be
carried out explicitly by placing definite segment
boundaries in the speech signal; classification now
only has to treat the fixed segments. In this case,
however, the system must be prepared for the fact
that the segmentation step may cause errors, too. The
subsequent stages of the system have to be able to
correct these segmentation errors (see Sect. 5).

The speech recognition system described in this
paper starts from an explicit segmentation into demi-
sylables. These processing units have the advantage
that the main coarticulation effects are contained
within the segments. The number of classes can be
drastically reduced when consonant clusters and vow-
els are used as decision wnits for classification.

Evaluation of the gyllable structure in the
speech signal 1s facilitated by using a loudness mo-—
del of hearing /1/ for preprocessing. This model con-
sists of a critical-band-rate filter bank with 24
band-pass filters; 22 channels are used in the ByStem
(50 Hz - 8.5 kHz).  All channels are processed by a

loudness  model
which simulates

©® filter bank loudness model the masking ef-

T = fects in hearing.

H ﬂ loudness  The outputs of

speethi] i specten the mnodel are
signal E . sampled every

10 ms; the 22
components con-
stitute a so-cal-
led loudness
spectrum, seg
fig. la. The to-
tal loudness
N({t) 1s calcula-
ted as the sum
of all 22 compo-
nents; addicio-
Fig. 1. a) Block diagram nally a weighted
of preprocessing; b) cal- sum of these com-
culation of N(t) and Nm(t). ponents glives

®

loudness spectra loudness spec

1 kel

fotel loudness Nit) modified loudness Malt)

the so—called modified loudness Nm(t) which is very
useful for syllabic segmentation. Fig.lb displays the
block diagram for the calculation of these functions.

2. DEMISYLLABLE SEGMENTATION

The modified loudness N (t) evaluates the fre-
quency range which is dominat®d by the vowels. There-
fore this function is especlally suited to indicate
the syllable nuclei (vowels and diphthongs). When
this function is smoothed according to the average
syllable rhythm in the speech signal, the local maxi-
ma of this function indicate the positions of the syl-
lable nuclei. For this purpose a special smoothing
filter (digital low-pass filter) has been applied hav-
ing a Gauss-like impulse response h(t), see fig. 2;
in the digital calculaction this function corresponds
to h{n) with n = n.At (10ms). This smoothing filter has
been realized on the basis of an elementary filter
with a rectangular impulse response; the output sam-
ple y(1) is calculated from the input signal x(n) as:

y(i)= 1/3 (x{i-1) + x{4) + x(1+1)) .
When this filter is placed k-times in series, the im-
pulse responses of fig. 2 result. The repeating fac-
tor k now determines the
time constant T of the
filter, see fig. 2. This
smoothing filter 1s ap-
plied to N {t). The time
constant as been opti-
mized using test materi-
al consisting of 23 sen-
tences spoken six times;
the speech material con-
tained 2566 syllables

_-fi)// altogether /2/. It is im-

-B0 -60-L0 -20 D 20 40 &) Boms Portant to adjust che
Time constont T—-  Cime constant T to the
speaking rate: for a
short time constant T ma-
ny surplus syllable nuc—
lei are marked (insert-
ions), for long time constants T many nuclei are
smoothed out resulting in omissions. Both effects con—
tribuce to the total segmentation error rate as deplc-
ted in fig. 3. It can be seen from the figure that an
optimal value for T was reached for k=7 corresponding
to a time constant T=535.7 ms (this is equivalent to a
cut-off frequency of the filter f = 9 Hz). The minmum
error rate was 3.66% (Erom 2566%syllables 12/). It
has to be borne in mind that here only the maxima of
the optimally smoothed function N (t) were evaluated.
A further reduction in the aegmgntatiun error rate
is achieved by evaluating the spectral information
at the positions of
the maxima indica-
ted by N (t) /3,4/.
As an extreme solu-
tion, a conplate
vowel classifier
can be applied at
omitted syll, @a8ch time instant
nuclei in order to esti-
inserted syll. mate the syllable
nuclel nuclei /2/. In the
realized recogni-
2 L 6 8 B R Wb BB gon,yeten s cou
bination of both
— v Rgmuﬂu'&mhr kf-_ methods was imple-~
304 S0 60 0 80 ms % mented which has a
Time wastant T——  goonentatrion error
rate of about 4-8%
in practical appli-
Fig. 3. Segmentarion error rate catioms with eonti-
for syllable nuclei as a nuous speech,
function of T (from /2/).

hity]
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Fig. 2. Impulse response
h(t) (from /2/).
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Fig. 4. Demisyllable segmentation of the utterance
"sylilabic segmentation".

Syllable boundaries are placed at local miﬁima
in the loudness N(t) between two consecutive syllable
nuclei. When more than one minima are present, the lo-
west minimum 1is chesen /3/. This method yields in
most cases a sultable boundary. The demisyllable seg-
ment now spans the range from the syllable boundary
to the syllable nucleus, see fig. 4.

4. CLASSIFICATION OF CONSONANT CLUSTERS

Each demisyllable segment contains a conscnant
cluster and a part of the vowel from the syllable nu-
cleus. The number of different units can be drastical=-
ly reduced when consonant clusters and vowels are Iin-
troduced as decision units for the classification. In
the German language we only have to discriminate a-

Bout:  _ g5 inftial consonant clusters,

- 20 vowels {inclusive diphthongs},

- 160 final consonant clusters.
That means that the demisyllable is seen as a segmen-
tation and processing unit but not as a decision unit
for recognition., In this way the huge inventory of
different demisyllables can be avoided while preserv-
ing the advantapes of demisyllable segmentation.

4.1 Classification by template matching

A first approach to recognition of the consonant
clusters consists in using complete spectral-temporal
templates of all consonant clusters. For this purpose
a special time normalization procedure was developed
called “dynamic interpolation”. Details of this pro-
cedure have been described in /3,4/. After normaliza-
tion of the demisyllable segment, a city-block metric
can be applied for the calculation of similaricy.

Experiments have been carried out with a test cor-
pus of 368 initial and 384 final demisyllables which
were automatically segmented 1in German words spoken
by one male speaker /5/. This material contained 45
initial consonant clusters and 48 important final con-
sonant clusters. The average recognition score using
the template matching method amounted to 66Z for ini-
tial and 75% for final consonants. These results can
be seen as good as those typlcally cbtained in auto-
matic consonant recognition. Vowel recognition will
not be discussed here.

4.2 Classification by feature extraction

A second approach starts from a description of
those acoustic events within a demisyllable that are
relevant for phonetic decoding. For this purpose the
following features or “cues” were measured: formants,
formant transitions, formant-like links for nasals
and liquids, turbulences (or bursts), pauses, and voi-
ce~bar within pauses or turbulences. These cues are
characterized by spectral and temporal measurements.
Since the number and order of consonants is restric-
ted in syllable-initial and final pesition, initial
consonant clusters could be completely described by
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24 feature components and final consonant clusters by
31 components /5/.

The feature extraction methods are based on the
evaluation of energy in several spectral bands and
are described in /6/. The context dependencies are ta-
ken into account by collating all feature components
derived from a demisyllable segment inte a common fea-
ture vector. For comparison, this method was applied
to the same speech material (see Sect. 4.l).

From the recognized consonant clusters the recog-
nition scores of the single consonants were computed.
The recognition scores were 4 and 7% lower as compa-—
red with the template matching approach /5/. However,
it has to be borne in mind that the feature vectors
consisted only of 24 or 31 components whereas the tem-—
plates needed several hundred components for their re-
presentation. Thus the feature approach can indeed be
§een as a suitable basis for the acoustic-phonetic
analysis of demisyllables.

5. RECOGNITION OF SENTENCES

Demisyliable segmentation and recognition has
been incorporated in a system which processes spoken
sentences as a chain of connected words. This system
is completely described in /7/ and will be summarized
here only very briefly.

Each word of the vocabulary is represented by a
phonetic word model containing the variations in pro-
nunciation as well as possible segmentation errors,
The models are constructed in such a way that they
can be processed very efficiently by use of Dynamic
Programming (DP) methods,

Sentence recognitlion 1s based on a l-stage DP al-
gorithm which determines the best match between a se-
ries of word models and the phonetic symbols (conso-
nant clusters and vowels) provided by the classifica-
tion stage. The word models and the DP transition ru—
les take particular account of the syllablc struc-
ture of the utterance.

First experiments with a 75 word vocabulary re-
sulted in recognition scores of 85% correct words in
continuous speech without utilizing any grammatical
or semantic information. These encouraging results
demonstrate the efficlent use of syllabic units in
all stages of a speech recognition system.
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INTRODUCTION

The half-syllabic units proposed here are units each of
vhich has segment boundaries at steady portions and
preserves a transition between two phonetic units, Segment
boundaries are basically determined by the minima (valleys)
of gross spectral variation measure. The spectral variation
seasure is defined as the root-mean-square value of the
slopes of the weighted regression lines calculated from LPC
cepstrum paramsters over several frames. The maxima (peaks)
of the measure vill serve as the reference points for
further processing.

In speech synthesis by rule, it is primarily important
to select synthetic units that have reasonably small size
of inventory to represent spoken utterances and, at the
same time, are easily concatenated. In speech analysis-
synthesis system at very low-bit~rates such as phonetic
vocoding, the units must, further, be automatically
segmented and be suitable for interpreting into or matching
with the reference units. These requirements on
segmentation and matching or labelling are expected to be
satisfied for speech recognition system in many cases and
for providing useful tools for automatic generation of the
inventory of concatenative units.

Syliables and Half-Syllablee

One of the selections for the unit to be used in concat-
enation-based speech processing is the syllable. There have
been several discussions and experiments on syllable as
recognition unit {1-4). The syllable has been also used as
a unit in synthesis by rule of Japanese [5). One of the
disadvantages to using syllables as units is that the size
of inventory representing spoken utterance is large. This
problem can be solved by introducing smaller units such as
the half-syllabic units proposed here, since much of the
co-articulation among phonetic units is associated with
transition regions and since boundaries at the steady
portions outside transitjons are easily definable.

There exist similar units known as dyads [6), diphcnes
[7), or demisyllables [8) which have the common concept of
incorporating the transition betvween phonemes. The context-
dependent diphones have been utilized in constructing a
phonetic vocoding system (8). The demisyllables originally
proposed for use in a high-quality concatenative speech
synthesis (8] have been successfully applied to
constructing concatenative templates in the word
recoghition for large vocabularies (10).

Dynamie Spectral Feature

The gross spectral variation measure dsrived from a
series of LPC cepstrum coefficients has been proposed as a
dynamic measure investigating individuality of utterances
(11). This dynamic measure has been used in the study on
Japanese CV-syllable perception and it has been shown that
dynamic spectral feature plays a primary role in phoneme
perception (12). Usefulness of the dynamic measure in
comparison with its static counterpart has also been shown
in vord recognition experiment [13). The dynamic measure
has also been applied to the segmentation in a very
low-rate speech coding where.boundaries of the pattern are
defined by the maxima of the measure (14].

The half-syllable-like unit has not yet been applied to

processing Japanese utterance as far as wve know. Our expec-
tation for the units proposed is in the relatively sasll
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gize of inventory in representing Japanese utterances,
since Japanese has relatively simpler syllable organization
than that of English. Our ultimate objective is to provide
nearly universal units suitable for processing spoken
Japanese, As the first step to that goal, our current
interest is in confirming whether the proposed units mest
the basic requirements, that they would bs

1) automatically and reliably segmented,

2) closely related to certain linguistic units, and

3) suitable to acoustic phonetic observations
in the course of constructing the analysis-synthesis system
like segment vocoder. This paper reperts a preliminary
experiment on segmentation of speech signal inte the units
proposed and some observations of the result with respect
to tha above requirements.

SEGMENTATION ALGORITHM

Speech sample is bandlimited to 4 kHz and digitized to
12 bits at sampling frequency of 10 kHz. Linear prediction
(LP) analysis is carried out on a frame-by-frame basis (100
frases/s). Additional acoustic parameters currently used
are a log pover P, a zero-crossing count Z, a count for
sign change of vaverform X, and the first order PARCOR
coefficients k1. The spactral variation measure D(j) for
J-th frame is calculated by
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vhere veight u(i) is currently one for all i and a(i,j) is
the i-th coefficient of the weighted regression line of LPC
cepsiram parameier over several frames. A triangular
veighting function is currently applied over seven frames.

Vith these acoustic parameters, signal processings on
input speech are basically carried out in the following
steps {descriptions in parentheses are associated with
indications in Fig. 1):

1) appointing candidates for segment boundaries at local
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Fig. 1. An example of segmentation and acoustic parsmeters,



Table 1, Segmentation errors for 455 segments

Position Initial Middle Final Total
Deletion 7 7 0 14
Insertien 0 11 1. 12
Total 7 18 1 26

maxima of spectral variation measure (vertical lines),

2) adjusting the segment boundaries by start and end
points of speech interval (S and E),

3) classifying the boundaries into sub-groups of phonetic
units and assighing candidates of vowel identity,

4) assigning the reference points at maxima of the *
variation measure for time arraignment in spectral matching
vith the reference patterns (dotted vertical line),

5) adopting weights for pattern matching inversely
proportienal te the normalized values of the spectral
variation measure,

Among those steps, 3) to 5) are beyond the scope of this
report. However some preliminary trials will be shown later,
As for 2), a hysteresis characteristic is given to the
decisions of speech interval {from S to E) providing two
levels of threshelds for the log power P and the decisions
for the non-speech interval associaoted with intervocalic
unvaiced-stops are stabilized by referring the count of
sign change X. The minimum (valley) just before S and that
Just after E were asgigned as boundaries of the utterance.

RESULT OF PRELIMINARY EXPERIMENT

Sixty names of Japanasse cities spoken by a male adult
vere used as the test material for segmentation process. It
was estimated that the test material consisted of 455 half-
gyllabic units by our visual inspections,

Segmentation

Fig. 1 shows an example of segmentation where the
segment boundaries are denoted by vertical lines and
reference points for matching are denoted by the dotted
vertical lines, Result of ap automatic segmentation of the
test material is summarized in Table 1. Correct rate of
segmentation is more than 94 %. Most of the deletions of
segment boundaries at word-middle are associated with
intervocalic (r) and (g) sounds. These problems are going
to be solved by the test material having vider spectral
bandwidth. It is revealed that problems concerning
deletions at vord-initial and insertions at word-final are
also due to inadequacy of the test material such as low
signal-to-nolse ratio and over-cuts at the beginning and
the end of utterances, So, new test material suitable for
our experipent is under preparation, because the current
saomple has been prepared for other experimental purpose,

Most of insertions of segment boundaries, extra
boundaries than expected, are associated with nasal and
unvoiced stop consonants, It is observed that extra
segments correspond to nasalized vowels and aspirations
after stop bursts. The detailed observation for much speech
waterial from the point of view of acoustic phonetics
should be made in order to give such solution and
interpretation systematically,

Some Observation on Segmente

Signal processings described below have not been fully
automatized yet and, further, wost of the observations have
been based on a small set of test material. Alphabets at
the top of Fig. | are our tentative labelling for the
segnents (units). Segment boundaries are first classified
as either vowels or one of a consonantal group such as
voiced-stops and unvoiced-fricatives using a set of
acoustic parameters. Spectral distances between spectral
frame of the boundary and single frame reference patteras
including isolated five vowels and nasal murmurs vere used
as additional information in the classification.
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Alphabets on the segment boundaries just belov ua?eforms
in Fig. ! denote the first candidates of vowel ldentity
showing minimum spectral distance. Ninety percent of vowel
boundaries are identified as the first candidates and the
remaining ten percent as the second for a sub-set of the
test material having 40 vowels. Linear spectral matchings
of the CV-type segments vith the CV-syllable reference
patterns vere tried after pre-selections using those data
on consonantal group and the first and second vovel
candidates described above, In the matching, time
arraignment betveen the segment and the reference pattern
vas adjusted in such a way that the reference points of
both patterns coincidea, It is observed that correct
CV-syllable appears within the top three candidates for
most cases in this arrangement.

CONCLUDING REMARKS

Although our experimental evidence is at quite a
primitive stage, the half-syllabic units proposed seem to
have potential to mest three basic requirements described
above, Among many problems left to be solved, cur current
interests are in (1) preparation of specch material
suitable for our objectives, including city-names ai
different speeds of utterence and conversational utterances,
(2) improvement and tuning of the segmentation algerithm
applicable for these speech data, and (3} the detailed
observation of the units in acoustic phonetic aspect and
gystematic organization of classification algorithm.
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ABSTRACT

In this paper a development
definition of different recognition unit sets is
described. It takes fnto account acoustic, phonetic
and phonologic knowledges. Such a system can be easi-
ly used to transcribe large lexicon into recognition
units, starting from the ortographic form of the
words. In the following a detailed description of the
formalism used is given, along with some experimental
results obtained by our unit set.

system allowing the

1. INTRODUCTION

A recognition unit set must include a certain
number of Informations belonging to different
knowledge sources. Our recognition system, developed
within a speech understanding project partially
supported by ESPRIT Project No.26, takes into account
the following:

a. Acoustic knowledge, 1.e. the knowledge needed to
hypothesize, recognize or verify an acoustic event
by observing a set of features extracted from a
speech segment.

b. Phonetic knowledge, that is the abllity of deal-
ing with the acoustic events and their relation
to defined phenomenon classes {i.e. phonemes).

c. Phonological knowledge, namely the capability of
transcribing each higher level segment (word,
sentence) by means of the abstract categorization
defined at the phonetic level.

In our system, the acoustic level is Implemented by

means of Hidden Markov Models (HMM); it means that
each unit is described by an HMM in terms of number
of states transition and emission probability matri-

ces that are estimated with the Forward-Backward
algorithm [1].

The other two knowledges are used to represent
whatever Italian word In terms of basic units by
means of a rule system that incliudes mailn phonetic
and phonological variations. That Interface between
the acoustic knowledge (HMMs of units) and the
lexical one is realized by a system based on two
levels of description; the first one is the standard
phonemic form of words along with additional forms
accounting for inter-speaker variations. The second
level is a description of each phonene (the
Underlying Phonemic Structure or UPS) by means of
smaller units; they are mainly stationary sepments
and transitions [4]. Besides, a set of contextual
rules handles the Final transcription of a word in
terms of stationary and transitional units.

This development system was designed to define
an optimal unit set whose performance was experimen-
tally evaluated within a recognltion system. The
optimal set proved to be a trade-off between phonemes
and diphones; when the transition between two sounds
is considered significant for the recognition of the
two sounds themselves (i.e. plosive followed by so-
norant), the corresponding diphone is included in
the set, otherways the transition medel is realized
appending the two phonemic models.

2. PHONETIC TRANSCRIPTIGN

A module involved in the task of transcribing a
lexicon into the corresponding defined elementary
units must first translate an utterance from the or-
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tographic form (nto the corresponding phonetic aone.
Ttalian language(2]. as many others, has not an opte-
graphy falthful to the phonetics, In the sense that
to each grapheme can correspond more than one phonenre,
and some phonemes can be indicated by two graphemes
(for istance the ortographic sequence "gl"can repres-
ent the unique phoneme £ of the IPA alphabet, or can
be pronounced as the plosive "g" followed by the lat-
eral "1"}).Besides that ambigulty Inherent In the lan-
guage, other problems arise: pecple coming from dir-
ferent itallan regions pronounce some words in dif-
ferent ways (1.e. the phoneme "s" of the word "casa”
(house) is pronounced as a voiced phoneme by the
northern people and as an unvoiced one by southern
people) .Moreover each speaker has their habits in the
pronounciation of some words (for Istance a schwa
can be added or not to a word ending by consonant),
These considerations suggested the idea of implement-
ing a semi-automatic transcription: in the phase of
lexicon creation, the operator introduces the
hew words one at a time; if an amblguity Is pointed
out, all the possible trascriptions of the utterance
are crezted and the manual Intervention is required
in order to decide if all these sequences are repre-
sentative of the word (different proncunciations)
or if some of them must be excluded belng wreng.

3. UNDERLYING PHONETIC STRUCTURE

As said before the lower level of phonetic
description consists in the so called Underlying
Phonetic Structure (UPS); the idea is to transcribe
each phoneme into a sequence of elements {Underlying
Phonetic Elements or UPE) which show roughly wuniform
acoustic characteristics. Incidentally the alphabet
used to describe UPS is the same as the phonetic one:
while at the higher phonetic level each symbol
represents a whole phoneme, at the lower UPS level a
symbul represents a phoneme portion. To associate a
UPS to each phoneme we use a set of rewriting rules
as shown in Table 1, where the plus "+" symbol has
the meaning of transition from the preceding or to
the following phoneme; so the rule a=+a a a+ means
that the phoneme a {on the left of the production)
can be translated inte a left transition (+a), a
stationary portion (a) and a right transition (a+).
In Table 1 a complete UPS for the Italian phonetic
system Is reported (the semicolon indicates geminate
consonants). Notice that unvoiced plosives are
translated as silence "-" plus transition to the
following sound while voiced ones as stationary
portion {the voicebar "b") plus transition.

I =7 1 =411 b; = b; b;+

€ = +LEE m =m dz; = dz; dz;+

J = +313 n =n ts; = ts; ts;+

- = o~ 0 = +0 o 8; = +8; 8§;

N =n p = -~ p+ ki = - k;+

K =R A+ 8 = +s 8 t: = - t;+

m =n t = - t+ tf =t

p o=+ u = +uu 1; = +1; 1;

r = +rrrr+ Vv = +v v v+ m: = m;

a = +aa W = +u u u+ Vi o= 4V v vi+
b = b b+ zZ =12 tf; = tf; tf;+

d = b d+ Ai = Ay A+ P |

e =+e e d; = b; d;+ d3; = d3; dz;+

f =1 n; = n; r; =+rr; r; r+
g =bgr Jo=D: v | d3 = d3 dge

1 =+t f; = f; dz = dz dz+

J = +1 i i+ E:i = b; g3+ ts = ts ts+
k= - k+ p; = - p;+

Tab.1 - UPS for the Italian phonemes

Each phoneme is represented by means of a single
UPS which is constituted by a sequence of UPE.In this



way segments of different phonemes showing acoustic
similarities can be treated by the same statisical
mode]l, azs the voicebar of the voiced plosives.

The translation of a word from its phonetic form
to its description in terms of recognition units
starts with the translation of each phoneme into the
corresponding string of UPE. For istance, according
to table 1, the italian word APPARTIENE, rewritten by
the ortographic to phonetic module in the sequence
/ap;artjéne/, can be translated into:

+ap-pir+aa+recrrs-te+l iy +E En e e

The second step detects where the transitions are
possible; the rule to obtain a transition consists in
merging two UPE's containing the symbol “%* in
adjacent positions into one transitional unit. So,

following the previous example, we obtain:

+vaa-p;aa+rerr+—-tldi€ Envtee
a - p:aa rr -tii1i€ En e

It aust be noticed that defining the UPS of the
generic phoneme /x/ as x = +x x+ it comes out the
classical diphone definition, while rewriting each
phoneme by itself as x = x, we obtain the phoneme
definition.

At this point the description of the word can be
handled by a set of rules to take Into account the
possible effects of & particular phonetic context
that cannot be catched by the generic UPS.

4. CONTEXTUAL RULES

Contextual rules can be expressed in the following

general form:

where Ul and W] are generlc recognition units and the
production means that the sequence of units
Ui(i=1,2...n) s translated into the sequence
wWj(j=1,2...m). In our system rules are applied
sequentially, in the given order, to the whole word.
Table 2 gives an example of a rule set. From the
third to the 18-th production, rules to obtain the
stationary portion of /r/ only when it is in a non
intervocalic context are described. The UPS of /r/
is made up of two consecutive stationary portions {+r
rrr+); in fact, being impossible iIn the T[Itallan
language to utter an /r/ between two consonants,
these rules make each vowel cutting away an /r/, so
obtaining the desired transcription. The rules
dealing with /v/ permit to define left transitions
only for those /v/ Inserted in a left vocalic
context.

The rules 1 through 4 make the two vowels /o/
and /3J/ be represented by the same aymbol /o/ as well
as the two vowels /E/ and /e/; this is done because
of the acoustic similarity of the sounds and due to
the fact that in Italian the use of the two o's and
of the two e's depends on the speaker hablits.

Finally the rule 17 transforms each geminate into the
corresponding singleton as we demand the distinction
between them to higher levels of knowledge.

1: #0=#0 9: r_ru=ru 17: #;=2

2: J#=o# 10: a_r=a_ar 18: a_v=a_av_v
3: #E=ge 11: e_r=e_er 19: e_v=e_ev_v
4: Egue 12: o_r=o_or 20: {_v=i_iv_v
5: r_ra=ra 13: {_r=1_Ir 21: u_v=u_uv_v
6: r_recre 14: u_r=p_ur 22: o_v=o0_ov_v
7: r_ri=ri 15: r_rj=rj

8: r_ro=ro 18: r_rwerw

Tab.2 - Contextual rules

54

Extending the rules to the previous example it can be
easily obtained:

a-paarr-tiilleene

This formalism, developed in order to easily
transcribe large lexicons iInto recognition units
given different unit definitions (included “phonemes”
and “classical diphones"), was implemented by a
program whose output is compatible both with the HMM
training procedure and with = set of recognitlion and
word verification systems.

5. PERFORMANCE EVALUATION

Recognition experiments [3) suggested that the
best set of wunits is made up of 123 elements,
precisely 22 stationary units and 101 transitional

units. Hidden Markov models were tralned by means of
a 989 words vocabulary ohtaining an average
recognition rate of about 83% in Isclated words

belonging to vocabularies of monosyllables differing

only for one phoneme ({(e.g. /aba/, /ata/, /aka/,
etc.). Table 3 shows the correct recognition rate
per phoneme.
b 87 z 93 d3 41
d 16 1 96 tf 67
g 20 r 77 ] 63
t 70 A 83 W 100
k 96 ] 25 e 93
P 96 n 67 i 100
I 96 ! 70 o 90
£ 83 dz 96 u 100
v 41 ts 100 a 100
s 100
Tab.3 - Correct recognition rate per phoneme.
6. CONCLUSIONS
A formalism was introduced to write a flexible

system that permits the definition of a recognition
unit set and the corresponding transcription of words
and sentences from their orthographic description to
a form that directly relates to the acoustic mnodels
of the units themselves. That is obtained using two
levels of definition; the first one specifies the
phonemes that constitute an utterance, while the
second one splits each phoneme into stationary and

transitional portions. A suitable set of units that

relies on that concept was defined and tested

obtaining encouraging results.

7. REFERENCES

{1] Baum, L. E., Petrie, T., Soules, G. and Weiss,
N., "A Maximization Technique Occurring In the
Statistical Analysis of Probabilistic Functions
of Markov Chalns", Ann. Math. Stat., 41,
184-171, 1970

[2} ¢c. Tagliavini, A. Mioni "Cenni di Trascrizione

Fonetica dell’' Italiano”,
1983. (In italian}

[3] M. Cravero, R. Pieraccini, F. Raineri
"Definition and Evaluation of Phonetic Units for
Speech Recognition by Hidden Markov Models",
Proc. of International Conference of Acoustic
Speech and Signal Processing 1986, April 8-11,
Tokyo, Japan.

[4] A.M. Colla, C. Scagliola, D. Sciarra, ‘A
Connected Speech Recognition System Using a
Diphone-based Language Model', Proc. of
International Conference of Acoustics Speech and
Signal Processing 1985, March 26-29, Tampa,
Florida

Patron Ed., Bologna



SOME CONSIDERATIONS ON THE DEFINITION OF
SUB-WORD  UNITS FO A TEMPLATE-MATCHING
SPEECH RECOGNITION SYSTEM

Anna Maria Colla

Elettronica 5.Giorgio - ELSAG S.p.A..
Via Puccini 2, 16154 Genova ITALY

Some considerations on the definition
of sub-word units suitable for speech
recognition are exposed. An example of a

kind of wunits particularly well-suited to
syllable-timed languages is presented,
together with some hints for the definition

of similar units for different languages.
Some experimental results are supplied.

FORMAL DEFINITION OF A SPEECH RECOGNIZER

A Speech Recognition System can be
considered as a formal system ’{(ﬂ. ,:'R, d,
where is a set of PHONETIC UNIT5, J is a

set of RULES for representing each utterance
of a given task language by means of
elements of 3 . and d is a SIMILARITY OR
DISSIMILARITY MEASURE between any “segment"
of an utterance and any element of 4l . More
formally we have:

d:Tx U — £0.00)

d (t , uy = x

where te¢T is a segment of an utterance of
approximately equal size as the units, ue
is a phonetic unit and ¥ is a non-negative
real number. The recognition system can
also be considered as an operator acting on
a given set S of utterances and yielding for
each s €5 an interpretation i{s) in the set

%} of all the permitted sentences of the
task language

5§ — 9D

g, R, 4
(deU. R, dan (s = ils)

Actually & is a function £ (4,U) of the
language on which the system operates
and of the set Y of phonetic units.
also can be regarded as J(H).

In a Template-Matching system each unit

ueldl 1is represented by one or more
templates expressed in a convenient form
le.g. as vectors or matrices of appropriate

acoustic parameters).
DEFINITION OF THE SET 4 OF PHONETIC UNITS

Needless to say, the correct choice of
the set of the phonetic units (hence of
RV is of paramount importance for the
efficacy of the whole recognition system.

The elements of Jl can be words: in
this case the definition of the templates is
quite natural and & simply is the set of
grammatical rules apt to represent the
permitted word sequences in sentences
belonging to the task language eﬂ ; 4 can be
any distance measure between the vectors of
parameters (Mel-Based Cepstrum, LPC, and so
on) chosen to acoustically represent input
and templates. The calculation of d is made
more complex by the need of achieving some
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time alignment between
and the templates.

In the Speech  Recognition System
described in C1l] the language representation
is an HTN L[2]; 4l is a set of diphone-like
units, which we simply have named
"diphones" ; SL has also to comprise a set of
rules to "translate” each word into a net of
diphones and to specify the durations of the

the input sentence

related events, and d is an Euclidean
distance measure between the LPC-Cepstrum
vectors respectively representing each time
interval of an utterance and of the diphone
templates.

The good results obtained in our

diphone-based S.R. system are mostly due to
the properties of the adopted set U, Quite
naturally, the dictionaries of diphone-like
units have been designed taking the
characteristics of the Italian language into
account. The rhythm of Italian is syllable-
timed, that is, syllables are pronounced in
approximately the same space of time.
Therefore units related to syllabic rhythm
are particularly well suited to represent
the Italian language.

Basic Hypotheses
The complete set 4 of the phonetic

units we propose for the Italian language

has been derived according to the following

hypotheses:

-~ the transitory parts of speech must be as
adequately vrepresented as the stationary
ones (whilst generally more emphasis 1is
given to steady-state parts, which are
longer);

- the units must be short in order to be
fairly insensible to coarticulation (hence
economical}l;

- the units must be related to syllabic
rhythm (as Italian is a syllable-timed
language);

- the duration of “transitory"” units must to
some extent be related to articulatory
time constants.

The Diphones and Their Properties
According to the above hypotheses the

diphones [1,2]1 are very short units: each
stationary sound consists of one spectrum,
while each transition is represented by a
sequence of very few spectra (5-9). This
indeed implies a fair insensibility to
coarticulation between . adjacent units.
Thevefore each diphone is in principle
represented by one template per speaker
{notable exceptions are the sounds affected

by their position within a word, that is,
vowels and sonorant consonants), The set B
of rules is simply deducible from the

phonetic strings corresponding to words, by
means of a standardized procedure CL3]
consisting of 4 steps: orthographic-
to-phonetic transcription, generation of the
diphone sequences, context study for the
choice of multiple templates for sonorants,
definition of the duration rules.

The acoustic representation of the
diphones is obtained by bootstrapping E3]
the template(s) for each unit from a rather
small training set by means of a forced
recognition. The templates have to be well
representative of the lexicon, and moreover
should not become inadequate because of
intra-speaker variability, which can be



serious especially for steady-state sounds.
The latter problem can be tackled by a
definition of the diphone templates in
accordance with a sort of probabilistic
approach, where the prototypes are regarded
as ‘*average" or "modal" wvalues of a
distribution. One *“average" template is
derived for each steady-state sound and for
each different prosodical context of each
sonorant. These average templates are used
in the same way as normal ones, regardless
of the implicit variance.

The diphones have proved
effectual for the Ttalian language.
the representation they supply is:
- economical (at most 307 units, with about

350 templates per speaker);

- flexible (that 4is, apt to deal with
pronunciation and duration variability
both inter- and intra-speaker};
automatically deducible for any word from
its orthograghy, including template
bootstrapping [3] (this makes the system
easily trainable);

- Connected-Speech oriented (straightforward
treatment of word coarticulation);

- yielding high scores of correct
interpretation {ranging from 8Z% on the
top candidate in a medium-large vocabulary
I.W. recognition task, up to 99.5% in a
Connected Digit recognition task C11).

to be very
In fact

DIPHONE-LIKE UNITS FOR FOREIGN LANGUAGES

It can bhe hypothesized that, by rules
similar to the above ones, adequate sub-word
units can be defined also for languages
other than Italian, and, in particular, that
the wunits representing similar acoustic
events in different languages, being only
phoneme-dependent and not context-dependent,
can be represented by means of the same
templates.

The extension of the recognition system
to languages other than Italian can be
performed by adapting the different steps in
the generation of the diphone representation
to the peculiarities of the new language.

In particular the orthographic-to-
phonetic transcription must be redesigned
for any language, as the phonetic systems of
various languages, although partially
overlapping, are gquite different from one
another for a number of reasons: for
instance an higher number of phonemes is
generally required than for 1Italian, and
above all the orthography is generally much
more complex than the Italian one.

On the other hand the rules for the
diphone lattice generation need only to be
slightly modified, provided that the rhythm
of the new language is syllable-based, that
is, syllables are entirely pronounced or

only their final vowels are not uttered
(such as for instance in Spanish, French or
German). For languages that are not
syllable-timed, that {1is, languages whose
rhythm i3 governed not by the syllable
sequence(s), but by the segquence(s) of
strong stresses {such as English or
Swedish}, the rules for deriving units 1like

the diphones according to our definition are
not so straightforward. The use of longer
units, spanning the more complex phonetic
events pertaining to these languages, 1is
likely to be more appropriate.
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EXPERIMENTAL RESULTS AND CONCLUSIONS

The correctness of the above hypothesis
has been tested by trying to extend our
definition of "diphones* to a language other
than Italian and quite dissimilar from it,
that is, German. A set of experiments on
Connected German Digit recognition has been
performed by the same recognition system
used for Italian [11. The test set is made
up of 130 1-to-12 digit sentences generated
at random, 662 words as a whole. The
experimental results are shown in the Table
below by the Word and Sentence Recognition
Rates (WRR and SRR). Almost as satisfactory
results as in the tests on Connected Italian
Digits have been obtained both by using
entirely new diphone templates (N}, and
partly re-using "old" diphone templates (0)
previously derived for corresponding Italian
events {(e.g. "AI", "NO", and part of the
steady-state sounds). The performance has
been improved by submitting the rules of the
German diphone lattice generation to some
slight refinement, especially about duration
of steady-state sounds. By the wuse of
"average" templates for the stationary
diphones a further better performance has
been achieved (A).

EXPERIMENT N ¢ A
W.R.R. 97.3 96.2 98.2
S.R.R. 85.4 83.1 90.0

Summarizing, satisfactory results have
been obtained in a Connected German Digit
recoagnition task by a Template-Matching S.R.
System based on diphone-like units as the
ones which had proved to be so effectual for
Italian FE13. These results show that the
extension of such units to languages other
than Italian is feasible.

Two are the crucial problems in the
definition of diphone-1ike units for
languages other than Italian: IR the
phonetic transcription; 2) the possible need
of longer units for stress-timed languages.
Moreover a context study is likely to be
necessary in order to decide if the same
rules for the selection of multiple
templates are valid as with Italian.
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THE ROLE OF STRUCTURAL CONSTRAINTS IN AUDITORY WORD
RECOGNITION
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In the past, much of the research on human
speech perception has focused on the recognition of
acoustic-phonetic properties of isclated CV and CVC
syllables. The tacit assumption of this research has
been that our understanding of auditory word
recognition is contingent upon solving the. problems
inherent in phoneme perception. By this assumption,
auditory word recognition is equivalent to visual
word recognition carried out one letter at a time.
Indeed, most current theories of auditory word
recognition directly reflect this sequential pattern
matching approach to word recognition. However, a
different perspective is that vord perception may be
approached as a problem of "weak" constraint
satisfaction, in which the structural properties of
words in the lexicon interact to specify the identity
of an utterance. We will present the results of
several analyses of the phonotactic constraints of
word patterns that suggest the type of constraints
that may be used by human listeners to mediate spoken
word recognition.

RECOGNITION IN THE CONTEXT OF THE LEXICON

Context exerts an undeniably strong influence on
perceptuval processes. However, it is interesting to
note that "context" is defined in almost all speech
research by whatever stimulus information is
presented immediately prior to or subsequent to a
target stimulus. Thus, a phoneme is perceived in the
context of a syllable, a syllable is perceived in the
context of a word, and a word is perceived in the
context of a sentence. In all cases, there are
objectively definable physical dimensions to the
context that is typically investigated. But there is
another context that affects vord perception as well:
the implicit context of the mental lexicon. Beyond
the listener’s explicit knovledge about words, the
structure and organization of the sound patterns of
lexical entries may serve as an implicit context
wvithin which recognition ocecurs.

Marslen-Wilson and Welsh (1978) called attention
to the potential importance of the structural
properties of words with the cohort theory of word
recognition. According to this theory, the initial
sounds in a stimulus word activate all the words in
the lexicon beginning with those sounds.
Inappropriate candidates in the cohort are then
deactivated when a mismatch occurs in comparing the
left-to-right order of subsequent segments in the
stimulus with the structures of activated candidates.
The word that is ultimately recognized is the
candidate that remains after all the other
incompatible candidates have been deactivated.

According to cohort theory, the activated cohort
of word candidates in the lexicon forms the mental
context for spoken word recognition. Hovever, unlike
the sentential context that may precede a spoken

vord, this context has no physical dimensions that
can be directly measured or analyzed. 1In the past,
this has posed a problem for investigating the role

Hovever, several
orthographic and
have recently
the struetural
The database

of the lexicon in word recognition.
computer-readable databases of
phonetic representations of words
become available for analyzing
properties of words in the lexicon.
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used for all the analyses we will describe contains
orthographic, phonetic, and syntactic information for
243,000 vords {see Crystal, Hoffman, & House, 1977).
Proper names and possessives were excluded from the
analyses, leaving about 126,000 words that wvere
examined in the database.

PHONOTACTIC PATTERNS IN THE LEXICON

Although the listener may be presented with
spoken words as a temporally distributed sequence of
segments, a recognition process need not compare
these segments to lexical representations in a strict
left-to-right order as claimed by some theories.
Indeed, it is unclear how serial pattern matching
strategies can recognize a word if the initial
segment of the input is obscured, degraded or
ambiguous. Since this initial segment is treated as
the index into the lexicon, recognition could not
proceed without a well-defined access point. An
alternative approach is to view auditory word
recognition as a constraint satisfaction process, in
which the propagation of a number of weak constraints
is used to specify the recognized word. Vhen vieved
as a constraint satisfaction process, a number of
constraints may simultaneously be applied to the
lexicon to refine the set of word candidates. Even
if one constraint is inappropriate or uninformative,
the intersection of the other constraints may still
specify the correct word. Given this view, it is
important to determine precisely which constraints
are actually used during word perception.

The approach that we have taken to investigate
structural constraints on  human auditory word
recognition was motivated by several recent studies
that investigated the relative heuristic pover of
various classification schemes for large vocabulary
word recognition by computers. Zue and his
colleagues (Huttenlocher & Zue, 1984; Shipman & Zue,
1982) have shown that a artial phonetic
specification of every phoneme in a vord results in
an average candidate set size of about 2 words for a
vocabulary of 20,000 words. The partial phonetic
specification consisted of six broad phonetic manner
classes. Thus, with this appreoach, a recognition
system need not accurately identify the phonemes in

spoken words. Instead, only the most robust manner
information must be coded. Using a slightly
different approach, Crystal et al. (1977)
demonstrated that increasing the phonetic refinement

of every phoneme in a word from four broad phonetic
categories to ten more refined categories produces
large improvements in the number of unique words
identified in a large corpus of text.

It is impertant to note that these computational
studies examined the consequences of partially

classifying every segment in a word. Thus, they
actually employed two constraints: the partial
clagsification of each segment and the broad

phonotactic shape of each vord resulting from the
combination of word length with patterned phonetic
information.

The analyses that we have carried out used a
large lexical database of 126,000 words to study
different constraints that might be appropriate for
describing human auditory word recognition. This
work extends the previous research of Zue and his
colleagues to a much larger set of words. In
addition, since human listeners are capable of
recognizing much more phonetic information than just
six manner categories, we have carried out analyses
based on the assumption that human listeners will be
able to identify some segments completely, while
other segments will be unanalyzed.



The results of these analyses are quite
revealing about the recognition constraints provided
by the structural properties of spoken words. For
the coarsest level of segmental analysis, that is
knowing only the length of a word in number of
phonemes, the search space is reduced from 126,000
words to 6,342 words. Clearly, word length is a very
powerful constraint for reducing the candidate set in
the lexicon by about two orders of magnitude, even
without any detailed segmental phonetic information.
Furthermore, the length constraint is strongest for
relatively long words. If the length of a word is 21
segments, there are only two candidates out of
126,000 words. Thus, as word length becomes extreme,
less detailed segmental information is needed to
identify a word. '

By simply classifying each segment as either a
consonant or vowel ({i.e., two categories), without
providing any more detailed phonetic deseription, the
reduction in the search space beyond the the length
constraint phonotactic constraint is enormous. The
number of candidates is reduced by an order of
magnitude to 109 words averaged across different word
lengths. Furthermore, it is interesting to note that
much of this reduction in the candidate set is due to
the specific phonotactic constraints provided by the
ordering of consonants and vowels. If the segments
in a word are classified with just two categories, as
consonants or vowels, but the order information is
removed, there are 119¢ words in the average
candidate set. This means that the phonotactic order
information in the pattern structure of a spoken word
accounts for an order of magnitude reduetion in the
candidate set size compared to just knowing the
number of consonants and vowels, but not their
arrangement.

Increasing the amount of phonetic detail for
each segment to the six manner classes used by Zue
and his colleagues reduces the search space by
another two orders of magnitude from the CV
classification scheme that maintains phonotactic
order information. Using six categories for
classifying every segment in each word reduces the
average candidate set size to about 5.5 words from
126,000 vords in the lexicon. This result agrees
very well with the results reported by Shipman and
Zue (1982) for a 20,000 word lexicon, indicating that
this broad classification scheme is very poverful in
reducing the number of word candidates in the search
space. Increasing the 1lexicon by an order of
magnitude from 20,000 words to 126,000 words only
results in a tripling of the number of candidates
from 2 to about 6 words. By any metric, partial
information about every segment 1is an extremely
effective constraint on the candidate set.

However, human listeners are capable of
resolving much more phonetic detail than just six

broad categories. One issue that can be raised then,
concerns the constraint provided by complete phonetic
information about some of the segments in a word
compared to partial information about every segment
in a vord. Classifying every segment in a word
provides two types of information: (1) partial
phonetic information about every segment, and {2} the
phonotactic  "shape" of the entire word. By
comparison, complete classification of some of the
segments provides: (1) detailed phonetic information
about a fev segments, and (2) partial information
about the phonotactic shape of a word. Based on the
previous demonstration of the power of phonotactic
shape with just two categories (i.e., consonant or
vowel), it seems reasonable to predict that partial
classification of every segment in a word should be
more effective than complete classification of some
of the segments in a vord.
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To test this prediction the following analyses
were carried out: (1) the phonetic information in
first half of every word was classified completely
leaving the remaining segments unclassified, (2) the
phonetic information in the last half of each word
vas classified completely leaving the first half
unclassified, (3) only the consonants vere
phonetically classified leaving the vowels unlabeled,
and (4) the vovels were phonetically classified
leaving the consonants unlabeled. The results
demonstrate that complete information about some of
the segments in a word provides a more poverful
constraint on the candidate set than partial
classification of every segment. Classifying the
beginning of words completely reduces the search
space from 126,000 words to 1.7 words and classifying
the last half of words reduces the candidate set to
1.9 words. By comparison, classifying only the
consonants exactly and leaving the vowels
unclassified yields a set size of 1.4 words, vhile
classifying the vowels only yields a set size of 3.2
vords. In each analyses, complete phonetic
information about some of the segments in a word
constrains the search space much more than partial
classification of every segment. These results
demonstrate that detailed phonetic information about
some of the segments in a word provides enough

constraint, in general, that other segments can be
completely obscured or ambiguous without
significantly impairing recognition. Moreover, to

information is
the candidate set
the extent of

the extent that some phonetic
available about other segments,
will be reduced further, probably to
uniquely specifying the correct word.

CONCLUSIONS

The view of word recognition that emerges from
these analyses differs substantially from serial
pattern matching approaches. As more of a stimulus
word is heard, the listener progressively narrows the
candidate set based on the development of a
phonotactic specification for the input. Over time,
acoustic information in the stimulus is successively
refined into more detailed phonetic representations.
In some cases, only a broad phonetic description of

segments may be computable and the phonotactic
structure is used te further narrow the candidate
set. This approach, called Phonetic Refinement

Theory, is currently being implemented as a model of
the recognition process. Although further research
is needed, it is clear that computational analyses of

the sound patterns of words can provide new

information about the processes that mediate speech

perception.
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SYLLABLE STRUCTURE OF ENGLISH WORDS:
IMPLICATIONS FOR LEXICAL ACCESS
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We parsed a large corpus of English words into
syllables and into their constituents to determine the
difference betwcen high and low frequency words with
respect to these structural propertics. There are obvious
applicaiions of the results to the lexical access problem in
large-vocabulary isolated-word speech recognition systems.

INTRODUCTION

One of the problems in the theories of word
recognition involves the relationship between the frequency
of usage of words and the structural properties of them.
This question is interesting because (1) the differences in
word frequency effects might be due to factors other than
the frequency of usage, and (2) we might be able to clarify
the nature of lexical access, i.e. whether words are
accessed on the basis of an acoustic, phonetic or
phonological representation.  This  question is also
interesting for isolated-word large-vocabulary machine
recognition systems because (3) certain  structural
constraints in lexical access have been shown to be very
powerful in reducing the search space for candidate words.
The precise form of the lexical entries is very important for
continuous specch recognition systems.

MATERIAL AND METHODS

Brown Corpus words were used as the data.
Following Pisoni, ct.al., we defined high frequency words
as thosc equal to or greater than 1000 words per 1 million
(e.g. the, of, many ), and low frequency words as those
between 10 and 30 words per 1 million inclusively (e.g.
acceleration, bronchial, conjugate ). In addition, we defined
mid frequency words to be 30 to 1000 words per 1 million
exclusively (¢.g. able, measurement, strike ). These words
were matched against the phonetic transcriptions of the
SCRL dictionary, which resulted in a data base of a total of
7443 words. There were 91 high frequency words, 3072
mid frequency words and 4280 low frequency words.

Brown Corpus words might not be an ideal sample
because the material is approximately 20 years old and
because it is based on printed texts as opposed to a
transcription of the spoken language. Nevertheless,
because of a lack of other computer-readable data bases,
we took the the Brown Corpus words to be our sample. It
might be argued that word information from the spoken
language is not an appropriate alternative, since we do not
expect people to speak to the machines in the same way
that they would speak to other people.

The phonectic transcriptions (ARPAbet) of these
words were parsed by a syllable parser developed at STL.
The syllabication of the parscr is based on the maximum
onset principle. Stress resyllabication was not included in
this parser, since stress information was not available in a
convenient form. Thercfore, the onset count should be
slightly over-represented for syllable-initial consonant
clusters and slightly under-represented for syllable-final
codn consonant count. The quantitative cffect of this
ommission is not clear, but we do not expect it to be
significant.

This study focuses on the frequency of usage vs.
syllable length and sub-syllabic constituents. A motivation
for this is that previous studies on the phonological
structural propertics of words dealt exclusively with the
identity of phonemes and their length in terms of phonemes
(i, 2, 5, 6, 7].
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WORD FREQUENCY AND LENGTH

Table 1 below shows the rclationship between the
word length (in syllables) and the frequency ranges of high,
mid and Jow. Table 2 shows the relative frequency of
occurrence within cach frequency class. The results
indicate that the high frequency words arc differeat from
mid and low frequency words and that they are from two
scparate populations. The Pearson correlation of mid and
low frequency was 0.9. Thus the mid and low frequency
words can be considered to be from the same population.
That the two populations are independent can be scen from
the proportion of one-syllable words. They are 0.88 0.35
and 0.23 for high, mid and low frequency words,
respectively. The mean length for cach group was 1.12,
2.01 and 2.33 for high, mid and low frequency words,
respectively. One syllable is the median of high frequency
words; whereas the median of mid and low frequency
words are two syllables.

Table 1: Word Frequency snd Length (Sytlable)
length high | mid low § total
1 80 1073 | 978 | 211
2 11 1199 | 1681 § 2891
3 0 541 1033 § 1576
4 0 211 429 640
5+ 0 48 159 207
total 91 3072 | 4280 || 7443

Table 2: Word Frequency and Length (%)

iength | bigh | mid | low [ total
1§ 87.91 | 34.93 | 22.85 | 28.63
2 [ 12.09 | 39.03 | 39.28 | 38.84
3 - | 1761 | 2404 f 2117
4 . | 687 | 10.02 { 8.60
5+ - | 156 | 371§ 278
WORD FREQUENCY AND SYLLABLE
CONSTITUENTS

Difficulties in intelligibility of certain words have
often been, in part, attributed to the lexical distance based
on the frequency [1] and to the particular phonemes, or
phoneme/grapheme ratios [2]. We investigated two factors
that might account for such difficulties.

Word Frequency and Onset

The onscts were classified as nil (no consonant at the
beginning of a syllale), cluster (twe or more consonants at
the beginning of a syliale) or simple {cxactly one censonant
at the beginning of a syllable). These three classes cover
all the possible onsects. We hypothesized that high
frequency words are simpler in the sensc that it ‘s low in
consonant clusters and that simple and pull onsets prevail.
Table 3 summarizes the ratio of these occurrences.

These results show that the characteristics of high
frequency words vs. mid or low frequency words is not in
the composition of simple onsets. Simple onsets are by far
the greatest proportion of all words in all frequencies.
High frequency words are characterized by a relatively
large proportion of null onscts and a very low proportion
of consonant clusters with respect to low frequency words.

The results might be interpreted as the following.
Null and simple onsets are simpler in that they arc
perceived and produced much more easily than the clusters.
Clusters arc complex components. They are more difficult
to perccive and to produce. Another interpretation is to
say that high frequency words are much more constrained
phonotactically. In other words, fewer grammar rules are
necessary to process high frequency words.



Table 3 also shows that within a population, the
cluster onset decrcases as the length increases, and in
general, the nil onset increases (with the exception of mid
frequency words). An instance of simplification scems to
occur as the complexity, in terms of length, increases.

Table 3: Word Frequency and Ouset:
Composition Ratio witkin Frequency Class and Length (%)

length type high mid low total

1 nil 23.75 4.85 368 5.02

cluster 1.25 { 22.09 | 30.16 | 25.01

simple | 75.00 | 73.07 | 66.16 ) 69.97

2 nil 4091 | 12.43 9.67 | 10.93
cluster 0 13.22 | 16.21 | 14.91 ’

simple | 59,09 | 74.35 | 74.12 | 74.16

3 nil - 15.53 { 13.62 | 14.27

cluster - 10.41 { 13.39 | 12.37

simple . 74.06 | 72.99 | 73.36

4 nil - 13,39 | 13.73 | 13.62

cluster - 9.00 | 11.80 | 10.88

simple - 77.61 | 74.47 | 75.51

5+ nil - 13.11 | 14.74 | 1437

cluster - 6.15 7.74 137

simple - 80.74 | 77.52 | 78.26

all nil 27.45 | 12,08 | 11.42 | 11..77

cluster 0.98 | 13.17 | 15.25 | 14.37

simple | 71.57 | 74.75 | 73.33 | 73.86

Table 4: Word Frequency sud Cods:
Composition Ratlo within Frequency Ciass and Length (%)

leygth | type | high [ mid T tow [ _total
i nil 28.75 5.96 562 6.66
cluster 6.25 | 10.16 | 49.80 | 28.20

simple | 65.00 | 83.88 | 44.58 |} 65.13

2 nil 72.73 | 46.91 | 43.71 | 45.15
cluster 0.00 4.34 | 12.73 9.20

simple | 27.27 | 48.75 | 43.56 § 45.67

3 nil - 55.08 | 54.34 || 54.60
cluster - 4.68 8.23 7.01

simple - 40.23 | 37.43 | 38.39

4 nil - 68.96 | 68.41 | 68.55
cluster - 2,55 3.7 3.24

simple - 28.79 | 27.80 | 28.05

5+ nil - 76.23 | 76.90 | 76.75
cluster - 0.00 1.97 1.51

simple - 23.77 | 21.13 | 21.74

all nil 38.24 { 46,12 | 50.24 || 48.53
cluster 4.90 498 | 12.55 | 9.59

simple | 56.86 { 48.90 | 37.21 | 41.87

Word Frequency and Coda

The codas (syllable-final consonants) were classified
in the same way as above into three classes: nil, cluster
and simple. Our hypothesis was similar to the one for the
onscts: that the high frequency words over represent nil
and simple codas. Table 4 shows the relative distribution
by frequency classes. The results indicatc that while the
hypothesis is true, the pattern of distribution is very
different from the onset. The proportion of the clusters
among the low frequency words ranges from 50% to 2%,
while the comparablc statistics for the onsets ranged from
30% to 8%. At the same time, the nil coda ranged from
6% to T77% for the same population, while the onsets
ranged from 4% to 15%. Another striking fact is that the
simple codas decicase in proportion to length in all
frequency classes, in addition to the fact that their
proportion for onc-syllable length is lower than those for
the onsets (cxcept for the mid frequency words). The data
on onc-syllable length is important because there is no
chance for stress resyllabication.
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Wec demonstrated that there are structural
differences among words of different frequencics along
three dimensions: onsct types, coda types, and syllable
lengths. We have been ablc to show that there is a
correlation between thesc properties and word frequencies.

LEXICAL INFORMATION AND LEXICAL ACCESS

There arc several ways in which such lexical
information can contribute to the lexical access problem in
a speech recognition system. For example, syllable length
of a word is potentialiy a very powerful device especially
when a word is long. The length constraint was proposcd
and demonstrated to be cffective [1, 3]. However, these
proposals ceatered around phoneme length. The advantage
of syllable over phoneme length is that the phoneme
insertion and deletion crrors can be avoided altogether.
The disadvantage is that the cohort size is much larger.

Another possible constraint that can be uscd is the
information on the type of onsct. We have becn able to
identify 68 unique onsets over all the syllables of the
complete sct of sample words. We saw that the majority of
English words favors the CV type of syllables. One might,
for example, assign a probability associated with the types
of onsct prior to identifying the onset itsclf. It remains to
be seen how powerful this constraint might be when this
information is used even partially, e.g. at the beginnning of
a word.

CONCLUSION

What is the relationship between word frequency and
the phonological structure? We cxamined some of the
phonological properties of English words which were not
discussed before. We proposed a metric of simplicity to
account in part for the structural differences between high
and low frequency words. We also suggested that syllabic
structural information might be used to organize the lexicon
into equivalence classes in a speech recognition system.
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Abstract:  Postulating the existence of  abstract
répresentational units appears useful in speech rescarch. For
instance, such units can be used to partition a large lexicon
for word-candidate hypothesization [8] [4]), or to specify
phonetic deletion and modification sites, However, since
such linguistic representations have at best an indirect
realization in the physical signal, it has proven difficult to
build classifiers for these units. Therefore, recognition
systems pgenerally use less abstract units such as spectral
templates. We argue that the difficulty of classifying abstract
units doecs not preclude using these units in recognition, in
particular, constraint-based systems provide a mechanism for
exploiting abstract linguistic knowledge at the acoustic level.

Introduction

Work on lexical and phonological representation
assumes the cxistence of abstract units such as phonemes or
atlophanes. Powerlt| gencral principles have been identified
operating under this assumption.  However, attempts at
devcloping recognizers which use simikar units have met with
difficulty (cf. [6]). Thus, systems for classifying the acoustic
signal generally use representations which are far less
abstract (e.g., templates, vector quantized spectra, etc.).

We consider some of the reasens that it is clifficult to
recognize abstract unils such as phonemcs from the speech
signal. Then we turn to the limitations of current recognition
systems.  Finally we supgest how some of these fimitations
may be overcome by formnlating lexical and phonological
knowledge as constrainis on acoustic data,

These constsaint-based models can be used to specify
that certain acoustic patterns are consistent with a given
word.  They may also specily that certain  acoustic
information is inconsistent with the presence of a given
word,  ‘The critical idea is that of viewing recognition as
consistency checking. This idea contrasts strongly with the
use of abstract units in transformational systems,

Recopnizing Abstract Units is Hard

The difficulty of recognizing abstract units such as
phones or diphones from the speech signal is attributable to
several factors.  First is the problem of scgmenting the
speech signal into phonetic-sized units. Certain regions of an
utterance do not clearly correspond to any particular
phoneme or other abstract unit, Furthermare, scgmentation
errors cause the insertion and deletion of phonetic units,

Seccond is the difficulty of classifying the segments that
have been identified. Variation across talkers causes a given
abstract unit to have different realizations for difTerent
talkers. These may cven overlap, as in the case of /s/ and
/%/. Phonetic sized units can also be difficult to classify
becausc they are distorted due to contextual effects {e.g., the
/t/ in a /tr/ cluster), Third, certain regions of an ulterance
arc often difficult to classify, such as unstressed syllables.
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Thus, a given classilier will perform very well only in
certain regions of an utterance, or for certain talkers. This
suggests letting the classifier do "only as much as can be
done reliably,” However, this means that no single abstract
level of representation is sutficient.

On top of all this, having identified a sequence of
abstract units it is still difficult to do word recognition, Part
of the problem is the phonological variation in the
production of individual words. Delction, epenthesis, and
other phonological modifications can cause extreme
departures from the canonical form,

The problem of mapping from a sound sequernce o
words is even harder in the case of continuous specch
because the limit of the match is not generally known. For
instance, it is well known that in fluent speech the phrase
“did you go to the..” (/d1d# yuw # gow # thuw # 8a/) can be
produced as [difagana 8a).

Considerable attention has been paid to the problem of
recognizing words from phonetic scquences, The most
common approach is to formulate transformational rules
which characierize phonological varintion.  Sueh ruiles map
lexical basclforms to surface phonetic strings. This mapping
is then cither used to cxpand cach lexical entry into all
possible surface forms, or to transform an input sequence
into its possible underlying forms [7]. However, this assumes
that all pronunciations can be anticipated anel captured by
the rules.  Furthermore, since these rules are based on
phonctic transcriptions, it is assinmed that the output of the

classifier is adequately detailed and relatively error free.
These assumptions have not been borne out in actual
speech.

Current Recognition Systems are Limited

Using acoustic representations for  recognition
scemingly bypasses the problems of classification and
retricving the underlying phonemic form. However, such
systems only work for restricted tasks. While the IBM
recognizer {1} is perhaps the most successful system 10 date, it
appears 1o be reaching the limit of the approach.

The IBM recognizer scarches the entire lexicon in
recognizing each word. The most obvious consequence of
this is the large amount of computation required. A more
serious problem is that the distance between an unknown
word and cach lexical entry does not provide very strong
discrimination among the possibilities. This is parlly due to
the fact that distance metrics are sensitive to acoustic
dificrences, whereas phonological processes can cause large
acoustic differences between pronunciations of the same
word. These differences can be as large as those between
different words, as when “balloon™ is pronounced “b’loon™,
which is acoustically similar to “bloom™,

As a result, the IBM system relies heavily on word
tri.gram  probabilitics for its performance. These
probabilities are obtaincd by observing word triples in a
large training corpus. However, the use of tri-gram models
makes it difficult to add new words because their
probabilites must be estimated. Furthermore, tri-grams are
not pood models of novel sentences even from the same
vocabulary,  For a 18 million word corpus of text, the
tri-grams Tound in one L5 million word subset covered only
77% of the tri-grams observed in the remaining 300,000
words {5].

Thus while tri-grams provide substantial constraint,
they are too specific i that they don't capture general
properiies of English, However, a more general
characterization of allowable word scquences is unlikely to
provide nearly as much constraint, For example, atlempts at
using syntaclic constraints in specch recognition have



required using artificially simple grammars to appreciably
limit the possible word candidates [6]). Thercfore, some other
sourcc of constraint will be needed in order to develop the
next generation of recognition systems,

A Look at Using Abstract Units in Recognition

There are three potential advantages of using abstract
representational units in recognition.  First, exploiting
phonological information as a source of constraint in
recognition requircs using an abstract representation,
Second, training a system {or acdapting it to new speakers)
can be greatly simplified by the use of abstract units. Third,
abstract representations enable the use of non-exhaustive
matching techniques in lexical access. :

Wilh respect to the problem of training, abstract sound
units can be used 10 bootstrup the training process by
representing each word in terms of component parts,
Training then operates over this smaller sct of units rather
than over words. In a very large vocabulary system, such a
bootstrapping process appears necessary. For example, the
IBM system uses phonetie-sized units for training,

With respect to the problem of matching and lexical
access, there are two ways in which abstract units can he
used, The [irst is to search only part of the lexicon, rather
than matching against every entry and picking the best
match, The second is to match against only some of the
information in each lexical entry being considered,
depending for example on the certainty of the classifier.

Whilc the use of abstract units can theoretically address
such issues, the fact of the matter is that systems have been
relatively unsuccessful at using abstract units, We claim that
this can be traced to the framework within which abstract
properties have been formulated, rather than to the use of
abstract units per se,

For instance, if phonological rules captured the
variability in speech, then lexical access could simply be
done by table lookup. Yet as we noted above, there is
substantial variability which cannot be accounted for by
rules, and this causes classification errors. Thus, the
transformational formulation does not get around the
problem of exhaustive search ol the lexicon.

Another approach which uses abstract units is o
characterize what is stable or reliable about a given lexical
entry, rather than trying to capture variability. This
approach has been taken by Shipman, Zue and Huttenlocher
in their work on partitioning the lexicon into equivalence
classes of words sharing the same leatures.  For cxample,
manner of articulation features can be used to partition a
20,000 word lexicon into classes of only about 30 words on
average,

Using this approach, ideally only that subsct of the
lexicon corresponding to a given feature sequence must be
searched in lexical access, However, this assumes that cach
word has a small number of partial representations as output
by the classifier, While the proposcd partial representations

are less sensitive to variability than phonctic representations,
this still may not be a reasonable assumption.

Conclusion

In the previous section we have seen that systems
which use abstract phonctic units have been developed based
on the assumption that these units have refiable acoustic
correlates.  One example of this was  transformational
systems which view recognition as mapping between
sequences of abstract units. 1n order to apply these
transformations, the abstract units must first be reliably
classifinble from the acoustic signal. Abstract units ofien do
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not have reliable acoustic manifestations, however. The
absence of these correlates has led to the development of
acoustically-based systems which do not use linguistic
constraints at all. . .

While abstract units do not have reliable acoustic
correlates, a given abstract unit is only consistent with certain
acoustic patterns, Since constraint-based models can be used
to specily what acoustic information is cons:stcnt_wnh a
given abstract unit, they are a convenicnt formalism for
expressing such knowledge. In particular these models
provide a means for expressing partial and redundant
information [9] [2] [3]. This ability to exploit multiple levels
of specificity means the classifier can be allowed to do as
much as it can, while still using a lexical partitioning based
on abstracl representational properties.
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MODELS OF PHONETIC RECOGNITION I: ISSUES THAT ARISE
IN ATTEMPTING TO SPECIFY A FEATURE-BASED STRATEGY FOR
SPEECH RECOGNITION

Dennis H. Klatt

Room 36-523, Massachusetts Institute of Technology,
Cambridge MA 02139, USA

Abatract. This is the first of a set of papers
from ) peech Communication Group expressing
conflicting viewpoints as to the nature of the speech
perception process and the best way to approach the
problem of speech recognition by machine. 1In this
paper, it is argued that all models employing phonetic
feature detectors {whose purpose is to make phonetic
decisions so as to reduce the information content of
the input representation prior to lexical search) are
suboptimal in a performance sense. Such models are
usually incompletely specified, and they do not
confront certain theoretical problems that are
discussed here. It is suggested that the LAFS model
of precomplled acoustic expectations for familiar
words (Klatt, 1979} has thecretically superior
characteristics. However, aspects of the Stevens
model described in the next paper (in particular,
relational invariance at the acoustic feature detector
level) are an attractive candidate for the front-end
processor of a next-generation LAFS strategy.

What does it mean when someone says "I believe
that phonetic features play an essential role in
speech perception?" Can this philosophical position
be translated into a practical strategy for speech
recognition? The purpose of the present paper is to
specETy what must be present if a theory claims to be
an instance of a phonetic feature based perceptual
strategy. Along the way, we will point out some of
the problems facing anyone wishing to build a speech
recognition device having these characteristics. The
paper is, in part, a challenge to those who embrace
the phonetic feature basis of perception.

A literal translation (by me) of the phonetic
feature concepts implicit in Jakobson, Fant and Halle
{1963} or Chomsky and Halle {1968) to the domain of
perception results in the procedure outlined in the
block diagram of Figure 1. Similar modeis have been
discussed by Studdert-Kennedy (1974) and Pisoni and
Luce (1986).

speech waveform

) PERIPHERAL AUDITORY SYSTEM (

speciral analysis

lngOUSTIC PROPERTY DETECTDRQ_I

{detector outputs vs. time}

) PHONETIC FEATURE DETECTORS (

{feature probabilities vs. time}

1 SEGMENTAL ANALYSIS [

segmental feature matrix

) LEXICAL SEARCH {

lexical hypotheses

Figure 1. Block diagram of a "literal" phonetic
feature detector model of spsech perception.

Peripheral Processing. I assume that the peripheral
processing stage provides at least two representations
of input speech waveforms: (1) an average-firing-rate
representation of the short-time spectrum (Geldhor,
1986), and (2) some sort of synchrony spectrum (Sachs
et al., 1982; Allen, 1985). Details are not important

e issues at hand, although there is some hope
that a properly designed simulation of peripheral
processing, ineluding critical bands, masking,
adaftation. synchrony to formant frequencies, etc.,
Wwill make the task of later modules easier by
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enhancing invariant acoustic characteristica of
phonetic features and suppressing irrelevant
variability.

Acoustic Property Detectors. A set of acoustie
property detectors transform this spectral input
representation into time functions that characterize
the degree to which certain properties are present in
the input at a given instant of time. These property
detectors are assumed to differ from the raw input
spectra in that they compute relational attributes of
the signal which tend to be more Invariant and
"quantal" (Stevens, 1972) across phonetic contexts and
across speakers than are the raw spectra. The
acoustic property detectors are further assumed to
differ from phonetic feature detectors (the next
stage) in tha ey compute relatively simple general
auditory properties which are useful for processing
other signals as well as speech. Examples of possible
auditory features are onset detectors, spectral change
detectors, spectral peak detectors, formant frequency
detectors, formant motion detectors,
presence-of-voicing detectors, fundamental frequency
detecteors, nasal-formant detectors, etc.

Phonetic Feature Detectors. A phonetic feature
detector has the task of examining an input set of
auditory property values over a chunk of time, and
making linguistic decisions that are
language-specific. Of course aspects of the speech
production/perception process constrain these
decisions to be similar across languages (Stevens,
1972). A phonetic feature detector may make a
relatively simple decision based on input from a
single acoustic property detector, or, more typically,
a feature detector combines information from several
different auditory property detectors.

The decision of a phonetic feature detector is,
in principle, binary —- reflecting the presence or
absence of the feature at that Iinstant of time.
However, in a speech recognition context, it may be
better to think of the detector output as expressing
the probability of the presence of a particular
feature at EHE¥ time, given the acoustic evidence to
date. In this way, one can represent real ambiguity
and possibly recover later from inevitable errors.
The output probebility values may spend most of the
time around zerc and one, as a linguist would expect
when the acoustic data are clear, but this is
certainly not possible in the presence of background
nojse and other factors that influence articulatory
performance. Experience with speech understanding
systems has shown the undesirability of forcing an
early decision when, in fact, representations
incorporating uncertainty often permit correct
resolution in later decision stages {Klatt, 1977).
Even if phonetic feature cutputs are probabilities,
there is still a considerable reduction of information
taking place at this stage; only about 20 or so
feature "time functions" are available to represent
phonetic events.

Segmental Analysis. Up to this point, the object of
the computatlons has been to describe via phonetic
features what is actually present in the acoustic
signal, or equivalently, what articulatory gestures
were ugsed to generate the observed acoustic data.
segmental analysis stage must temporally "align the
columns” of the set of parallel feature detector
outputs so as to produce what can be interpreted as a
sequence of discrete segments {the presumed form of
the lexical entries)., In the spirit of creating as
much parsimony with current linguistic formalism as
possible, I have assumed that the segmental
representation is basically a feature matrix {Chomsky
and Halle, 1968), but it can become a lattice of
alternative matrices where necessary to describe
segmentation ambiguity. One might also argue for
additional levels of phonological representation to
delimit syllables, onsets and rhymes, etc. (Halle and
Vergnaud, 1980), or to group features into tiers that
need not be temporally perfectly aligned (Clements,
1985; Stevens, these proceedings).

Entries in the matrix are, again, probabilities,
but this time they indicate the likely
presence/ absence of more abstract "phonological"
features -- reflecting the speaker's underlying

The



intentions {to the extent that it is possible to infer
such intentions from the acoustic data). For example,

iven evidence for a nasalized vowel followed by a
ft], but with little or no evidence for a naszal murmur
before or after the vowel, this stage of the analysis
would postulate a nasal segment between the vowel and

the [t], assign the nasality to it, and deduce the
probable phonetic quality of the preceding vowel if it
had not been nasalized.

Lexical Access. The lexical access module accepts as
npu e segment matrix }and perhaps prosodic
information and syntactic/semantic expectations) in
order to seek candidate lexical items. The mechanics
of the matching process requires the development of
sophisticated scoring strategies to penalize
mismatches and deal with missing and extra segments.
In general, word boundary locations are not known for
certain, so that lexical probes may be required at
many different potential starting points in an unknown
sentence.

EXAMFLE

A schematic spectrogram of the utterance [ada] is
shown in Figure 2. The spectrogram illustrates
several cuese that interact to indicate whether the
plosive is voiced or voiceless.
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Figure 2. Six acoustic cues to voicing for plosives.

While asix cues are identified in the figure (and
Lisker, 1978, has catalogued 16 potential cues), it is
by no means clear that the cues correspond to the
ocutputs of six quasi-independent acoustic feature
detectors. Proper analysis of this and other phonetie
situations may reveal the existence of integrated
detectors that combine at an auditory level some of
the cues to voicing listed in the figure. Even so,
the task of the voicing feature detector is a complex
one, due to the difficulties enumerated below:

1} When to Activate a Detector? Acoustic
property detectors produce output time functions to
indicate e.g. the location in time of an onset or the
location in frequency of an energy concentration.
However, these detectors do not make any decisions -~
it is up to the phonetic feature detector to find the
onset corresponding to the burst of a plosive, and the
onget corresponding to voicing onset time so as to
measure VOT. While these events are usually clear to
the eye when inspecting a spectrogram, the viewer
employs a great deal of speech-specific knowledge to
rejeet visual onsets that don't look globally like
plosive-vowel sequences. Programming a computer to
behave reliably in this way has proven to be extremely
difficult (see e.g. Delgutte, 1986). How much general
gpeech knowledge must be employed by the voleing
feature detector when trying to decide whether it is
confronted by a pleosive release?

{2) Feature Independence. If one task is to

meagure voice onset time by determining burst onset
fol ogfd gy voicing %nset, the detector, should
proba ¥ g

e willin o accept a weaker burst as an
onset iY the ploaive were labial than if it were not.
Similarly, the VOT boundary between voiced and
voiceless is probably somewhat shorter for labials.
Is the voicing feature detector {a) permitted to know
the place decision, (b) permitted to compute
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information required for an optimum voicing decision,
or (¢) forced to make an independent judgement of
degree of voicing which will be corrected by the next
level that has available all feature ocutputs?

(3) Time Functions vs. Event Sequences. The
voicing decislon involves multiple cues that occur at
different times. The temporal location of release
relative to closure can vary, making it hard to use
fixed measurement points in combining information over
time, Are each of the cues to voicing best thought of
as time functions, as assumed thus far, or as events
that occur in sequence and must be interpreted by a
second decision level (what is the representation of
knowledge and decision flow in a feature detector)?

{4} Cue Combination Rules. Ultimately, the
voicing feature must combine all the available
evidence into a single voicing decision (probability)
that is the best decision possible at that given
instant of time. Is the decision framework basically
articulatory and Bayesian (compute the conditional
probability of obtaining the observed data assuming
the canonical articulatory pattern for a voiced
plosive, and compare this with the conditional
probability of obtaining the observed data assuming
the articulatory pattern for a voiceless plosive)?

How can the extremely rich set of alternative patterns
of acoustic cues signalling voicing be
programmed/ learned in any practical model?

{5) Intended vs. Actusl Articulations. Do the
vowel feature detector outpufs represent vowel
qualities/articulations actually observed, or do they
try to estimate underlying targets by discounting
coarticulatory influences of adjacent segments?

{6) Phonetic Features or Se%ments. Are phonetic
features identical in ecocustic attributes for
different segments? If not, would it be better to
view perception as the problem of identifying segments
from the temporal variations in acoustic property
detector outputs? For example, [t,d,n] share a common
place of articulation, and may share a single unifying
integrated property, but it is unlikely that they
share ldentical manifestations of place of
articulation. 1= there an inherent advantage to
features, or iz the advantage philosophical/genetic?

An alternative to the feature matrix as a
segmental representation might be a column in which
all possible phonetic segments are listed with an
associated probability. Suppose we observe a voice
onset time that is more compatible with [p,g] than
with either [b] or fk]. It would be easy to specify
highest probability for [p] and {g] within a segmental
representation —— and some perceptual data suggests
that this is appropriate (Oden and Massaro, 1978) --
but it is impossible to selectively favor this pair
using only feature probabilities.

(7) Broad ve. Narrow Phonetic Representations.

An intervocalic poststressed |p] is weakly aspirated,
and so is somewhat ambiguous in voicing. The phonetie
feature system, as described, does not permit
specifying gradations of VOT, so this plosive will
only be represented as having a slightly greater than
chance probability of being voiceless. A word-initial
highly aspirated [p] will generate more cenfident
[p]-ness probabilities, and thus will better fit all
lexical [p]'s, including those in poststressed
position. This, and many other examples suggest that
it is not a good idea to try to recover phonological
segments (phonemes) prior to probing the lexicon
because narrow phonetic information is useful in
determining likely word-boundary locationa, syllable
structure and stress patterns {Church, 1986). To the
extent that the segmental feature matrix produced by
thia model is somewhat inaccurate, or underspecified,
or broadly phonetic, it is sub-optimal for lexical
search.

DISCUSSION

We have identified a number of unsolved design
issues which helg to explain why phonetic feature
extraction is not currently = pogular method of
automatic speech recognition. Phonetic features are
hard to extract from acoustic data, and hard to
convert to a representation suitable for probing the
lexiceon. A compelling list of theoretical and
experimental reasons for believing that segments are
perceptually real has been compiled by Pisoni and Luce



(1986); perhaps new methods of segment recognition
and/or phenetic feature extraction can be devised to
overcome the problems we have listed. Alternatively,
the view that phonetic features are an essential
aspect of language need not imply a belief in phonetic
feature detectors for percepticm.

The Jakobson, Fant and Halle (1963) view of
phonetics is that a very small number of universal
binary distinctive features serves to describe
language, both at the phonological and phonetic
levels, Such a view, if adopted as a perceptual
model, implies that the output of the phonetic feature
detector stage is a rather broad phonetic
characterization. The undesirability of a broad
transcription became evident when we considered
lexical search. A more narrow phonetic representaticn
must be devised, perhaps by adding to the -feature
inventory. Also, feature outputs might take on
continuous values representing strength of a cue
rather than probability, in which case lexical
repregentations can quantify expected position along &
continuum of feature strength for each segment.
However, in our view, phonetic feature detectors must
make decisions and reduce the information content of
the representation, or they become continuous
Tecodings of the input which are no different in kind
from those proposed for other non-featural
non-phonetic models.

Relation to Perceptrons and Spreading Activation
Models. There has long been an interest in simulating
the presumed computational capabilities of neurons and
neural assemblies (Hebb, 1949; Rosenblatt, 1962).
One such model that captures the spirit of the
phonetic feature detector model described in this
aper has been proposed by Elman and McClelland
?1986). Much is now known about the
learning/generalization capabilities of this class of
models %Minaky and Papert, 1969), and the implications
are not entirely encouraging. I have described
elsewhere specific problems with the Elman/MeClelland
implementation (Klatt, 1986b).

Relation to the Motor Theory. The motor theory of
apeech perception (Liberman et al., 1967; Liberman and
Mattingly, 1986) advecates a transformation from
acoustic data to articulatory representationa. The
claim is that segmental encodedness due to
coarticulation, complex cue trading relationships, and
other mysteries of perception can be better explained
in articulatory terms. However, even if we grant that
the motor theory proponents are correct and the
outputs of the acoustic feature detector stage should
be transformed into a model of the current
hypothesized shape of an ideal vocel tract (Atal,
1975), such a transformation does not really solve
most of the practical prcblems inherent in a phonetic
feature model. Even ignoring the difficulty of
determining a unique articulatory shape or trajectory
from acoustic data (Atal et al., 1978), practical
problems still center on making feature decisions and
aligning features in order to represent the speaker's
intended phonological segments, and then matching this
highly reduced representation to lexical expectations.
Furthermore, the rules needed to infer underlying
features from articulatory shapes and dynamics may not
be significantly easier to state algorithmically given
present computer programming languages and pattern
matching concepis.

Relation to Analysis by Synthesis. The model we have
discussed might be considered as simply the initial
stage of a more elaborate model of speech perception
in which an important second module verifies lexiecal
hypotheses by returning to the raw acoustic data to
seek detailed confirmation/rejection. This
"analysis-by-synthesis" model (see Halle and Stevens,
1962, the appendix in Klatt, 1979, Zue, 1985, or the
companion Zue paper in these proceedings for a more
detailed description) is in grinciple capable of
overcoming errors and ambiguity in the initial
hypothesization of words, and thua might tolerate
imperfections and some featural indecisions.

Thus one way toc simplify the task of the phonetic
feature detector stage might be to suppose that these
detectors only compute functions reflecting invariant
attributes of features. More complex cue-trading
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relationships and context dependencies would then be
handled at a later "analysis-by-synthesis" stage. The
idea is that invariance-based features can be made to
erform with an accuracy of perhaps 85% correct
Stevens and Blumstein, 1978; Kewley-Port, 1983), and
this may be sufficlent to access the lexicon. Shipman
and Zue (1982) have shown that a broad-class acoustic
classifier which avoids difficult decisions, such as
place of articulation, can nevertheless significantly
narrow the search among a large set of candidate
isclated werds. However, simulations of the
continuous speech situation (Klatt and Stevens, 1973)
suggest that the analysis-by-synthesis model is
rapidly overwhelmed with lexical candidates when the
phonetic matrix is underspecified, especially when the
beginning time of a word is uncertain or there is an
error such that no word matches perfectly.

The synthesis part of analysis by synthesis is
intended to take advantage of the observation that
synthesis rules are easier to state and less subject
to embiguous interpretation than corresponding
(inverse) speech analysis rules. But synthesis is a
fairly costly computational strategy, and is not a

rticularly plausible model of human perception
fﬁlatt. 1979). 4An alternative, described next, is to
precompute a knowledge representaticn equivalent to
the synthesis stage of analysis by synthesis, and use
it in direct analysis.

Relation to LAFS: Precompiled Acoustic Expectations.
An alternative model ol perception, "Lexical Access
From Spectra® (Klatt, 1979; 1986a) proposes that the
expected spectral patterns for words and for
cross-word-boundary recodings are stored in a very
large decoding network. Perception consists of
finding the best match between the input spectral
representation and patha through the network. No
phonetic feature or segmental decisions are made as
long as the system is dealing with familiar words.

For purposes of speech recognition, the advantage
of a phonetic feature detector model over LAFS is in
the possibility that relational invariants computed by
acoustic detectors may go a long way toward combatting
cross-speaker variability and discovering invariance.
The disadvantages of a feature-based strategy are that
it makes decisions too early (before lexical access),
it has difficulty defining a representation that is
appropriate for lexical access, and it requires expert
specification of extremely complex decoding strategies
in order perform well.

The advantages of the LAFS model are: (1) there
is no assumption of phonetic feature invariance across
segment types and across phonetic environment, so all
phonetic sequence possibilities can be effectively
treated as separate patterns if desired, (2) phonetics
expertise is reguired only to set up the structure of
the network, not to train/optimize it, and (3} no
decisions are made too early since the first decision
is a lexical one. The practical disadvantages of LAFS
are that there may simply be toc many cases to
enumerate if all possible phonetic and lexical
contexts are treated separately, and there is no
well-motivated way to handle variability within and
across speakers, except by defining alternative
templates.

CONCLUSION

The initial stages of the phonetic feature
detector model described in Figure 1 have the
attraction of potentially taking advantage of (1)
improved spectral representations of speech and (2}
relational invariances that appear in the outputs of
acoustic feature detectors. Succeeding stages of the
model are far less attractive because it is unclear
how to overcome the seven specific problems listed in
the Example section. In preparing this review paper,
I have come to the conclusion that there could be
advantages to combining the attractive aspects of the
initial stages of Figure 1 with the power of the LAFS
model of lexical hypothesis formation. The result may
be a LAFS model more capable of dealing with
within-aspeaker and cross-speaker variability.
Unfortunately, much basic research remains before an
optimal acoustic-feature-based front end can be
specified and interfaced with LAFS. [Research
supported by NIH.]



REFERENCES

Allen, J. {1985), "Cochlear Modeling," IEEE ASSP
Magazine, Jan., 3-20.

Atal, B. (1975), "Towards Determining Articulator
Positions from the Speech Signal," in G. Fant (Ed.),

Speech Communication, Vol. 1, Uppsala Sweden:
IEEqvisf and Wiksell, 1-9. -

Atal, B., Chang, J.J., Mathews, M.V. and Tukey, J. W.
(1978), "Inversion of Articulatory-to-Acoustic
transformation in the Vocal Tract by a Computer
Sorting technique", J. Acoust. Soc. Am. 63,
1535-1556.

Chomsky, N. and Halle, M. (1968), The Sound Pattern of

English, New York: Harper and Row.
Church, oW, (1986}, "Phonological Parsing and Lexical

Retrieval,"” Cognition xx, xX-xx.
Clements, G.N. :5935), "The Geometry of Phonological
Features," Phonology Yearbook, ¥ol. 2, Cambridge:

Cambridge Univ. Press.

Delgutte, B. (1986}, "xxxx," in J. Perkell and D.
Klatt (Eds.), Variability and Invariance in Speech
Processes, Erlbaum, Xxx-xX.

Elman, J. @nd McClelland, J. (1986), "xxxx", in J.

Perkell and D. Klatt (Eds.), Variability and
Invariance in Speech Processes, Erlbaum, Xx—Xx.
Goldhor, H. (1935;, "E Model of Peripheral Auditory

Transduction using a Phase Vocoder with Modified
Channel Signals," ICASSP-86, 17.10. [See also
ICASSP-83 1368-137T.

Halle, H. and Stevens, K.N. (1962), "Speech
Recognition: A Model and a Program for Research®,
IRE Transactions on Information Theory IT-8,
155-150.

Halle, M. and Vergnaud, J.R. (1980}, "Three
Dimensional Phonology," J. Lingulistic Research 1
83-105.

Hebb, D.0. (1949), The Organization of Behavior, New
York: Wiley.

Jakobson, R., Fant, G., and Halle, M. (1963),
Preliminaries to Speech Analysis: the Distinctive
Features and Their EorreIa{es, Cambridge, MA: MIT
Press.

Kewley-Port, D. (1983), "Time-Varying Features as
Correlates of Place of Articulation in Stop
Consonants", J. Acoust. Soc. Am. 73, 322-335.

Klatt, D.H. (1977), "Review o e A Speech
Understanding Project®, J. Acoust. Soc. Am. 62,
1345-1366.

Klatt, D.H. (1979}, "Speech Perception: A Model of
Acoustic-Phonetic Analysis and Lexical Access", in
Perception and Production of Fluent Speech, R.A.
Cole EEa.i, Lawrence Erlbaum Assac. |§ae also J.

Phonetics 7, 1979, 279-312.]

K13EE, D.H.. (1986a), "The Problem of Variability in
Speech Recognition and in Models of Speech
Perception”, in J. Perkell and D. Klatt (Eds.),
Variability and Invarisnce in Speech Processes,
Erlbaum, xx-xx.

Klatt, D.H., (1986b), "Response to Elman," in J.
Perkell and D. Klatt (Eds.), Variability and
Invariance in Speech Processes, Lkrlbaum, XX~-xx.

K1att, D.H. and Sgevens, K.N. (1973}, "On the
Automatic Recognition of Continuous Speech:
Implications of a Spectrogram-Reading Experiment",
IEEE Transactions on Audio and Electroacoustics
AU=27, 210-237 .

Liberman, A.M., F.S. Cooper, D.S., Shankweiler, and M.
Studdert-Kennedy (1967), "Perception of the Speech
Code”, Paychological Review 74, 431-461.

Liberman, A.M. an5 Mattingly, Z1.G. (1986), "The Motor
Theory of Speech Perception Revised," Cognition xx,
XX=XX,

Lisker, L. (1978), "Rapid vs. Rabid: A Catalogue of
Acoustic Features that may Cue the Distinction,”,
Status Report on Speech Research SR-65, New Haven:
Haskins Labs, 127-152.

Minsky, M.L. and Papert, S. (1969), Perceptrons: An
Introduction to Computational Geometry, Cambridge
WA: W.I.T. Press.

Oden, G.C. and Massaro, D.W. (1978}, "Integration of
Featural Information in Speech Perception",

Pesychological Review 85, 172-191.

Pigoni, D.g. and Luce, P.A. (1986), "Acoustic-Phonetic
Representations in Word Recognition," Cognition xx,
XX=XX.

66

Rosenblatt, F. {1962), Principles of Neurodynamics,
New York: Spartan Books.

Sachs, M.B., Young, E.D. and Miller, M.I. (1982),
“"Encoding of Speech Features in the Auditory Nerve,
in R. Carlson and B. Granstrom (Eds.), The
Representation of Speech in the Peripheral Audito

BLEem, sterdam: sevier omedlical, - -

Shipman, D.W. and Zue, V.W. (1982), "Properties of
Large Lexicons: Implications for Advanced Isolated
Word Recognition Systems,” ICASSP-B2, 546-3549.

Stevens, K. N. {1972), "The Quantal Nature of Speech:
Evidence from Articulatory-Acoustic Data", in E.E.
David and P.B, Denes {Eds.), Human Communication: A
Unified View, New York: McGraw-Hill.

Stevens, K.N. end Blumstein, S.E. (1978), "Invariant
Cues for Place of Articulation in Stop Consonants",
J. Acoust. Soc. Am. 64, 1358-1368.

Stevens, K.N. and Halle, M. (1964), "Remarks on
Analysis by Synthesis and Distinctive Features",
Proc. of the AFCRL Symposium on Models for the
Perception ol Speech and Visual Form, in W.

athen-Dunn .), Cambridge, ] Press.

Studdert-Kennedy, M. (1974), "The Perception of
Speech," T.A, Sebeck (Ed.j, Current Trends_in

Linguistics, The Hague: Mouton.

Zue, 6.“. 1985}, "The Use of Speech Knowledge in
Automatic Speech Recognition," Proceedings IEEE 73,
1602-1615.




MODELS OF PHONETIC RECOGNITION II:
FEATURE-BASED RECOGNITION
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Abstract An approach to speech recognition is
proposed in which phonetic features are identified
a8 acoustic properties in the speech signal, and
lexical items are accessed directly without
explicitly labeling phonetic segments. A possible
advantage of such an approach is that a feature
representation shows minimel modification as a
consequence of the deletions and assimilation
phenomena that occur in natural speech. Problems
of determining acoustic correlates of features and
of representing lexical items in terms of features
are discussed.

In this paper I would like to argue that there
are advantages to be gained by using phonetic
features as primary units for identifying words. 1
hope to show that variability that occurs from
speaker to speaker and from context to context can
be taken inte account in a natural way if features
are used for representing utterances and if they
form the building blocks for larger units by means
of which utterances are identified.

Before discussing some of the advantages of
features, and the structure of a speech recognition
procedure based on features, let me first review
some of the basic ideas underlying the concept of
features.

Features and their Acoustic Correlates

A feature is a minimum unit in terms of which
lekical items are represented (Jakobson, Fant, and
Halle, 1963; Chomsky and Halle, 1968). Words that
have different meaning {except for homonyms) have a
different representation in terms of binary
features. Thus, for example, the words mill and
bill are differentiated on the basis of one of the
features that characterize the initial segment --
in this case the feature sonorsnt. {Other
features, such as nasal, may alsc play a role in
this distinction. Thig concept of redundancy in
the feature representation is discuased below.) It
appears that about 20 features are needed to
perform this function in language. Each lexical
item is assumed to be represented in the mind of a
speaker/listener in terms of patterns of features
(with some further structure to this pattern).

Associated with each feature there is an
acoustic correlate. This acoustic correlate, or
property, is assumed to give rise to a pattern of
response in the auditory system that is
qualitatively different or distinet from the
response pattern associated with other features.
The property asasociated with each feature can be
pregent in the sound with different degreez of
strength. Features have articulatory correlates as
well as acoustic or perceptual correlates, but in
this paper cur principel concern is with the
acoustic correlates.

The acoustic properties thet qualify as
correlates of phonetic features tend to be
relational and not absolute. Thus, for example,
acoustic parameters such as the overall intensity
of a component of the signal or the frequency of a
particular spectral prominence, divided arbitrarily
into two classes by a fixed intensity or frequency,
would not qualify as the bases for the acoustic
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correlates of phonetic femtures. Parameters such
as these show large interspeaker differences for
the same utterance. Furthermore, there is no
evidence to indicate a natural perceptual boundary
or‘qualitative shift in the pattern of auditory
response at an absolute intensity or an absolute
frequency. On the other hand a property such as
the frequency of one formant in relation to another
could lead to qualitatively different auditory
response pattern depending on whether the spacing
between the two formants was greater or leas than a
eritical value. (See, for example, Chistovich,
Bheikin, and Lublinskaja, 1979.) Through proper
gelection of properties that deascribe spectral
relationships, these properties can be speaker
independent, since they do not depend on the
speaker's vocal tract length or average fundamental
frequency. Properties defining features can also
be relational in the time domain. Thus, for
example, a qualitatively different auditory pattern
could result from an abrupt rise in spectrum
amplitude in a broad frequency region as opposed to
an abrupt fall in amplitude. In this case the
relevant property is relational in the same sense
that the amplitudes of spectral components at one
time ere interpreted in relation to the amplitudes
of these components at an adjacent time.

There is a tendency for groups of features to
be implemented more or less simultanecusly, and
consequently these features are naturally organized
into segmenta. For example, within 10-20 msec of
the release of & stop consonant, the sound contains
properties identifying the features continuant and
sonorant as well as the features related to place
of articulation. In general, however, each feature
is not specified for every segment. (For a
discussion, see Halle, 1985, and references cited
therein.) Sometimes just one feature might show a
change at a point in time at which no other
feature shows evidence for a change (e.g., the
feature continuant in the initial consonant in
/%a/, or the feature high in the vowel in /se/).

On the other hand, some features may be defined for
some segments, with no specification of these
features for intervening segments. Thus, for
example, in the word banana, the features
indicating backness and high pitch are apecified
only on the second vowel and not in the other
vowels, which are ungtressed and reduced.

An important characteristic of the
representation of an utterance in terms of features
is that the representation usually has more
features than the minimum number that are needed to
distinguish the utterance from possible
competitors. That is, there ics redundancy in the
feature representation. A consequence of this
redundancy is that there 1s room for variability in
the acoustic representation of an utterance. Not
all features need to be marked in the signal, and
the acoustic properties associated with these
features can be present with different degrees of
strength (Stevens, Keyser, and Kawasaki, 1986).

Situations often arise in which one or more
features of one segment spread to a nearby segment,
vesulting in a change of scme features of the
segment, a specification of features that were
previously unspecified, or even a deletion of the
segment. Examples are: in miss you /s/ becomes
[%], taking the palatal feature of the adjacent
[3); in at the, the sequence /t#3/ can become [£].
i.e., & dental t; in sit close in rapid speech, [t/
can lose its plece features but retain the stop
feature; in tree, the initial /t/ takes on the
retroflex feature of the next segment. In many
cases the spreading of features is allowed becausne
there is redundancy in the feature description of a



segment, and changing one or more features does not
lead to misidentification of a lexical item. These
agsimilation phenomena often occur when there are
two or more adjacent consonants, and they can occur
within words or at the boundaries between morphemes
or words. They appear to follow certain general
principles, and linguists are working on models of
feature organization that capture these principles
in a natural way. {See, for example, Clements,
4985 and Halle, 1985.) The point is, however, that
if the feature is used as a basic unit of
representation these sources of varisbility in the
speech signal can be accounted for in a rather
natural manner.

Features, Variability, and Invariance '

From the above discussion we can identify two
principal sources of variability when an utterance
such as a word is produced by different speakers
with different speaking styles end in verious
contexts. One kind of variability arises mainly
because different speakers have different
vocal-tract sizes and shapes, and because talkers
may use various speaking rates. This scurce of
variability can be accounted for by proper
specification of the acoustic correlates of the
features., In particular, the ecoustic properties
should be relationcl so that they are insensitive
to vocal tract size and speaking rate.
Considerable progress has been made in specifying
these acoustic properties, but much work remains to
be done in this area. This research can be guided
by an understanding of the psychophysics and
physiology of hearing, and of theories of speech
production.

The second source of variasbility arises
because a speaker may modify the feature
description that underlies an utterance or may make
adjustments in the strength with which a feature is
implemented. In some situations this modification
is dictated by rules specific to the language, and
in other cases the changes are cptional and are
influenced by speaking style. These modifications
in the feature description appear to be capable of
specification in terms of spreading of features
acroas segments, such that features in one segment
are changed as a consequence of particular feature
values in an adjacent segment. The spreading can
lead tco changes in or elimination of one feature
or groups of features.

Another source of interspeaker variability,
which we shall not consider here, arises when
different dialects are involved. Usually, however,
it is possible to describe the phonetic differences
between dialects in terms of a small set of rules
operating on features.

Toward a Model for Feature-Based Recognition

How might a listener make use of features in
decoding an utterance given the acoustic signal?
Or, given the theme of this conference, how might
we implement these ldeas in a speech recognition
system? The point of view we take here is that
there are two stages to this process. The first
stage is to identify the properties in the signal
from which estimates of the features are made, and
the second stage i8 to identify the lexicel items
from these properties. We imagine that testing for
each property is carried out continuously through
the speech signal. Most of the properties achieve
maximum values or degrees of strength at particular
points in time in the speech signal. These peak
valyes of the propertiee define events in time
within the signal., Some properties, however,
maintain approximately constant strength over
longer time intervals, and thus are identified with
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regions of time rather than with events in time.

An example is the feature voiced, for which the
acoustic correlate is the presence of low-frequency
periodicity. (Other features are often active, and
hence other properties are often present in the
signal, when the feature voiced is implemented in
English.} Also, there are some interrelationships
between properties so that some properties cannct
be extracted unless other properties are present.
Thus the continuous speech signal is characterized
by a series of signal streams, one corregponding to
each property that is the acoustic correlate of a
feature. For the most part, these signal streams
consist of marks indicating brief time intervals or
events, and these marks are labeled with the
strength of the property. There is a tendency for
these events corresponding to some groups of
features to be approximately aligned, for example
in the vicinity of a stop-conscnant release.

We shall not discuss in detail the next stage
of processing in which lexical items are accessed
on the basis of these signal streams. Probably the
most difficult and important problem to be solved
is to determine a proper structure for the lexicon
so that it can be accessed from these signal
streams {or modified versions of these signals),
given that these signals reflect the effecis of
redundancies and spreading phenomena of the type
discussed above. There are several requirements
for this structure: (1) in the feature
representation, the notion that some features are
redundant should be indicated in some manner; (2)
while some features are aligned within the same
segment, the representation should be structured to
allow some flexibility in this alignment, possibly
along lines of the tiered structure proposed by
phonologists; (3) features or feature groups that
are susceptible to spreading should be indicated so
that assimilation phenomena may be accounted for in
a8 natural manner.

[Supported in part by grants from the National
Institute of Neurological and Communicative
Disorders and Stroke and from the National Science
Foundation.]
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Abstract This paper proposes a recognition model that at-
tempts to deal with variabilities found in the acoustic signal.
The input speech signal is first transformed into a represen-
tation that takes into account known properties of the human
auditory system. From various stages of this transformation,
acoustic parameters are extracted and used to classify the ut-
terance into broad phonetic categories. The outcome of this
analysis is used for lexical access. The constraints imposed
by the language on possible sound patterns should signifi-
cantly reduce the number of word candidates. Finally, de-
tailed acoustic cues will be utilized to select the correct word
from the small set of candidate words.

Introduction

The task of phonetic recognition can be stated broadly
as the determination of the transformation of the conlinuous
acoustic signal into a discrete representation that can then be
used for lexical access. In presenting my arguments, I will
assume that words in the lexicon are represented by a set of
phonological units. While the precise nature of these units, be
they metrical feet, syllables, phonemes, or distinctive feature
bundles, is not important for the present discussion, for the
sake of consiatency I will assume that words are expressed as
strings of phonemes.

My proposed model of phonetic recognition makes use of
broad phonetic analysis and language-specific constraints to
reduce the number of lexical hypotheses, and to establish the
context for further, detailed phonetic analysis. This is the
third of a set of three papers from the MIT Speech Commu-
nication Group, expressing somewhat opposing views on the
topic. Upon closer examination, however, there may not be
as many dilferences as there are similarities. Like Klatt (these
proceedings), I believe that the signal must be transformed
into an acoustic, segmental description. However, I do not
share his view regarding the feasibility of lexical access from
short-time spectra, nor the use of a set of uniform distance
metrics to measure phonetic similarities. Like Stevens (these
proceedings), I believe in a representation based on distinctive
features. However, I am increasingly frustrated by our inabil-
ity to find invariance of these features in the acoustic domain,
and thus I question the hypothesis that such invariance in fact
exists.

Why Is Phonetic Recognition Difficnlt?

Phonetic recognition is difficult chiefly because the process
of phonetic encoding in the acoustic signal is highly variable,
Specifically, the acoustic realizations of a given phoneme can
vary greatly as a function of context (Zue, 1985). On the one
band, different acoustic cues can signify the same underlying
phonological representation. For example, the acoustic real-
ization of the phoneme /t/ is drastically different in words
such as “tea,” “tree,” “steep,® “button,” and "butter.” On
the other hand, the same acoustic cue can signify influences
from different levels of the linguistic representation. For ex-
ample, duration of a phoneme can be influenced by factors
ranging from semantic novelty and syntactic structure to pho-
netic context and physiological constraints (Klatt, 1976). In
order to perform phonetic decoding, a computer must extract
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and selectively attend to many acoustic cues, interpret their
significance in light of other evidence, and combine the infer-
ences to reach a decision. This ia an immensely difficult task,
given the incomplete state of our knowledge about the impor-
tant acoustic cues and the ways they should be combined.

In addition to contextual variations, there are several other
sources of variability that can affect the acoustic realigation of
utterances (Klatt, 1086). First, acoustic variations can arise
from changes in the environment or in the position and charac-
teristics of the transducer. Second, within-speaker varietions
can result from changes in the speaker’s physiological or psy-
chological state, speaking rate, or voice quality. Third, differ-
ences in sociolinguistic background, dialect, and vocal tract
size and shape can contribute to across-speaker varigtions.
Some of these variations may have little effect on phonetic
distinctiveness, whereas others will have dire consequences.
Successful phonetic recognition crucially depends on our abil-
ity to deal with all these sources of variability. Not only must
we extract and utilize information from phonetic variations
during recognition, we must also learn to disregard or deem-
phasize acoustic variations that are irrelevant.

Utiliring Constraints

The contextual variations observed in the speech signal can
often be attributed to constraints imposed by the human artic-
ulatory mechanisms. For example, the motion of the formant
frequencies during the production of the diphthong fa¥/ di-
rectly reflects the movement of the tongue from a low posterior
position to a high anterior position. However, superimposed
on such articulatory constraints is the knowledge possessed by
a native speaker that certain gestures need not be as precise
as others. In American English, for example, a speaker can
choose to nasalize vowels at will, since the degree of nasality
does not affect a phonetic decision. Similarly, a native speaker
can produce a front, rounded vowelin place of a back, rounded
vowel (as in the word sequence “iwo two” ) simply because the
[+back] is a redundant feature for rounded vowelsin American
English.

Examples of such language-specific constrainis are easy to
find. The so-called phonotactic constraints govern the per-
missible phoneme combinations. There are also the prosodic
constraints, limiting the possible stress patterns for a word.
Knowledge about these constraints is presumably very useful
in speech communication, since it enables native speakers to
fill in phonetic details that are otherwise unavailable or dis-
torted. Evidence of the usefulness of such language-specific
knowledge can be gleaned from experiments in which phoneti-
cians were asked to transcribe utterances (Shockey and Reddy,
1075). The transcription error was typically high when the
utterance was from a language unknown to the transcriber,
suggesting that “knowing what to expect® is important for
phonetic decoding.

Large dictionaries have been used in several recent inves-
tigations into the magnitude of phonotactic and prosedic con-
straints for American English and other languages (Shipman
and Zue, 1082; Huttenlocher and Zue, 1984; Carlscn et al,,
1985). All of these studies found that a broad phonetic repre-
sentation roughly corresponding to manner of articulation of
phonemes can often map words inte equivalence clagses with
extremely sparse membership. In American English, for ex-
ample, the expected value of the class size based on a six-
category classification scheme was found to be 34, a reduction
of more than two orders of magnitude from the size of the
original lexicon. Results such as these suggest that a com-
plete and detailed phonetic analysis of the speech signal not
only is undesirable but may indeed be unnecessary. Broad
phonetic analysis by its nature focuses on acoustic cues that
are more invariant against contextual influences. That such a



representation is also able to capture important phonological
constraints imposed by the language suggests that large-scale
lexical candidate reduction may be possible, Furthermore, be-
cause the exact phonetic context is specified by the candidate
words, detailed phonetic knowledge can be used with greater
confidence. If “tree” is a candidate word, then the verification
process can use the predictive knowledge of fhe retroflexed
context, as specified by the following /r/. The recognition
algorithm will then be able to focus its attention on the de-
tection of the retroflexed /t/ rather than a generic /t/.

A Phonetic Recognition Model

Figure 1 shows a possible recognition model incorporating
some of the previously discussed ways of dealing with variabil-
ity. The input speech signal is first transformed into a repre-
sentation that takes into account known properties of the hu-
man aunditory system, such as critical-band frequency analysis,
dynamic range compression, temporal and frequency masking,
adaptation and onset enhancement, and synchrony process-
ing (see, for example, Seneff, 1985). From varicus stages of
thia transformation, acoustic parameters are extracted and
used to classify the utterance into broad phonetic categories.
The coarse classification also includes prosodic analysis that
identifies regions where the apeech signal is likely to be more
robust. The outcomes of these analyses are used for lexical
access. The constrainis imposed by the language on possible
sound patterns should significantly reduce the number of word
candidates. Once the phonetic context has been established,
detailed acoustic cues can then be used to select the correct
answer from the small set of candidate words.

Note that the proposed recognition model is essentially a
hypothesis-test, or analysis-by-synthesis, model. It has been
proposed in the past for speech analysis (Bell et al., 1961) as
well as for speech perception (Stevens and House, 1970). The

Auditory Coarse Lexical
Signal — —
Transformation Classifier Accesa
Detailed
Answer
Verifier

Figure 1: A Speech Recognition Model

A proposed speech recogmition model that attempts
to incorporate features for dealing with variabilities.

success of such a model relies heavily on the assumption that
the number and the dimensionality of the hypotheses remain
small. In our case, this is achieved through large-scale hy-
pothesis pruning utilizing a proper set of constraints. Once
the number of hypotheses becomes manageable, attention can
be directed toward detailed acoustic cues that will enable us
to make fine phonetic distinctions, The model is also compu-
tationally efficient since detailed acoustic cues are computed
only when necessary. During verification, the acoustic cues
can be determined in a prioritized manner as well. The com-
putational savings, however, should be considered a side ben-
efit; the primary appeal of the model stems from its ability
to deal with variability. The coarse analysis is desirable be-
cause the resulting representation is relatively invariant across
contexts and yel implicitly captures lexical and phonotactic
constraints. Since detailed phonetic recognition is often error-
prone, deferring this process will minimize error propagation.

To successfully implement such a model, mechanisms must
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be provided to insure that correct werd candidates are not ac-
cidentally pruned and irreirievably lost. Errors of this sort
occur for two reasons: either the coarse classifier makes a mis-
take or the lexicon does not anticipate a particular phonetic
realization for the word by the speaker. This problem can be
alleviated by permitting the lexical access procedure to accept
reasonable insertions, deletions, and substitutions. If the er-
rors are indeed reasonable, the correct word candidates should
have better scores than the incorrect ones.

While the discussion leading to this model has focused on
isolated words, the model can, in principle, deal with con-
tinuous speech as well, Instead of working with a set of word
candidates, the verifier would deal with a lattice of word candi-
dates. Provisions would then be made to determine and com-
pare the relative goodness of words and word strings, subject
to phonological, syntactic, and semantic conatraints. Recent
lexical studies using larger linguistic units such as syllables and
metrical feet (Huttenlocher and Withgott, personal communi-
cation) show that these units exhibit constraints of similar
magnitude. Using these large units may prove to be a more
elegant way of accommodating continuous speech.

[Research Supported by DARPA under contract N0O0D14-82-
K-0727, monitored throught the Office of Naval Research.)
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ON THE AVAILABILITY OF DURATIONAL CUES
Thomas H. Crystal & Arthur S. House

Communications Research Division, Institute for Defense
Analyses, Princeton, NJ 08540-3699 U. 5. A.

ABSTRACT

Ongoing research to identify phones and measure
their durations in recordings of read speech has resulted
in the analysis of 10,300 phones produced by six talkers.
The texts, the marking technique and some preliminary
results were reported previously [2]. This report extends
the earlier findings and tests for the presence of well-
established durational cues cited in the literature. The
analysis found, in general, that most of the cited eflects
are not clearly evident in continuous (read) speech sig-
nels, Some findings to be discussed are (a) complete-
ness of stops; (b) stop variation in context; and (c) vowel
lengthening.

INTRODUCTION

This is a progress report in an on-going program
dealing with segmental durations in connected speech
signals. An earlier report {2] described, in detail, the
gpeech materials, talkers and methods of analysis. The
study of these recorded materials has continued with an
emphasis on segment durations and modeling of distribu-
tions. This report deals with measurements made on two
scripts as spoken by six typical talkers—three from the
original slow group (Nos. 1, 4 & 7; Table II [2]) and three
from the fast group (Nos. 22, 34 & 43.) The scripts total
approximately 600 words in 33 sentences [2, Appendix].

As before, the speech-sound segments of the readings
were identified by studying a computer-graphics spectro-
gram and/or waveform display while simultaneously lis-
tening to the signal and by applying most of the stand-
ard criteria of acoustic and auditory phonetics. For stops
and affricates the hold portions were measured (with oc-
casional exceptions), as well as the plosive release. For
stops with nonplosive releases—nasal, lateral, etc.—the
released portion generally was included in the following
segment. Word and pause boundaries are marked and
have been used in the analyses.

SEGMENTAL DURATIONS

On the completeness of stope. A finding in Crystal
& House [2] was the low percentage of “complete” stops
(hold + plosive release) in the sample. Recently, stop
closure duration was studied [6] with “sytematic condi-
tions,” using a corpus in which more than 95% of the
stops were complete. Such a corpus may be very un-
characteristic of standard speech.

In this corpus the over-all frequency of cccurrence of
.complete stops is 59%. There is a tendency for voiceless
stops to be complete a higher percentage of the time
than voiced stops (over-all, 65% vs. 51%), particularly
in word-final position (42% vs. 18%.) As expected,
word-initial stops are complete more often than word-
final ones (85% ve. 33%.) There is a tendency, also,
for velars to be complete more often than more fronted
stops, Stop completeness is examined more closely in
Table 1. The table entries display individual stops in
various contexts, as indicated. Caveat lector: Validity
is limited by small sample size and consequent atypical
phoneme distributions!

The finding that plosions for /t/ and /k/ were al-
ways, essentially, measurable following /s/ is a little un-
expected; they are considerably shorter, however, than
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Table 1. Proportion (Pr) of occurrence of complete
stops in various contexts. Symbols: SI — silence; # =

word boundary; — = undefined context; N = total

tokens in category. Six talkers; two scripts. [A] #stop—;
B #atap+!ﬁ C) # s} stop--vowel; rD] 8-}stop+r;
E| —stop#; [F]| —stop#S1.

Position in Word

Any Initial Final

Stop A B ¢ D|E F
p |Pr| 55 B8 .94 - .34|.23 -
N|108 ) 42 18 0 6143 0

t |Pr| 61 | B4 BT 100 .96).36 .49
N | 734|234 18 86 24{363 40

k |Pr; .77 | 98 100 1.00 - .89 .95
N |30} 137 17 8 073 21

b |(Pr| .79} .T9 .62 - - | - -
N | 208 | 208 29 - -1 0 0

d |Pr| 34| 81 92 -~ -1.18 .31
N |[4T1 | 116 12 - - |320 51

g |Pr| 87| 93 .76 - - |.34 100
N|60 | 54 17 - -1 86 1
All (Pr| 59 | B85 .79 L *1.38 48
N |1801] 798 111 * * 838 183

*(voiced cognates do not occur)

the plosions of singletons. In the case of stops followed
by /1/ or /r/, the plosion releases that occur generally are
lallized or rhoticized. It ja interesting to notice, also, that
8 higher percentage of plosions occurs in prepausal word-
final stops (col. F) than in word-final stops in general.

Completeness of stops appears to be related to talk-
ing rate. The counts in Table 2 show that the fast talkers
had about 10% lower completion than the slow talkers.

Differentiation of stop occlusion. Table 2 displays
the duration of stop occlusions (holds) as a function of
voicing characteristic and of place of articulation. (The
results for all stops are highly similar.)

Table 2. Analysis of hold portions of complete stops
according to voicing characteristic (two left cols.) and
place of articulation (three right cols.) Three slow and
three fast talkers. Two scripts. N = number of tokens.
Dur = duration in ms.

- Voicing Place
Talkers | Vosced V'less| Labial Alveol. Velar
Slow |Dur 54 55 | 58 50 82
N | 202 388|120 322 148
Fast |Dur| 54 50 | 56 48 53 |
N | 173 356 | 104 281 144 |
All |Dur| 54 53 | 57 49 58

L N | 375 744|224 603 292

The entries indicate that the hold portions of the slow
talkers tend to be a few ms longer than those of the fast
talkers. The durations of the holds of voiced and voice-
less stops are not substantially different, contradicting
experiments using citation forms [1] or words in a frame
110]. This confirms earlier observations [2] questioning

he potential usefulness of a putative perceptual cue [1,



5] based on such a difference. (On the other hand, the
average plozionas of voiceless stops are about twice as long
as those of voiced stops, as noted earlier by Zue [11].)
The effect of place of articulation is complicated.
The average durations of the hold portions for the three
putative) places of stop articulation (right portion of
able 2), while not very different, show a definite ten-
dency for alveolar stops to be shortest. The plosions give
a different pattern, however, with duration increasing, on
the average, as the point of contact moves from the lips
to the velum. This results in total stop duration that,
on the average, is about 80 ms for alveolars and labials
and about 100 ms for velars.

O’Shaughnessy [9] measured durations of sounds in
French words embedded in a sentence frame. In his
materials labial stops were about 20 ms longer than lin-
gual stops, with both types being comsiderably longer
than the present results. He also has reported average
stop (holdg durations for a read French passage [8] that
are more comparable to the values in Table 3, but reports
that voiceless stops are 10-15 ms longer, on the average,
than voiced stops (63 ms vs. 78 ms.) Zue’s [11] finding
of longer releases for velars compared to labials and al-
veolars is supported in these materials, but his finding of
longer hold portions for /p/ vs. /t/ and /k/ is not.

The corpus also contained 705 hold-only stops, wiz.,
without plosion per ze. The average hold duration for
these stops is the same, essentially, as that for complete
stops, and the tempo-group differences are comparable.

The over-all conclusion, supported by {6}, is that, in
continuous speech, the hold portions of stop consonants
are not strong indicators of voicing characteristic or place
of articulation.

Vocalic variation. A contextual effect that is well-
studied in English—Ilately in [8]-—is the change of vocalic
duration as a function of the voicing characteristic of the
following consonant in the same syllable—the so-called
lengthening-before-voicing effect. In [2] it was found for
long {that is, tense) vowels preceding stops, but not for
short (laz) vowels preceding stops, nor for either type of
vowel preceding fricatives. In the present data the effect
was investigated when the consonants are word-final and
when they are word-final and prepausal, viz., followed by
a pause (but see caveat above.) Two general facts emerge:
(1? the average duration of vowels preceding word-final
prepaussal consonants is considerably longer than that of
vowels preceding word-final consonants in general, and
(2) with the prepausal constraint, the data demonstrate
the lengthening-before-voicing effect. The only exception
noted was for the few cases of short vowels preceding
fricatives. With this exception, there is an average 20-ms
lengthening associated with vowels preceding prepausal
voiced (vs. voiceless) obstruents. Without the prepausal
constraint, however, the effect is not evident. It can
be noted, also, that the progressive lengthening of shott
vowels before ft/, /8/, c{n/, d/ and /3/, pointed out in
Lehiste [4], is not found in the present materials.

O’Shaughnessy [9] described two “strong® precon-
sonantal effects on vocalic duration in French: lengthen-
ing before voiced fricatives and shortening before voice-
less obstruents. Neither effect is obvious in the present
data, but there is a tendency for long vowels to lengthen
before voiced fricatives. In [9] there also was a “weak”
tendency for vocalic duration to vary inversely with vowel
height. The present data confirm this for high (long)
vowels (viz, ﬁ/ & /uf: N = 379) which are, on the
average, shorter—108 ms—than other long vowels. How-
ever, the relation fails when mid (long) vowels (/e/ & /o/:
N = 318, Dur = 141 ms) are compared to low (long)

-
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vowels (fa/ & [=/: N = 464, Dur = 132 ms.)

Chen (1] reported that the lengthening usually at-
tributed to the voicing characteristic of a postvocalic con-
sonant functions across intervening sonorants separating
8 vowe! and an obstruent (sent vs. send.) In his citation-
form data, both sonorant and vowel were lengthened be-
fore a voiced, compared to a voiceless, obstruent. A
rough test—long and short vowels, separately, before
nasals and liquids followed by /p/, /t/, /k/, /é/v, RINL
and their voiced cognates—shows the effect to be quite
robust in the present data.

Table 3. Mean durations (Dur) and standard devia-
tions (SD), in ms, for five “matched” pairs of back and
front vowels preceding word-final stops and nasals grouped
by place of articulation. N = number of tokens. Types
in groups not equated.

[ Back ffoweﬁ Front Vowels

Consonant Clgsa| N Dur SD| N Dur SD
Labial 80 128 42] 82 116 56
Dental 262 125 58 411 84 48]
Velar | 12 67 14| 82 92 55—1

Another potential influence of consonantal context
on vocalic duration is a place-of-articulation effect dis-
cussed by Fischer-Jgrgensen [3] in which, before labials
and dentals, back vowels > front vowels, but before
velars, back vowels < front vowels. Data for examinin,
this effect are presented in Table 3 (see caveat aboves
For each consonant class the vowel category that, on
the average, is longest, is the one predicted by Fischer-
Jdrgensen. The Fischer-Jgrgensen study followed one by
Maack [7], which claimed the relation “vowel-}-velar >
vowel--dental > vowel{-labial,” but this relation does
not hold in the present data. Further tests of vowels
preceding word-final labial, dental and velar consonants
using (1) 10 vowels (six long; four short) and (2) using all
vowels occurring in the context resulted in an ordering by
vocalic length that was the reverse of that described by
Maack [7]. There are reports also on durational variation
according to voicing characteristic for vowels following
stops [3, 9). Some of these phenomena are found in the
present data.
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USING STRESS INFORMATION IN LARGE
VOCABULARY SPEECH RECOGNITION

Pierre Dumouchel, Matthew Lennig*
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Using stress information in @ Markov source-based large
vecabulary speceh recognition system provides a way to er-
amine a nonlocal cue which is generally poorly represented
by the Markov source model. In this paper, we present an
algorithm for estimating the siress patiern based on syllable
durations and short-time energics, The oulpul also gives the
probability of the correctness of the estimated stress pattern.
The parameters ure first normalized in an allempt lo reduce
variability due lo different linguistic conlerts. The streas pat-
tern is then estimated based on a statistical approach. After
initial training, lesls on a new word st yielded 95% correct
detection of the syllable carrying the primary stress. Finally,
inclusion of this algorithm in a large vocabulary isolated word
recognition sysiem conlribules to its areuracy.

INTRODUCTION

The goal of this research is to devise an algorithm for
the estimation of the stress pattern of a spoken word from
its acoustic signal. Such an algorithm would serve as a com-
ponent of a speech recognition system. Input to the stress
patiern estimation algorithm consists of a word’s hypoth-
esized phonemic transcription with stress markers and the
corresponding acoustic signal. The output is a probability
estimate of the correctness of the hypothesized stress pat-
tern assuming the segmental transcription is correct, Only
duration and short-time energy are used as parameters,

The definition of stress differs depending on whether we
regard it from the point of view of the speaker or from the
point of view of the hearer. From the speaker’s standpoint,
stress may be defined in term of greater efiort to produce a
syllable. From the listener’s standpoint, stress is manifested
by duration, energy level and increased (or decreased) piteh.
Moreover, stress information is not strictly localized in time
but requires information from the surrounding syllables of
the word. In other words, stress is a contrastive nonlocal
cue which overlaps adjacent segments because it is expressed
relative to other segments. In this work, since we are inter-
ested in speech recognition applications, we will adopt the
listener’s point of view.

The purpose of the stress pattern estimation algorithm
is to sharpen the overall accuracy of a Markov source-based
speech recognition system. The incorporation of this algo-

- rithm as a module in a recognition system will also provide
a way to examine a contrastive nonlocal cue. Nonloeal cues
are poorly represented in the framework of Markov models,

A published lexical stress detection technique due to
Aull (1984) may be described as categorical since no con-
fidence estimate of the decision correctness is made, Aull
tries to find the primary stress syllable of the word and the
remaining syllables are labelled by rules as ejther unstressed
or reduced. The present paper explores a probabilistic lexi-
cal stress detection technique. First, a normalization is ap-
plied on the energy and duration parameters in an attempt

also with Bell-Northern Research, Montréal, Canada
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to reduce the variability due to different linguistic contexts.
Second. the algorithm finds the hypothesized primary stress
syllable based on a statistical approach. Finally. the proba-
bilities of the estimated stress pattern and the lexical stress
pattern (as given by the Webster's Seventh New Collegiate
Dictionary) are evaluated.

DESCRIPTION OF THE ALGORITHM

Duration. energy level and pitch of the syllable are pho-
netic correlates of stress. But stress is not the only phe-
nomenon which exerts an influence on these parameters.
Intrinsic phonetic characteristics, phonological context, pre-
pausal lengthening and speaking rate may also affect them.
Hence the lexical stress algorithmn uses a series of fixed cor-
rection factors to compensate for each of these effects except
stress. In this study, only the duration and energy level
cues are used. Pitch is not employed due to the difficulty
of extracting reliable fundamental frequency information.
Since stress principally affects the vowel part of the sylla-
ble, we judge it to be sufficient to examine only this class of
phonemes. By doing so, we avoid having to segment difficult
classes of phonemes such as initial and final voiccless stops.
Hence, the duration cue used by the stress algorithm is the
duration of the vowel part. Similarly, the energy level cue
is the average of energy level over the vowel. The phonemic
segmentation is based on a Viterbi alignment technique.

Normalization of intrinsic phonetic characteristics is used
to compensate for the intrinsic duration and intensity of the
vowels. For example, for the same source power the high-
front vowel 1 will generally be less intense than a low-back

@ . Hence. compensation factors are proposed for the in-
trinsic phonetic characteristics to counter this variability.
The compensation factors that we use come from two studies
of Lehiste (1960, 1970). Similarly, phonological normaliza-
tion is used to compensate for the influence of the adjacent
phonemes on the duration of the vowel. For example, a
vowel is longer if the syllable ends with a voiced stop rather
than a voiceless stop. The phonological duration compen-
sation factors come from the previously cited Lehiste study
(1960). The phonetic description of the syllable is given by
the dictionary. No phonological cnergy compensation fac-
tors are proposed. A fixed factor is proposed to compensate
for prepausal lengthening. Finally, linear normalization of
parameters, such that within a word the normalized du-
rations sum to unity and the normalized energies sum to
unity. acts as a compensation for speaking rate and overall
speaking level effects.

Figure 1 shows the distribution of vowels based on stress
type for a corpus of 135 two-sytlable words read in isolation
from a text by a male speaker. The symbol P stands for pri-
mary stress, S for secondary siress, U for unspecified stress
as given by the dictionary. The unspecified stress syllable
is one with no lexical stress marker and it corresponds ei-
ther to a ternary stress syllable or an unstressed syllable.
The vowels are represented by their normalized, compen-
sated parameters. No evident demarcation between the un-
specified and secondary stress syllables is seen. It appears
from this figure that three regions can be identified: a region
where the primary stress syllables predominate, another one
where the unspecified stress and secondary stress syllables
predominate, and finally an overlapping region where all the
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Fig. 1 Distribution of vowels.

types of stress are present. Similar figures are obtained for
three and four syllable words but with different centers of
gravity for each region. The difference between centers of
gravity is due to the fact that we normalize the sum of each
parameter to unity regardless of the number of syllables in
the word. We conclude that & statistical approach is viable
only to differentiate between the primary stress syllable and
the other types of syllables (including the secondary and un-
specified stress syllables). Furthermore, it appears that an
additional normalization factor applied to cach parameter
for words containing more than two syliables can produce
plots with centers of gravity similar to two-syliable ones.
Based on these facts, the energy-duration space has been
partitioned into 41 regions. The regions are enclosed by
straight lines with slopes of minus one. Regions correspond-
ing to the overlapping region are of smaller dimensions to
achieve finer discrimination at the category boundary. We
allocate to each region a probability denoting a specific type
of stress. The probability is based on the frequency of ap-
pearance of a specific type of stress within a region compiled
from & list of 220 polysyllabic words:

numberof X in Y

Pr|stress = X | region = Y| = ol el T T

A hand-smoothed version of results obtained with the above
equation has been used. This is necessary to avoid unwanted
effects of the relatively small size of the corpus such as a re-
gion not containing any data points. Finally, the estimated
primary stress for the word is assigned to the syllable which
has the highest probability of being primary. The probabil-
ity of the maximum likelihood stress pattern is estimated
as the average of syllable probabilities with respect to its
estimated type of stress. We use the average of syllable
probabilities instead of the multiplication of syllable prob-
abilities since the latter incorrectly favors words with the
smallest number of syllables. The lexical stress probability
is determined in a similar way except the stress pattern is
now the one proposed by the dictionary.

RESULTS

After initial training, tests on the same speaker read-
ing a new word list yielded 95% correct detection of the
primary stress syllable when compared to the lexical stress
pattern. A list of 50 words pairs such as PERfect— perFECT
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{noun/verb) and a 220 polysyllabic words constitute the
training word set. The test set contains 112 new polysyllabic
words. The syllable distribution within the test corpus is
the following: 66% two-. 23% three-. 10% four- and 1% five-
syllable words. An examination of the errors reveals that
of the 5% errors, three-fifths are due 1o incorrect phonemic
segmentation produced by the Viterbi algorithm and one-
fifth are due to a stress pronunciation of the word which dif-
fers from that of the dictionary. A final test which consists
of examining the contribution of this algorithm in a large
vocabulary speech recognition system has been performed.
The recognizer uses hidden Markov medels to hypothesize
a list of words with their associated probabilities. During
this test we modify the likelihood of each word derived from
the acoustic data by the probability that the required lexi-
cal stress pattern is supported by the observed stress data.
Results show that the rank of the correct word in the word
hypothesis list improves by an average of 0.3 word positions
when using stress information. This test is performed using
60 test words. However, for two-thirds of the list the correct
word is already ranked first, so no improvement is possible.
Excluding these top rank cases, the improvement amounts
to an average of 0.9 word positions.

DISCUSSION

Lexical stress can be useful in recognition but its esti-
mation is difficult because

e cven in isolated word speech, word stress differs from
the lexical stress pattern (1% of cases),

¢ the lexical secondary styess syllable is considered less
stressed than the unspecified stress syllable of the
same word in 30% of cases, based on a perceptual
experiment with one subject on a list of 25 words.

¢ normalized duration and short-time energy parame-
ters for secondary and unspecified stress form over-
lapping classes.

Hence an approach which attempts to find the primary, sec-
ondary and unspecified stress syllables of the word is ex-
cluded. However, an approach which consists of finding only
the primary stress syllable is possible and can also offer a
good constraint. By expressing the confidence of the de-
tection probabilistically, the performance of the algorithm
can be integrated with the results of the other recognition
system modules. The technique deseribed in this paper re-
spects these constraints and the performance of the algo-
rithm is extremely satisfying. However, the contribution
of the algorithm to a large vocabulary speech recognition
system is only a minor improvement in the rank of hypoth-
osis. Further improvements are anticipated from a better
match between relative likelihoods based on acoustic-model
estimation and stress estimation.
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CHARACTERIZING FORMANTS THROUGH
STRAIGHT-LINE APPROXIMATIONS WITHOUT
EXPLICIT FORMANT TRACKING

S. Seneff
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A new method for representing the formants of sonorant
speech sounds is described. The method collapses the two-
stage process of (1) formant tracking and (2) abstraction of
rates and directions of formant movements into a one-step
process of directly assigning straight-line segments to the res-
onance contours in the frequency-time space. The method re-
gembles techniques used in vision research 1], and is also moti-
vated by observations of specialized frequency-modulation de-
tectors in the central auditory system [4). The computational
procedures are straightforward, leading to a description of the
formant information for a given vowel by a list of oriented
straight-line segments. The line segmenta are not assigned
to particular formants, such as F,. Instead, the recognition
process is hypothesis-driven. For each vowel or diphthong to
be recognized, a short description of expected ranges of fre-
quency and orientation in the time-frequency dimensions for
the first two formants is given. Feasibility of the method is
demonstrated by applying it to the specific task of recognizing
the vowels and diphthongs of American English in restricted
context, spoken by multiple speakers.

OVERVIEW .

It is generally accepted that the frequencies of the for-
mants, particularly the first two formants, are the most im-
portant information leading to the identification of vowels.
Formant movements are also necessary for identifying diph-
thongs and semivowels. As a result, a number of investigators
have attempted to develop formant tracking algorithms, which
assign spectral peaks to specific formants, such as Fy, F; and
F,. Once the formant tracks are available over time, it is possi-
ble to develop algerithms that detect high-level features, such
as a rising formant over the second half of a vowel.

Our approach is to represent the formant information di-
rectly by a collection of straight line segments, thus bypassing
the stage of formant tracking. The formant patierns are de-
scribed by oriented lines which often overlap in time and/or
frequency, and which collectively provide sufficient informa-
tion for identification of the phonetic content. These line aeg-
ments lead naturally to descriptions such as “rising formant”,
with the slope of the line conveying the degree of rise.

The spectral representation, the “psendo spectrum,” from
which the line segments are abstracted is obtained using an
auditory-based signal processing method, as described in [2].
The method typically yields enhanced peaks at formant fre-
quencies with smooth transitions over time. For voices with a
high fundamental frequency, the individual harmonics of the
pitch are often resolved below the first formant, thus making
it very difficult to track F, in the traditional way.

LINE FORMANT EXTRACTION PROCESS
The process to obtain a list of straight-line segments de-
scribing the formant patterns in a given sonorant segment of
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speech is illustrated in Figure 1. The pseudo spectrogram for
the word “Burt”, spoken by a male speaker, is shiown in Part
(a) of the Figure, with the frequency axis represented on a
Bark scale. A nonlinear filter-and-quantize procedure defines
“On* and “Ofi” contour regions in time and frequency, shown
in Part (b). Each robust peak in a given pseudo spectral cross-
section is allowed to vote for a best-fit line segment passing
through its time-frequency location, restricted to stay within
an “On” region, and oriented in one of 11 specified directions.
The votes of the robust peaks are accumulated in a list giving
information about the orientation, center-points in time and
frequency, duration, and mean amplitude of each line.

T (b)' (c)
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Figure 1: lllustration of Line-formant Abstraction Process

(2) Psendo spectrogram for word “Burt®; (b) One-bit en-

hanced spectrogram defining allowable regions for line seg-

ments; (c) Resulting line segments describing formants of vowel.
The next step is to consider collectively the list of candi-

date lines over a time interval defined by the unknown vowel's

extent. Usually, several peaks vote for the same line or very

similar lines. A heuristic algorithm was developed to collapse
the list of lines into a new list, with “equivalent” lines merged
into a single representative, which includes a count of the
number of votes being merged. Finally, the list is further
pruscd, and line segments that appear to be insignificant are
discarded. Elimination is based on threshold requirements for
the number of votes, the minimum allowable duration, and the
inean amplitude. The line segments that remain after pruning
in the example are shown in Part (c) of the Figure.

The final step is to convert the list of line segments into
a fuzzy descriptor format. The temporal extent of a given
line is converted to a verbal description of its extent relative
to the vowel end points, such as *first half®. Similarly, the
strength and orientation of the line are quantized to a amall
set of possibilities. Only the center frequency is retained as a
number. Table 1 lists allowable categories for each item.

Orientation Temporal Strength
Rapid Rise Rapid Fall At Start At End Strong
Rising Falling First Half Second Half Medium
Slight Riee Slight Fall In Middle Throughout Weak
Steady

Table 1: Categories for descriptors of line formants.

VOWEL RECOGNITION STRATEGY

The line formant representation was applied in a speaker-
independent recognition task for the following 16 vowels and
diphthongs of English, restricted to /bVt/ context: /i, e, yu,
I, g, =, a,9, 0, A, U, u, a¥, a®, o¥, 3/. The only step used for
speaker normalization was to reference the center frequency in



3. REDEPINING THE SEGMENTATION PROBLEM

Wichin the context, defined above,
speech-segmenting consists in researching an acoustic
trajectory in the hope of rracking down targets,
whether or not they are articulatorily met. As may be
noticed, the larger problem of target identification
can be made to pertain to acoustico-phonetic decoding,
thanks to a grammar of distortions; as such a grammar
of distortions can be inferred both from what is
already known of co-articulation and from Ffacts
observed along the trajectory.

4. AN APPROACH THROUGH ANALYTICAL-MECHANICS

4.]1. Usual Dimensions

Beside the already defined notions of velocity
and acceleration, other dimensions can alse be
computed @

— curvature tadius of the trajectory at peint M{t )
- torsion of the trajectory at point M(c ) n

Whence it is possible to deal with the usual
netions of rectilinear trajectory, stationary
trajectory, ecc. These notions can be extend over even
longer temporal window-slits by assoclating, to each
point M(c ), the variance-covariance matrix calculated
over the m preceding points, using the m vectors
{xn_w+l e« X }. The first two proper directions
(proper vectorJB of this matrix can be assimilated to
the directions of, respectively, the mean velocity
vector V and the mean acceleration vector &, on both
of which' the computations, aluded to above, can be
run.

Now, {f a mass is associated to point M, any
directional alteration is the resultant of all forces
applied to cthis point. 1Tt bheing assumed rchat
clustering forces are frictionless, and that point M
obeys strictly to the general laws of dynamics: point
acceleration (whether positive or negative) is the
resultant of attractlon forces whose respective
origins are the different targets =-here considered as
force fields.

4.2. Modelization

In order to extract interpretable path-portions
from the trajectory, the following assumprions are
made :

(a) the material point M moves towards one and
only one target at a time,

(b) a target is considered met,
trajectory becomes quasi-stationary,

(c) clustering forces are friccionless,

(d) the mean velocity V. increases with speech
outpuct,

(e) a target 1s there but fails to be met,
whenever the trajectory shows either a retrogression
point or a sudden and marked directional change,

(f) around each target, there exists a force
field the intensity of which decreases with speech
output.

whenever the

4.3. Experimentation

In an initfal study, the p parameters of RP to be
retained were cues, otherwise used in speech analysis
[Caelen et al, Bl]. They are slow-variation cues, and
thus the trajectories secured were suffictently
"smooch" to be meaningful. Over a preliminary corpus
(1solated words pronounced by 10 sgpeakers) the
following observations were made: (Fig. 1)

(a) parameters are locally correlated according
to phonemes; bringing out the existence of 1ocal
clustering forces (or constraints). This should not
come as & surprise, since we are dealing with
co-articulation phenomena; bur 1t allews (chrough
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intercorrelation-coefficient parameters) to quantify
these phenomena.

(b) within a transitional phase between targets,
the trajectory is quasi~linear (although this depends
upon the coordinate system used).

(c) the trajectory is quasi-stationary whenever a
target is met. A “Brownian movement" is then to be
noticed around the target center.

(d} the trajectory does exhibit a directional
alteration, if a target fails to be met. &

(e) whenever speech-gutput rate becomes high, the
number of such "failed" ctargets rises, while their
mean reciprocal distances decrease.

(£} point M picks up speed as it leaves a target,
and slows down as it nears the next one.

(2) there exists a grammar of distorrions chat
makes it possible to superpose various speakers
respective utterance trajectories.

4.4, Segmenting Automaton
On cthe basis of the preceding observations (a
through g) it 1is possible, for the purpose of

segmenting, to classify trajectories into cthree
different types :
1 = "Brownian" trajectories (weak-amplitude motion

about a target center) corresponding to a "target-met"
detection procedure {TM).
2 - "Angular” trajectortes (negative scalar product of
mean velocities, retrogression point, slow down before
odd point and speed up thereafter) corresponding to a
"failed-target" detection procedure (FT). Note that
the failed targer always lies beyond the retrogression
point.
3 - "“Steady" trajectories (large curvature~radius, no
odd point, maximum velocity reached about mid-course)
corresponding to a transition-path detection procedure
(T).

These three types of trajectory define the three

different states assumed by an automaton whose
transitional arcs are activated by TM, FT and T
procedures.
5. CONCLUSION

The above makes 1t possible to look at

segmenting, and subsequently at acoustico-phonetic
decoding, from a new and maybe more advantageous angle
: 1nstead of researching discontinuity, we would
resort to the formal instruments of mechanics {or
data—analvsis) to examine local wvariations 1in
speech-trajectories that are represented in suitable
spaces. Such a representation allows for an ascending
description, from acoustics to phonology; while
by-passing any a priori (even implicit} phonetic
model. At the same time, it seems possible to find a
grammar of distortions capable of superposing the
several trajectories that correspond to omne sequence
uttered by several speakers. This kind of results,

nevertheless, remains to be confirmed over large
speech-corpuses and large numbers of speakers.
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INVARTANCE DES SPECTRES DE PAROLE PAR ANALYSE DES
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RESUME: !

Cet article décrit une technique d’adaptation d’un
dictionnaire de formes de référence a de nouveaux
locuteurs, dans le cadre d’un Systéme de Reconnaissance
Automatique de 1la Parole (SRAP). Elle se base sur
1'hypothése dfune corrélation maximale entre les espaces
spectraux du locuteur standard et du nouveau locuteur pour
déterminer un espace commun ol les spectres respectifs sont
invariants. Une application & la reconnaissance des dix
chiffres montre les améliorations qu’elle apporte.

ABSTRACT:

Various speaker normalization and adaptation
techniques of a knowledge data base or reference templates
to new speakers in automatic speech recognition (ASR) have
been studied during last years. This paper focusses on a
technique for learning spectral transformations, based on a
statistical analysis tool (Canonical correlation
analysis), to adapt a standard dictionary to arbitrary
speakers which does not require prior knowledge about them.
The proposed method permits to improve speaker independance
in Large vocabulary ASR. Application to an isolated digit
recognizer improved a 70X correct score to 87%.

1. Introduction:

La représentation mathématique du signal de parole est
déduite de 1'onde acoustique acquise dans différents
environnements (microphone, bruit ambiant, ...). La
production de la parole {vibrations des cordes vocales et
transmission par le conduit vocal) dépend fondamentalement
des caractéristiques physiologiques et articulatoires des
locuteurs, de 1'influence des contraintes sémantiques,
syntaxiques et lexicales {compétence et aptitude
linguistiques), de 1'état physique du locuteur (fatigue,
émotion, 5007 ainsi que d’'autres facteurs
paralinguistiques.

Ces différences expliquent 1la variabilité inter-
locuteur observée dans le signal de parole. On observe
aussi une variabilité intra-locuteur, mais beaucoup moins
importante, ce qui explique les meilleures performances des
systémes dépendents du locuteur par rapport aux systémes
indépendents des locuteurs. Cela explique aussi le biais

introduit dans les mesures de distance spectrale.

Pour réaliser des systémes de reconnaissance
indépendents du locuteur, plusieurs axes de recherche sont
actuellement explorés. On distingue trois grandes
directions. La premiére tente d’atténver 1’influence de la
variabilité inter-locuteur en augmentant le nombre
d’archétypes associés a chaque son dans le dictionnaire de
référence, de telle sorte que tous les locuteurs
représentatifs de la population d’utilisateurs Ffassent
partie des locuteurs d’apprentissage. Pour y parvenir on
utilise différents artifices tels que chaines de Markov,
analyse discriminante, Clustering,...

La seconde méthode cherche des traits invariants aussi
bien au niveau articulatoire, acoustique que perceptuel et
ne garde que ces paramétres pour la représentation de la
parole.

La premiére technique est telle que 1’acquisition, la
sélection et le codage des références deviennent vite une
longue et coliteuse procédure. En outre le dictionnaire de
références résultant occupe une place mémoire
substantielle et on ne fait pas appel a des données
spécifiques & 1a parole. La seconde technique, quoique plus
attrayante, a encore besoin de quelques années de recherche
avant d‘étre operationnelle, en élaborant un modéle de
1’influence des caractéristiques du locuteur et de ses
habitudes articulatoires sur le signal observé.

Ce papier concerne la troisiéme technique qui est
1l‘adaptation d'un SRAP de base & chagque nouvel
utilisateur.

Chaque individu écoutant pour la premiére fois la
parole d'un locuteur inconnu a souvent besoin de s’adapter a
la nouvelle volx (ou d’adapter son apparail de perception),
et les premiers mots d’'un dialogue n’apportent guére
d’informations que celles nécessaires a cette adaptation.
D’une facon similaire on peut envisager une adaptation de
SRAP basé sur le dictionnaire spécifique & un locuteur, a
d’autres locuteurs sans acquérir leur dictionnaire
spécifique respectif. Ceci permettra dutiliser des
algorithmes qui ont fait leurs preuves et dont on connait
les performances. Par ailleurs cette procédure peut étre
accomplie d’une fagon dynamique (Choukri et al.,1986),
c’est 4 dire incorporée dans un systéme en configuration
réelle d’exploitation ou d’utilisation.

2. Principe de 1’adaptation de SRAF au locuteur:

Beaucoup d'auteurs qui s’ intéressent aux problémes dis
4 la variabilité du signal de parole cherchent & normaliser
des paramétres utilisés dans sa veprésentation. I1 tiennent
compte de paramétres articulatoires tels que la longueur du
conduit vocal ou d/autres paramétres tels que les positions
relatives des formants.

Le principe de 1a méthode est basé sur le constat qu’un
méme ‘"son", produit par différents locuteurs, est
interprété de maniére identique par les personnes qui
1’entendent malgré la variabilité inter-locuteur. On peut
donc envisager un espace ol des sons phonétiguement
identiques seront représentés par des modéles identiques
(Choukri et al.,1986).

Si on considére des cepstres sur une échelle Hel (MFCC)
comme paramétres représentant la manifestation acoustique
de chaque mot, 1’espace associé i chaque locuteur est donc,
dans un premier temps, un espace cepstral ou la variabilité
inter-locuteur s'exprime pleinement. $i on considére un son
w (mot, syllable, ...), on peut schématiser ces constats
par la figure suivante ot {C{)., représente une succession de
vecteurs cepstraux associée au locuteur j (Grenier,1980),

(Grenier et al. ,1981):
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Le probléme de 1'adaptation sera résolu sl on arrive &
déterminer les références Cf}. associés au nouveau
locuteur (2) A partir de celles associées & un locuteur
standard (1). Il va de soi que nous ne connaitrons jamais -~ a
moins de refaire un apprentissage sur le locuteur 2 - les
références exactes mais uniguement une estimation de
celles-ci.

Au lieu de chercher des transformations directes
C;! = #(C;!), on se propuse de chercher des transformations
qui permettent de définir 1’espace commun U. Pour cela on va
partir d'un échantillon représentatif des espaces
paramétriques C; et C, , par exemple une phrase code ou un
nombre limité de mots. Ensuite on va déterminer les
projecteurs Py et Pg tels que les projections soient
identiques.

On se contentera dans un premier temps de
transformations linéaires qui donnent des spectres projetés
aussi proches que possible au sens d’un critére d’erreur.
Si on cholsit le critére des moindres carrés l’erreur de
projection se traduit par 1‘équation (1):

J = g (ud-ud)T (uf-u?) (1)
i

I1 est facile de montrer a partir de cette équation
qu’on peut minimiser 1*écart entre les spectres projetés si
et seulement si la corrélation entre les spectres associés
est maximale, ce que réalise 1‘Analyse des Corrélations
Canoniques (Golub,1970), en fournissant les projecteurs
Py et Py en question (Choukri et al.,1986).

L’analyse canonique a pour but d’étudier la position
relative d’un nuage de points par rapport a un autre (dans
notre cas chagque nuage représentera 1'échantillon d‘un
espace spectral d’un locuteur). Elle recherche des couples
de variables, formés d'une combinaison des variables du
premier nuage et d’une combinaison du second, les plus
corréllés possible. Blle permet ainsi de définir un espace
paramétrique ol les projections de ces nuages coincident au
mieux (au sens d’un critére d’erreur), qui sera alors une
sorte d'espace "typologique" des deux locuteurs. On parle
alors d’invariance des spectres par analyse des
corrélations canoniques.

3. Procédure d’adaptation:

Pour valider notre propos on se propose d'appliquer
cette méthode dans le cadre d’un systéme de reconnaissance
de mots 1solés avec un vocabulaire des dix chiffres.

Le spectre est paramétrisé avec 6 coefficients MFCC
par trame. Durant la phase d’apprentissage chaque chiffre
est prononcé une fois par un locuteur standard pour obtenir
le dictionnaire de référence. La reconnaissance se fera
grice & des algorithmes de comparaison dynamigue
classiques, la détection de début et £in de mot est réalisée
manuellement pour éviter toute erreur de détection pendant
1’ évaluation de cette méthode.

La premiére phase de la procédure d’adaptation
gonsiste 4 acquérir et a aligner temporellement un
echantillon représentatif de 1‘espace spectral associé i
chacun des deux locuteurs. Il se pose alors le probléme du
choix de cet échantillon: que doit-on faire pronocncer au
nouveau locuteur commsa "phrase code"?.

Dans une évaluation préliminaire cet échantillon sera
réduit & un mot (le dixiéme du vocabulaire). les meilleurs
mots semblent ceux qui reflétent le mieux la structure de
1'espace phonétique (meilleure distribution dans le plan
des premiers axes canoniques}. Un logiciel d’analyse des
corrélations canonigues permet alors de définir le nouvel
espace de projection.
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Grace & ce logiciel on détermine la base génératrice du
nouvel espace sur laquelle on projette le dictlonnaire
associé au locuteur standard pour obtenir le nouveau
dictionnaire. On se retrouve dans le cas d’un "systéme
monolocuteur™ et on reprendra les algorithmes du systéme de
base.

4. Evaluation:

Pour 1’évaluation de cette méthode on dispose d‘un
corpus de 130 mots (comprenant les dix chiffres) prononcés
par 100 locuteurs une seule fois. On cherche i évaluer la
méthode dans le cadre d’un systéme monoréférence en
insistant sur la variabilité inter-locuteur.

Des tests prélimimaires ont pour but dfévaluer le
systéme non-adapté en mono-locuteur croisé: 1le
dictionnaire est obtenu grice & un locuteur standard et on
le teste sur des locuteurs choisis parmi les autres. Ensuite
avec les mémes données on évalue le systéme aprés
adaptation.

Les taux de reconnaissance sont présentés en donnant
les "bons" candidats qui sont reconnus en premiére position
ou dans les deux premiéres positions avec 1’intervalle de
confiance correspondant & une probabilité d’erreur de 5%).
Le taux de reconnaissance d'un systéme multi-référence
utilisant les techniques de clustering (Syril) est de 93% en
premiére position ( Flocon et al.,1984).

Taux de reconnaissance et intervalle de confiance
premiere position | deux premiéres positions
70% (68,73) 84X (B81,86)

non adapté

adapté 87X (84,89) 92% (91,94)

5. Conclusion:

Ce papler montre une adaptation de dictionnaires de
formes a de nouveaux locuteurs. Une application 3 des
systémes mono-référence montre que les taux de
reconnaissance sont améliorés de quelque 17%. Ce résultat
reste a4 confirmer dans le cadre des systémes Multi-

références et de vocabulaire plus grands {130 mots).

6. Références:

Choukri, K. , Chollet, G. & Grenier, Y. {1986), Spectral
transformations through canonical correlation analysis for
speaker adaptation. in Proc. ICASSP, Tokyo (to be
published).

Flocon, B. and Briant, N. (1984), SYRIL: systéme temps
réel de reconnaissance de mots isolés indépendant du
locuteur, 4éme congrés AFCET RFIA, Paris.

Golub, G.H. (1970), Matrix decomposition and statistical
calculations. in Statistical computation, Edited by Milton,
R.C. & Nelder, Y.A. (Academic press), PP. 365-397.

Grenier, Y. {(1980), Speaker adaptation through canonical
correlation analysis. in Proc. ICASSP, Denver, pp.888-B891.

Grenier, Y., Miclet, L., Maurin, J.C. & Michel, H.
(1981), Speaker adaptation for phoneme recognition. in
Proc. ICASSP, Atlanta, pp.1273-1275.



GRAMMATICAL COMPONENTS AND MACRO-PROSODY :
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ABSTRACT

This study fits within the scope of the natural
understanding of texts. Already known, simplified
grammatical {(syntactic, semantic) models of linguistie
analysis have been either adapted or elaborated upon,
in order to verify rhe hypothesis according to which
there exist actwal traces of abstract grammatical
levels within the prosodic continuum of speech.

A per-speaker statistical file was compiled,
conctaining both (l-syntactic, 2-semantic, 3-pragmatic)
parameters issuing from the above models, and
phonetico-prosedic parameters that are specific to
melodie, energetic and temporal (including pauses)
registers. Such a file makes it possible, if we resort
to correlation analysis, to secure a quanticative
appreciation of variability in the strategies adepted
by speakers.

While anticipating an analysis of statistical
correlations, the present article states the contents
of the varjous analytical levels involved in the
segmentation and labelling of a prosodic data-base.

1. INTRODUCTION

The problem we turn to is very aptly described by
Hirst (1983) : "A deeper reason [for the elusiveness
of intonation] comes from the fact that an adequate
description of intonation needs to take into account
not simply the phonology of the language, bur also the
syntax and the semantics, as well as the interfaces
between the grammar and 'the real world' constituted
by phonetics and pragmatics.' Initially touched upon
by Kellenberger (1932), this domain has since often
been explored; particularly, within cthe last faw
years, in generative phonology --viz., Chomsky and
Halle (1968), Liberman (1975), Liberman and Prince
(1977) in the United States, and by Hirst (1983 a,b),
Dell {1984}, Dell and Vergnaud (1984) in France.

The present paper does not deal at all with any
theoretical excercise in generative phonology;
instead, as a follow up on previously published
preliminary work [Caelen-Haumont 1985), it reports on
a linguistic analysie {for syntactic, semantic,
pragmatic and proscdic components) that was rum in an
experimental attempt to relate text structures to
prosodie ones, by means of a prosedic data=base. The
categories yielded by this linguistic analysis are
used as labels in the prosodic data-base; eventually,
either they are symbols (alphabetic ones) involved in
the computation of various averages, or they are the
‘addresses of event-parameters (e.g., pause duration).
Therefore, the parameters {involved in correlation
analysis issue either from computations run at those
addresses, or from numerical categories involved in
labelling.

2. LINGUISTIC ANALYSIS

2.,1. Text Analysis
This involves three different components.

2.1.1. Pragmatic Component

The 3 successive reading instructions determine
different relationships between the linguistiec signs
imbedded in the text and their human users (reader to
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human/computer listener); a three-grade scale being
thus defined on the pragmatic axis : instructions !
through 3.

2.1.2. Syntactie Component:

The model text is limited to a set of sentences
without subordinate clauses. The syntactic¢ component
is limited to a morphological analysis, as well as to
an analysis of the syntactic complexity.

Through morphological analysis (lst level), a
phonetic item (acousrical realization phase, phoneme,
syllable or word) can be identified by locating it
with respect to sentence boundaries, or to boundaries
of groups (this term being, here,, conceived of as
designating a unit that pertains to the next deeper
level, beyond the surface structure). Or again, a
phonetic item can be identified by locating it wichin
these groups. A further distinction (2nd level) is
made by specifying whether a word is mono- or
pluri-syllabled and, in this latter case, whether a
syllable is inirial, final or intermediate within a
word. Words with a final /a/ are in effect no problem,
since the gyllable that can actually be stressed can
be counted as the real final syllable; provided cthe
subsequent consonant, or conscnantic group is also
counted as part of it, and the /o/ as a post-final
phoneme. A third phase of analysis involves twe
facets : 1/ a description of how a word appertains
grammatically =—{.e., whether it is a "lexical” or a
"grammatical” word, sometimes referred to as a "rool"
word— and 2/ an identification of 2 constituents
having specific prosodic properties (coordinating
conjunction and elitic).

All cthese different items of information can be
recombined in such a way as to suggest 18 different
2-character codes. This code is illustrated on fig. 1.

At this stage of analysis, the depth-degree of a
group within the constituent structure of a sentence,
is not taken into account; major and minor groups
being lumped together. This reinforced type of
structure analysis tackles syntactic complexity.

Unlike morphological analysis, which proceeds by
means of symbolic designation of elements, the ceding
procedure we describe here is quantitative. As is done
with the semantic-complexity analytic model ,
quantification of syntactic complexity is performed by
means of a procedural graph.

In its present stage, the syntactic model
emphasizes deep structure at the expense of surface
structure : despite their actual diversity, relations
among the infra-syntagmatic units that make up the
group have all been given the same weight (i.e., +1).

The kind of analysis, herein described, has no
claim to being exhaustive. It purports, instead, to
recognize and quantify wmore or less complex
constituents or processes of syntax; whether, in the
process of either coding or decoding linguistic units,
such complexity is a matter for grammatical theory or
for psycho-linguistics. In any event, this complexity
is to be perceived at different levels of analvsis. At
the level of structure , the deeper a constituent is
thought to be --and subsequently the more extent the
sentence== the more weight is ascribed to it : the
heaviest weight, in the sentence, being ascribed to
the P-level constituent =~—i.e., the final one-~ while
the skipping rate, from one hierarchical level to the
next, is taken to be equal to l.

The syntagmatic-relation module describes
relations among constituents, in cthree different
locations : definite end of syntagma, relative end of
syntagma followed by a coordinated or a subordinaced

syntagma (respective welghts for this three
sitvations : +3, +2, +1). Finally, cthe model 1is
sensitive to constituent order, and displacement

within the structure is ascribed a +2 weight. Figure 1
shows an example of syntactic-complexity



quantification that is obtained through adding the
module weights, described above, to eachother.

2.1.3. Semantic Component
This study also attempted to quantify the

Bemantic complexity of the lexical items 1in texe, by
means of a new analytic model. This complexity is
analysed from the point of view of any person imsofar
as he is considered outside his own speciality domain.
This model f{s otherwise explained [Caelen-Haumont,
1986] and applied to textual analysis.,

The model sought to describe the semantic effect,
noet the means of achieving 1t. In chis matter,
although they participate to the elaboration of
meaning, the syntactic setructuration provessee have
not been made explicit. The actual application range
of this model is not the sentence but the text. The
method, used, assumes both the intra- and
inter-lexical components to be textwide dimensions;
two dialectical poles 1in between which meaning 1is
generated, in the course either of writing, reading,
listening, or of analyzing the text for meaning. The
analytic model consists of three modules :

- intra-lexical analytic module :

a/ lexical-item register 3
standard or specialized buc vulgarized,
(respective weights : +1, +4 and +7)

b/ referent : concrete, concrete/abstract for
items with «two different acceptations (e.g.,
“"combination"), abstract or imaginary (weights 0, +2,
+4).

fundamental,
specialized

e/ specifying an essence : 1/ “state" or
spatial nocion of structuere, 2/ relarional 1link
between concrete or abstract objects, 3/ "process" or
temporal notion of evolution, 4/ combination of both
(example: the lexeme "addition") with respective
weights : 0, +1, +I, +1. These notions are independent
from syntactic categories.

d/ designating of something  in nature:
“substance" or nature of the designated object and
"attribute," quality of the latter. In turn, substance
is subdivided into either spatial or temporal cype
categories (example : perfective vs. imperfective for
"process"); these two notions possibly neutralizing
eachother or combining together.

The "attribute" category covers the distinction
between intrinsic and extrinsic attribute, and it
applies to both types of substance, contemplated in
their own pecularity.

At  the outcome of this analytic level,
quantification 1s obtained through repeatingly adding
0 or +1 weights.

2- transition module

This causes a lexeme to change category according
to context; it either simplifies or complexifies
(respective welghts : +] and +2, example : abstract to
concrete (+1)).

3- inter-lexical analytic module

It encompasses various lexical networks both of
form and of content. Form : repeating the term
commands either -1 or -3 weight, depending on its
Tegister, as defined above. Content :

a/ use in the figurate possible (ne figurate
or cliché&, 1lexicalized figurate, living figurace
—Trespective weights : 0, +3, +5),

b/ occurrence of a lexical field (belonging to
the field or initiating ic, changing fleld, weights :
¢, +2).

At che outcome of the procedural graph, each
lexical 1item 1is glven a weight (in the range : 1 ro
25) which is held to be a quantitative {though
subjective) assessment of its complexity of meaning
and, followingly, part of the complexity of meaning of
the whole text. Example on figure 1.
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2.2. Prosodic Analysis

2.2.1. Phonetic Aspect

Concerning this aspect, two dimensions are
considered : the phonemic and the infra-phonemic.

On the phonemic level, 43 labels are made
available; beside the pause, various allophones. On
the infra-phonemic level, cthe notions of realization
phase and of "intonemes" are combined to yield 9
ene-character codes. These structure up the phenemic
space that has already been pre-segmented into
"phones" (see 1., above); on the one hand, in terms of
realization phases --set-in, sustained, caudal-- based
on acoustic-cue behavior and, on the other hand, in
terms of beginning and end of specific intonemes,
spotted on the meledy curve. In the presenc work, only
continuity-intonemes have been retained and, for the
sake of generalizacion, both maxima and minima of all
final vowels of lexical words (as well as adjacent
phonemes within the syllable, whenever necessary) have
been coded, even in the case of weak or zero tonal
variations.

2.2.2. Prosodic Relief-Map

The tonic-stress structure is analyzed according
to the traditional key-points, based on poasition and
quantity criceria : onset, pre-tonic, conic and
post-tonic vowels. With an aim to testing the
influence of stressed-vowel position upon prosodic
quantity (cf. notion of metrical structure in
generative phonology), both cypes of vowels located
between attack and stress have been numerically coded
in decreasing order, down to the pre-~tonic --coded 1.
An  1llustration of phonetic labelling (phonemic,
infra-phonemic and prosodical levels) is given
figure 1.

3. CONCLUSION

The syntactic, semantic, pragmatic and prosodic
components supplied a set of alphabetic and numerical
labels. These were used to code the linguistic units
{infra-phanemic items to sentences) or events of a
prosodic data-base. A base containing prosodic data
was set up on LSI 11-73 from a corpus handled as
follows : 10 speakers reading a 45-word text, under 3
successive, increasingly demanding sets of
instructions --i.e., 1/ natural and intelligible
reading, 2/ very intelligible reading, and 3/ very
very inctelligible reading for the computer. This made
for 30 uttered texts. Once segmented and labeled the
30 data-files were fed into other stastitical files
that were set up through automated extraction of
parameters deemed relevant —=&.B., items of syntactic
complexity, pragmatic situations, prosodic values (Fo,
energy, duration) at certain points of the statement

that are localized through the linguistic iten
addresses. By facilitating various types of
data-analysis =-e.g., of correlations [Caelen et

alii,1985 a,b]-- this prosodic data-bage opens up a
possibility of working on the verification of various
hypotheses concerning the presence, within speech and

more specifically within loud reading, of
grammatical-structure cues of a syntactic, semantie
and pragmatic type.

Acknowledgment: 1 wish to thank J.F. Malet (of
California State Universitcy, Sacramento) for

meticulously translating this text from French.
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ORGANIZATION OF PHONEMIC SPACE REPRESENTED
BY THE UNITS OF SPECTRA AND SPECTRAL CHANGES

Katsuhiko Shirai and Kazunori Mano
Department of Electrical Engineering,
Waseda University
3-4-1, Ohkubo, Shinjuku-ku, Tokyo 160, JAPAN

ABSTRACT
This paper describes. a method of

organizatlon of phonemic space for phoneme
recognition. Phonemic space is obtained ' by

clustering speech spectra and spectral
changes. Power change, LPC cepstral
coefficients and the differences of LPC
cepstral coefficients are used to represent

the characteristics of the spectral contour
and spectral change. The efficiency is shown
by an experiment of phoneme recognition.

INTRODUCTI1ON

There are many factors which make it
difficult to extract phonemic features
Precisely. Some of the factors are as
follows.

(1) In continuous speech, boundaries between
adjacent phonemes are uncertain and it is
difficult to segment correctly.

(2) There are many variations In
patterns.

(3) As the characteristics of phonemes exist
not only in spectral contours but also in
spectral changes, both static and dynamic
properties in speech signals mus t be
considered as acoustic features.

Vector quantization (VQ) method is an
efficient method to encede speech
signals(1]. We have used the VQ technique as
a clustering method to extract phonemic
features frame by framel21[3]. In this
paper, an organization of phonemic spaces

phoneme

with a VQ technique is discussed and we
consider the relation between acoustic
features represented by VQ codes and their
phonemic features which belong to the
clusters of the VQ codes.
REPRESENTATION OF ACOUSTIC FEATURES AND
PHONEMIC FEATURES FOR CLUSTERING
Acoustic Features

Acoustic features deftined in each
frame are LPC cepstral coefficients called
Level 1 feature, changes of LPC cepstral
coefficients called Level 2 feature and
power change. The Level 1 feature |is
calculated In a frame and denoted by the
following, .

Level | feature : (Cl(ld,...,ClCn)),
where n is the order of LPC analysis. The
Level 2 feature and the power change are

defined as the differences between the
Parameters in the first half and the second
half of the frame. |If the LPC cepstral
coefficients in the first half and the
second half are denoted by
(C21(1}),...,€22(n)) and (C22(1),...,C22(n))
and the powers P! and P2, the Level 2
feature and the power change in the {rame
are defined as follows.

Level 2 feature : {(AC2(1),...

where

+AC2(m),
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AC2(i) = C21(§)-C22(1i).
Power change :

AP = (P2 -Pl )/ Pl
The Level 1 feature shows a spectral contour
which represent a statlc property In a
frame. The Level 2 feature corresponds to
the change of the spectrum. This feature is
efficient to describe the precise movements
of spectrum in a frame, especially in
transient parts of speech such as consonant-
to-vowel (CV) sounds. The power change shows
a 4global changes such as the change from
Ssilence or unvoiced sound to voiced one.

ti=l,...,n)

Phonemic Features

A label called a frame label which is
composed of three phonemic symbols is
assigned to each frame by visual inspection
before clustering. For example, If a frame
belongs to a transient part, of speech /.pa/,
where /./ means silence, the frame labels
such as /..p/, /.pp/. /PPa/, /paa/ or /aaa/
are sequentlally vyielded according to the
position of the frame. The frame label of
/..p/, means that the frame contains sitlence
/./, in more than half part of the frame and
a sound of /p/ is following the silence in
the frame. The /aaa’/ means the frame exists
only in vowel part, that is, the frame is
almost statjionary.

CLUSTERING METHOD BASED ON VQ ALGORITHM

Phonemic features are related to
acoustic features by clustering. The main
reason of using clustering method is that
it makes the speech frames into groups
which have both acoustically and
phonemically similar properties. Each frame
Is characterized by code numbers of the
produced cluster and the frame labels tn the
cluster.

As for the clustering, vector quantizer
design method which is a slightly modified

one proposed by Linde, Buzo and Graylll is
adopted. The modified points are that the
centroids to be split are determined by

of the frame labels for
effective distributions of centroids. That
is, more centroids are assigned to the
clusters which have a lot of kinds of frame
labels and less centroids +to the clusters
which have only one or two frame labels, By
this modification, the quasi-optimality of
the VQ method is not kept any more, but it
ts more useful to extract phonemic features.

For example, if a cluster has the
frames which have the same frame labels, the
centrold of the cluster is not split in the
preceding procedure because the phonemic
features of the cluster is sufficiently

considering kinds

represented by the frame label. Such
clusters appear in stationary parts. On the
other hand, If a cluster has various kinds

of frame labels, the phonemic features in
the domain of the cluster are not described
by the centrofd and it means that more
centroids are necessary to cbtain
phonemically unified clusters. Such clusters
mainly exists in transient parts.

ORGANIZATION OF PHONEMIC SPACE
The above clustering methed is applied

to each set of frames to organize pPhonemic
space,



Before clustering, all the speech
frames are classified into three parts
called the ascending, flat and descending
parts by the degree of power change _ P in
each frame. The ascending part contains such
sounds like consonant-to-vowel, silent-to-
consonant or vowel-to-stronger .vowel. The
flat part contains almost stationary parts
of vowels, nasals and fricative consonants.
In the descending part, the sounds such as
vowel-to-consonant, vowel-to-silence or
vowel-to-weaker vowel are contained. By this
pre-classification, it is possible to avoid
grouping of the frames which have entirely
different frame labels, even in the case
that the acoustic distortion between the
frames is small.

Clustering {s performed in each part
of the three parts with Level 1 features and
Level 2 features, respectively and six
codebooks composed of centroid vectors and
sets of frame labels are produced. The
phonemic space is organized by the
distributions of the centroids and the
frame labels which belong to the
corresponding cluster in each part and each
level.

EXPERIMENT OF PHONEME RECOGNITION

For an evaiuation of the phonemic space
which 1Is represented by codebooks and frame
label sets, an experiment of phoneme
recognition is carried out. Figure ! shows
the diagram of extracting phonemic features.
When a frame is analyzed, the power ‘change
fs calculated and one of the part number of
the power change is assigned to the frame
and according to the LPC cepstrum and the
cepstral differences, codes of Level | and 2
are given to the frame. Output of the frame
labels is obtained from the intersection of
the sets of frame labels in Level 1 and 2.
By symbolic processing the sequences of the
frame labels, phoneme sequences are
produced.

The result of the ~cumulative
recognition rates of phonemes for one male
speaker s shown in Figure 2. In the
experiment. the codebooks are generated from
800 syllables and 100 city names are used
for the recognition. The sampling frequency
is 12.5[kHz]. The frame length in Level t is
32Ims] and the interval of analysis is
16Ems]. The number of VQ codes in each part
is about 256. In Fig.2 the phoneme
recognition rates are about 91X in vowel
sounds and 73% in consonants in the first
candidate. Within 3 candidates, the rates
increase to 99% {In vowels and 89% in
consonants.

CONCLUSION

A method to make phonemic space base on
the spectrum and the spectral difference
was proposed. The efficiency of this method
was evaluated.
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INTRODUCTION

We have carried out the reseﬁsches.on speaker
independent recognition of words '’ by use of word
dictionary which is composed of the sequences of
phonemic symbols. The phonemic symbols are derived
from linguistic representation of Japanese language.
In the system, the spoken word is transformed into
the sequence of phonemic symbols and the item of the
word dictionary most similar to the input sequence
is chosen as the recognition output. That is, the
system uses the phoneme as the linguistic unit for
the recognition of word.

SPEECH RECOGNITION SCHEME

The unit in speech recognition can be classi-
fied into two groups: one is based on articulatory
model and the second one is not so. The purely
acoustical units and the units which refer to the
characteristics of auditory organ belong the second
group. And the size of unit is also divided into
several groups: least one is the segment of speech
which is the minimum unit to express word or speech
and the maximum one is the word. Figure | shows the
hierarchical relation between those units. The thick
lines between two boxes in Fig. | denotes the rela-
tions which are considered to be important but dif-
ficult to formulate.

Figure 2 shows the schematic diagram of speaker
independent spoken word recognition system we have
deveioped. In the system, the recognition is to find
out the item of word dictionary which corresponds to
the input speech. And the system is equipped with
word dictionary which contains all the words to be
recognized.

L LINGUISTIC REPRESENTATION
(WORDS IN CHARACTERS)

ACQUSTICALLY
DISTINGUISHABLE
SEGMENTAL FEATURES |

PARAMETERS

~

WORD TEMPLATE
BY SEGMENTAL

WORD TEMPLATE

BY ACOUSTIC

WORD TEMPLATE
BY ARTICULATORY

FEATURES FEATURES - PARAMETERS
SPOKEN WORD ( SPEECH WAVE FORM )
Fig. | Hierarchy in the unit of repr~nsentation

of spoken words for speech recognition
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In the system, the input speech is transformed
into a sequence of phonemic symbols. And the simi-
larity of the content of word dictionary to the
input speech is computed for every item. The recog-
nition output is the dictionary item of maximum

similarity.
spoken ward

analysis and
feature extraction

sequence of
features

selecfl’mn of dictionary

dictionary item [ witten by
of maximum sequence of
similarity phonemes

recognition
output

Fig. 2 Schematic diagram of the spoken word
recognition system

PHONEME AS LINGUISTIC UNIT

The most important problem in such the system
is how to describe the contents of word dictionary.
1f the contents are described by phonemic symbols,
it may be very simple to make the word dictionary
especially in Japanese as all the Japanese words are
in the form "CVCVCV..." where C denotes the
consonant and V the vowel. But the transformation of
speech into the sequence of phonemic symbols is not
easy because the acoustic characteristics of speech
segment does not always correspond to the phonemic
symbol which are derived from the linguistic repre-
sentation.

If the contents are the standard patterns
composed of acoustic features directly obtained by
analyzing the spoken words, it would be easy to
transform the input speech to the patterns for the
comparison with cthe standard patterns. But, a lot of
computation is necessary for making the standard
patterns common to all the possible s%sakers espe-
cially in the case of large vocabulary.

And there is intermediate system3) ia which the
word dictionary is composed of the sequences of
acoustic features which are defined by classifying
the words uttered by a number of speakers. The
classification is based on the differences in acous~
tic characteristics of speech segments. Such the
features may be able to express the acoustic charac~
teristics of words more exactly than the phonemic
symbols. The phonetic transcription may be exactly
carried out using such the features, and we call the
features as the phonetic features in this paper.
The transformation of the input speech into the
sequence of the phonetic features may be easier than
the transformation into the sequence of phonemic
symbols. But, a lot of computation and a number of
speech samples will be necessary for making the word
dictionary composed of such the phonetic features
and it may be difficult problem to compose a set of
phonetic features which can be used for many vocabu-
lary regardless of speakers.

Therefore, we have used the phonemic symbols
for the description of dictionary items and now we
are trying to use the acoustic features of segments
to derive the sequence of phonemic symbols.



CONVERSION OF SPEECH INTO PHONEMIC SYMBOLS

The input speech is passed through a 29 channel
band pass filter bank which is composed of single
tuned circuit of (=6 and the center frequencies are
at every 1/6 octave between 250 Hz and 6 300 Hz. The
power of every channel is computed for every frame
of 10 ms duration and logarithmically transformed.

Eight features are extracted by using the dis-
criminant filters which are designed by use of
speech samples of 212 words uctered by 10 male and
10 female speakers. Figure 3 shows che examples of
the solution weight vectors for eight discriminant
funccions. Another feature is the logarithmic spec-
trum summation which is the sum of logarithmiec power
of all the channels.

nasal/the others
{m=18)

voiced/unvoiced

(m=22}

fricative/the others a/ouie
(m=8} (m=11)
2
2.
ofauie ufacle

Lin=14) {m=15)

1/acue efacui

(=11}

{m=12)

in

ch=p
Fig. 3 Examples of solution weight vectors
for extracting the eight features

Table | Discriminant functions

function
X;/%p X, %,
lal,tol Il il
VOiced/ /el,/j,l/w/l/mll /h/’/slilc/
unvoiced In/ /ol 8,000, | fe/. i) RS
jaf fel el Szl
Jaf,fol  ful, /il ,fel
nasal/ fmf Inf,/fnf, W/ BT INLTNL 'L
the others ied fzl, il /s /c!
fpl,lel I/
fal Jol,fuf . lif /el
fricative/ fzf,inf, /sl /el 1iltal ol inf /nf
the others TN TN TN E TN
fol, il kS
ajfouie faf lof fuf, /il /el
ofauvie lof lal tuf,fif . fef
u/aocie Ju/f lal,fof til, /el
i/aoue /it fal /ol luf,lef
e/aoui fel fal /ol lul /i)

5 vowels, 2 semi vowels, 15 consonants
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The functions of the discriminant filters for
the eight features are listed in Tab. 1. The phoneme
boundaries are assumed to be the frame where the
weighted sum of absolute values of the first order
time-derivatives of the features takes maximum value
exceeding a threshold. The frames of unvoiced and
voiced plosives are detected using the discriminant
filters. The primary phoneme recognition is carried
out for every assumed segment using the outputs of
discriminant filters and the standard patterns for
phonemes which are made using the 212 spoken words.

After correcting errors by the errorcorrection
rules, the secondary phoneme recognition is carried
out. Here, the nasals and the voiced and unvoiced

.plosives are recognized.

WORD RECOGNEITION USING LINGUESTIC UNIT

In the word recognition part, a number of sub-
items are generated referring to the confusion
matrices of phoneme recognition for initial-, mid-
and final positions of words. The confusion matrices
includes the probabilities of insertion, omission
and substitution of phoneme. The computation of
gsimilarity between the phonemic sequence with top
three recognition resules and each sub-item follows.
The dynamic programming algorithm is used to reduce
the time for similarity computation.

The dictionary item having maximum similarity
to the input sequence is chosen'as the recognition
output.

RECOGNITION EXPERIMENTS

word recognition experiments were carried out
using the speech samples used to design the diseri-
minant functions, standard pacterns and confusion
matrices and the same 212 words uttered by the other
30 males and 20 females, Table 2 shows the summary
of the results.
Table 2 Word recognition score

Training set |10 males 93.7% Average
10 females 91.3%  92.437
Test set 30 males 87.0%7 Average
20 females 89.6Z% 88.1%

CORCLUSION

This paper describes the use of phoneme as the
linguistic unit of speech in the spoken word recog-
nition system for a large vocabulary. In the system,
the phoneme recognition is first carried out and the
word dictionary item with the maximum similarity to
the sequence of recognized phonemes is chosen as the
recognition output. The score of word recogrition is
92.4% in the experiment which is much higher than
that of phoneme recognition (75.9%)} due ta the uti-
lization of word dictionary as the linguistic infor-
mat ion source. Studies on phoneme recognition is now
continued to improve the word recognition. The voca-
bulary to be recognized can easily be altered and
expanded by changing the dictionary item from key
board.
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DURATIONAL CONSTRAINTS FOR NETWORK-
BASED CONNECTED DIGIT RECOGNITION

Marcia A. Bush
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This paper examines the influence of durational con-
straints on recognition accuracy in an acoustic-phonetically
based, speaker-independent connected digit recognizer. The
constraints are expressed using a set of finite-state pro-
nunciation networks, together with specifications of min-
imum and maximum allowable durations for network prim-
itives. The recognizer was tested on a corpus of 1232 5-digit
and 7-digit strings, with and without a priori knowledge of
string length. Recognition accuracies ranged from 33.9% to
94.6% and from 91.6% to 96.8%, for unknown and known
string lengths, respectively, depending on the particular du-
rational constraints incorporated jn the network models.

INTRODUCTION

The word models used in the connected digit recog-
nizer described here consist of a set of finite-state pronunci-
ation networks, in which primitive branches correspond to
meaningful acoustic-phonetic units (Table 1). Unlike net-
works based on the hidden Markov model formalism, these
word models allow for the convenient expression of acoustic-
phonetic constraints which are manifest over portions of an
utterance longer than a single time frame. One example of
such a constraint is segment duration. ®

This paper examines recognizer performance as a func-
tion of the minimum and maximum allowable durations
for primitives in two types of network: 1) a baseline net-
work formed by simply connecting in parallel the isolated
digit models shown in Table 1; and 2) a set of networks
which incorporate additional paths representing prepausal
lengthening for the digits oh and eight. Constraints on min-
imum duration were found to have the greatest influence
on recognition accuracy, particularly when recognition was
performed without a priori knowledge of digit string length.
Prepausal duratijonal constraints proved useful in reducing
a common class of digit insertion errors,

The digit recognizer incorporates a set of general-
ized acoustic pattern matchers and a dynamic program-
ming search in addition to the pronunciation network mod-
els. Details of the recognition framework, and of signal

preprocessing, are provided in [1] and [2].
CORPUS

The corpus used in the recognition experiments con-
sisted of the adult-talker, 5-digit and 7-digit subset of the
training portion of Texas Instruments’ multi-dialect con-
nected digits database [3]. The utterances of half of the
talkers (27M, 20F, 1232 tokens) in this subset were used for
training the recognizer and the utterances of the remaining
half (28M, 28F, 1232 tokens) were used for testing. These

1After 1 Aug 86: Division of Engineering, Box D, Brown University,
Providence, 1] 02012, USA.

IAs used in this paper, the term segment relers to the acoustic-
phonetic primitives listed in Table 1.
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two corpora will be referred to as TRNA-57 and TRNB-57
respectively.

An initial version of the recognition system was trained
on 616 handlabelled 5-digit strings from TRNA-57, and run
over the entire TRNA-57 corpus {2]. The segmentations
generated for correctly identified tokens in this experiment
defined a set of bootstrapped {raining data, which were
used in all of the experiments reported here, Statistics on
minimum and maximum segment duration were collected
for both the handmarked and bootstrapped data, and used
in specifying the durational constraints in the network mod-
els.

RESULTS

Table 2 shows recognition data for corpus TRNB-57
using the bascline network (unknown string length) and
various constraints on segment duration. As indicated in
the first three columns, recognition accuracy ranges from
33.9% when the minimum allowable duration is a single
frame (10 msec), as in first-order hidden Markov models, to
93.2% using the minimum durations for the bootstrapped
training data. During the bootstrapping experiment, very
short durations (i.e., those falling in the bottom 5% of the
distributions for each segment type) were penalized, with
the result that minimum durations for the bootstrapped
training data were typically 1 to 2 frames longer than for
the handmarked utterances. The main effect of prohibit-
ing very briel segments is to reduce the number of digit
insertion errors from 1407 to 33.

Not surprisingly, constraints on mimimum segment
duration have a less dramatic effect on recognizer perfor-
mance when string length is known a priori. As shown in
the first two columns of Table 3, recoguition accuracy in-
creases from 91.6% with minimum allowable durations of a
single frame to 96.8% using the bootstrapped minima.

In the experiments just described, the maximum al-
lowable segment duration was 1.5 times that observed for
the bootstrapped data. Comparison of columns 3 and 4 in
Table 2, and of columns 2 and 3 in ‘Fable 3 indicate that im-
posing tighter constraints on maximum segment duration
{i.e., the bootstrapped maxima)} has virtually no effect on
recognition accuracy with the baseline network.

Table 4 shows recognition data for corpus TRNB-57
using networks which require prepausal lengthening for the

digit ok (column 1) or for both ok and eight (columns 2-
4). These networks were motivated by the observation that
the most consistent errors using the baseline network were
oh and eight insertions following the third digit of a 7-digit
string. (Presumably, talkers used a “telephone number”
grouping in producing these tokens.) Ok's were most often
inserted after the digits oh, two and zero, and eight’s after
two, three and eight. Prepausal lengthening was required
for each of the vocalic segments in the two digits, with
the degree of lengthening estimated from the two sets of
training data.

Incorporating prepausal lengthening for the digit ok
serves to reduce the number of oh insertions from 19 to 10
relative to the baseline situation (Table 5, columns 1 and 2},
and to increase overall recognition accuracy from 93.0% to
93.8% (Table 2, column 4, and Table 4, column 1.) Adding



prepausal lengthening for efght reduces the number of eight
insertions from 17 to 11 (columns 2 and 3, Table 5) and
increases overall accuracy to 94.2% (Table 4, column 2).

Virtually all of the prepausal ok and eigh! insertions
which remain after these two network modifications oceur
following the digits two and three. Several of these errors
can be eliminated by increasing the maximum allowable du-
rations for the vocalic portions of {we and fhree from 1.0
to 1.5 times their bootstrapped values (Table 5, column 4},
increasing overall recognition accuracy to §4.6% (Table 4,
column 3). (Additional eight insertions can be eliminated
by allowing a noisy or breathy “release” segment after these
same two digits.) Allowing looser maximum durational cdn-
straints for all segments results in a small decrease in rec-
ognizer performance (Table 4, column 4), in contrast to
experiments with the baseline network.

SUMMARY

The experiments described above illustrate the im-
portance of appropriate durational constraints for high-
accuracy network-based connected digit recognition. Mod-
eling duration in the current system is facilitated by the use
of network primitives corresponding to meaningful acoustic-
phonetic units.
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Network Primitives
oW1 OW2 OW3
WAH1 WAH2 N

(TS) TR UW1 UW2
TH RIY1 RIY2

F AOR1 AOR2
F AY1 AY2 V
S IH KS KRS
SEHV AXN

EY1 EY2 (TS) (TR)
NI AY1 AY2 NF

zero || Z IYR1 IYR2 ROW1 ROW2

Digit

OO0 ;e = S

Table 1: Network primitives for the baseline pronunciation
neiwork. Parentheses indicate optional segments.
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Segment Duration: -
Minimum 1frame | HM BS BS
Maximum 1.5xBS | 1.5xBS | 1.5xBS [ BS
% correct 33.9 86.2 §3.2 | 93.0
string length errors 800 118 47 49
matches 7270 7306 7328 | 7338
substitutions 121 79 49 47
insertions 1407 124 33 43
deletjons 1 7 15 7

Table 2: Recognition data for corpus TRNB-57 using the
baseline network and various constraints on segment dura-
tion. Unknown string length. HM = handmarked TRNA-3,
BS = bootstrapped TRNA-57.

Segment Duration:

Minimum 1 frame BS BS
Maximum 1.5xBS | 1.6xBS | BS

% correct 91.6 96.8 | 96.8
string length errors = - =

matches 7257 7350 | 7349
substitutions 122 42 43
insertions 13 o 0
deletions 13 0 4]

Table 3: Recognition data for corpus TRNB-57 using the
baseline network and various constraints on segment dura-
tion. Known string length. BS = bootstrapped TRNA-57.

Segment Duration BS, except as noted
Prepausal Minimum | OW OW - 1.75xBS
Lengthening 1.75xBS EY - 1.5xBS
Maximum UW,RIY | Al
Lengthening None | None| 1.5xBS | 1.5xBS
% correct 93.8 94.2 94.6 93.8
string length errors 40 34 30 39
matches 7338 7338 7338 7328
substitutions 47 47 47 49
insertions 34 28 24 25
deletions T | 7 7 15

Table 4: Recognition data for corpus TRNB-57 using net-
works with prepausal lengthening and various constraints
on segment duration. Unknown string length. BS = boot-
strapped TRNA-57.

Segment Duration BS, except as noted
Prepausal Minimum ow OW - 1.75xBS
Lengthening Nene | 1.75xBS | EY - 1.5xBS
Maximum UW,RIY
Lengthening None | None | None| 1.5xBS
oh 1% 10 10 7
8 17 17 11 10

Table 5: Oh and eight insertion errors for corpus TRNB-57
for various networks and constraints on segment dusation.
Unknown string length. BS = bootstrapped TRNA-57.
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1 Abstract

A new structure {or isolated-word speech
recognition via vector quantisatien (VQ) is
described, namely the segment classification
and labelling technique (SCLT). The proposed
recognizer requires the generation of separate
codebooks for the acoustically dissimilar events
and then the merging of them to produce a gingle
reference codebook. Three major acoustic events
were considered, namely voiced, unvoiced and
silence (V/U/S}. The results show that the
proposed structure has the capability of reducing
the degradation of VQ in speech recognition
and provides a better set of observations for
the hidden Markov model (HMM).

2 Introduction

Two very important speech modelling technigues
have been applied to speech recognition. They
are vector quantisation (VQ) of the linear predict-
ive coding (LPC), which is used for representing
the short-term spectral characteristics of speech,
and the Hidden Markov Model (HMM}, which can
be used for representing the long-term statistical
characteristice of speech. The VQ generates
an ordered set of reference codewords, referred
to as the codebook, which represents a partitioning
of the acoustic space in the domain of the speech
being quantized. The HMM treats any speech
utterance as a sequence of random observations
generated according to a particular underlying
law of the HMM. The underlying law is estimated
in the form of the generation of a given utterance
from a given set of observations by making a
maximum likelihood estimation. The random observ-
ations can be in various forms, one of which is
quantised LPC vectors.

While enjoying certain advantages, however,
VQ has the drawback of reducing recognition
accuracy. Recently the authors successfully
proposed a method for effectively reducing this
degradation called the Segment Classification
and Labelling Technique (SCLT) [1]. The SCLT
clasgifies the training data into three clasges;
voiced, unvoiced or silence. Then it generates
a separate codebook for each of these classes
before producing a single reference codebook. It is
interesting to use these codebooks as the random
observations for HMM. Various codebook sizes
(16,32,64,128 and 256) have beer used for quantizing
the LPC vectors and testing the performance
of our systems. The performance is alsc compared
with both VQ/DTW and SCLT/DTW alpha-numeric
recognition systems which share the same LPC
quantizer and testing data.
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3 The Segment Classification and Labelling
Technique (SCLT)

In the first step of the SCLT, the training
speech gequence is required to be classified
into three major classes namely, V/U/5. 1In
the second atep, the separate data of each class
is used to generate the corresponding codebook
using the VQ algorithm [1]. In the final stage
of this technique a reference codebook of desired
gize will be formed from the three separate
codebocks following a combination {merging)
criterion.

A novel approach for detecting the VUS
classes was used, in which a spectral characteriz-
ation of each of these signals was cbtained
during clustering of the training data, using
a K-mean algorithm similar to the VQ algorithm.
This method of classification was used for the
following reasons: (1} Since it uses the VQ
algorithm it does not need to implement a new
algorithm for the application under consideration.
{2} It does not require the calculation of
any other feature other than that used in the
analysis of the application. (3} It gives
an acceptable discrimination accuracy.

Since the aim was to apply the SCLT to
speech recognition, then the table look-up method
used here necessitated the need for a criterion
for merging these codebooks. Thus such a combinat-
ion criterion should result in a single reflerence
codebook, so allowing the calculation of the
distance of the matrix for its codewords in
the usual way of VQ. In such a criterion, codebooks
of different codeword counts were combined to
form the desired reference codebook. The question
that arises now is how to make the most efficient
use of this combination. From the actual counts,
it was observed experimentally that the number
of voiced vectors was approximately twice that
ol each of unvoiced and silence. This population
of voiced vectors satisfied the principle of
giving a higher representation for them in the
reference codebooks. Therefore, in the following
tests a voiced codebook of twice the size of
the unvoiced and silence was attempted. Thus
to form a reference codebook of size 64, a voiced
codebook of size 32 was combined with a codebook
of 16 unvoiced codewords and a codebook of 16
codewords of gilence.

] The Hidden Markov Model (HMM)

The idea of representing speech events
by HMM's has been used in several speech processing
systems. In the HMM we assume that each word
model has N-states (where N=5 is used here)
and is characterised by a state-transition matrix
A and a symbol-probability matrix B. The model
parameters (i.e. A and B elements) are estimated
from a training sequence of two versions of
the vocabulary for each speaker and used to
calculate the probability of the observation
set given a particular model M. Re-estimation
formila due to Baum-Welch was used to iteratively
adjust the A's and B's elements until the probabil-
ity of the observation sequences conditioned
on the parameter values stopped increasing signif-
icantly, or when some other stopping criterion
is met (e.g. the number of iteration exceeded
some limit), The recognition procedure used
was the Viterbl algorithm.



5 The Database used in the Evaluation

Ten speakers, five male and five lemale,
generated the database. FEach speaker was asked
to read out &s isolated worde a list of five
versions of the alphabet in random order and
ten versions of the randomly ordered English
digits {0-9). The VQ and the SCLT algorithms
training data were collected from one version
of the vocabularies for each speaker. A Hamming
window of 256 points at 75% overlap was used.
The isolated words are first processed by a
12 poles LPC analysis using the autocorrelation
method and Durbin's recursion to form sequences,
of LPC vectoras. These sequencea are then quantized
by a VQ and an SCLT. The distance measure
used is the minimum prediction residual of
Itakura. The outputs of the VQ and SCLT algorithms
are then divided into two exclusive sets, one
for training the HMM and the other for testing.

6 Comparison of the Performance of VQ and
SCLT Recognizers

To evaluate the effectiveness of the SCLT-
produced codebooks & series of isolated-word
recognition tests were carrled out in independent
mode for the digit vocabulary and in adaptive
mode for the alphabet voecabulary., 60 versions
of each word, with an equal number of male
and female speakers, were used in creating
two reference templates for the independent
mode, where a new method of creating reference
templates was used [2]. To make the most
use of the alphabet data, the letters of each
version were assumed to be templates and compared
to the letters of the other versions of the
vocabulary that were assigned as test words.

Fig. 1 compares the recognition results
for the different codebooks, generated by the
VQ and SCLT using the method of combination
described before, for the digits and the alphabet
vocabularies. An examination of these results
show that; first, the SCLT reference codebooks
gave a lower recognition errer rate in comparison
with all VQ conventional codebooks for both
vocabularies. Second, from Fig. 2 for the
Hidden Markov Model recogniser, it is clear
that the SCLT codebooks have lower error rates
in comparison with the VQ codebooks of the
same size, Thus, the SCLT reference codebooks
provides a better observation sequence for
the HMM than that of VQ codebooks. Generally speak-
ing, the above results suggest that it may be better
to guantise other acoustically dissimilar events in
addition to V/U/5 with a codebook that is formed
from separate codebooks.
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1 ABSTRACT

The Vector gquantization (VQ)} of LPC
spectra has been applied to cocoding
and also very recently to speech recocgnition
as a means of reducing memory requirements
for the storage of reference templates and
of reducing computation time. This
paper examines the effect of the LPC order
(P} on the distortion measure and on the
performance of the VQ algorithm in isolated-
word speech recognition (IWSR).

2 INTRODUCTION

Linear predictive coding (LPC) coef-
ficients have become the most powerful
and predominant features for representing
the speech signal. The number of LPC
spectra required to describe the words
of a vocabulary is very high. The basic
concept of VQ is to classify these LPC
spectra by comparing them with vectors
in a codebook. The goal of a VQ algorithm
is to minimise the distertion measure
associated with the classification procedure.

Several factors that effect the
distortion have been studied including
the initial codebook, the multiplying
factors type of distance measure etc.
In this paper the effect of an important
factor, the LPC order P, on the distortion
as well as on the performance of VQ in
IWSR is considered. A speech recognition
system has been developed in software
on a 68K mini-computer using Dynamic
Time Warping (DTW) and Vector Quantization
(VQ). The recognition error rates against
codebook sizes of 4,...,128 codewords
have been obtained and compared for five
different values of LEBC order P.

3 THE VQ ALGORITHM

Assume that a training set of V
vectors in the form of gain normalised
auvtocorrelation terms is given. It is
desired to find a codebook of size C
codewords such that the average distortion
measure (distance) (DS (C)) of a vector
in the training set from the closest
codeword is minimised, thus:

v
DS(C) = Min|s . I Min d(v,,c_)
(C) i=1l<m<C

[1]
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where d(vj.Cp) is the LPC distance between
the training vector vj and the codeword cp.
The log likelihood distance measure of
Itakura is used.

4 THE EXPERIMENTAL BACKGROUND

Seven speakers, five male and two
female, generated the database of spoken
Arabic digits {(0-9). In one session
each speaker was asked to contribute
ten digits as isolated utterances. In
a second session each speaker was asked
to read out as isoclated-words a list
of one hundred digits in random order.

The first training set was used to generate
the codebook of sizes of 2, 4,....,128
codewords using the above vector quantizat-
ion algorithm for five different values

of P. A fourth-order antialiasing elliptic
filter with cut-off of 4.8 kHz was used
together with 12-bit ADC and a sampling
rate of 10 kHz.

5 THE EFFECT OF LPC ORDER P ON THE
DISTORTION MEASURE OF VQ

To obtain useful results with vector
quantization it is important to understand
the relationships and the effects of
the choice of order of the LPC model
on the distortion measure.

To evaluate the effects of P on
the performance of the VQ algorithm,

a series of two sets of tests were run.
These series of experiments consisted

of the design of the VQ for the Arabic-
digit vocabulary for two Hamming window
lengths, 12.8 msec and 19.2 msec. Five
different values of P were used, which
were, B8, 10, 12, 14 and 16. Fig. 1 shows
the distortion measure of VQ for these
values of P as a function of codebook
size for the 12.8 msec Hamming window.

A similar result was achieved for the
19.2 msec window. It is clear from these
plots that the distortion measured increases
as P increases. This is understandable,
because when the value of P increases,
more of the details of the spectrum are
included in the LPC spectrum.

This was observed from the plots of
their LPC spectra where the 8 and
10-pole models give much smoother spectra
than the 12 to l6-pole models for a given
frame of speech. Therefore the distance
measure between two LPC spectra for smaller
values of P will be smaller than that
between two spectra of higher P.

The natural question now is how
many poles should one use in fitting
the model for the data acgquisition system
under consideration? There is no direct
answer to the above question as far as
the distortion measure is concerned.
Therefore to understand better the effect
of P on the VQ algorithm it is necessary
to study its performance outside the
training algorithm.



6 ‘THE EFFECT OF P ON THE PERFORMANCE
OF VQ IN IWSR

To evaluate further the effect of P
on the performance of the VQ outside
the training data a series of recognition
tests were carried out. Two sets of
experiments were performed on the DTW/VQ
and LPC/DTW isolated word recognizers.

(a) The first set of experiments was
performed for the Hamming window
of 12.8 msec length. The speaker-
dependent mode of reccgnition was
used, hence each speaker was treated
separately. The 100 digits of each
speaker were used as templates once
and as tests next, hence a total
of 10,000 crossing were performed
for each speaker.

{(b) In the second test the above experiments
were repeated for a Hamming window
of 19.2 msec.

The templates and the tests were
quantized to a VQ codebook of size of
4,8, ...., 128 codewords and the recognit-
ion performance was compared. In this
way some direct results are obtained
for recognition error rate againsts VQ
codebook size. The results of the first
tests are given in Fig. 2, which shows
plots of error rate versus codebook size.
The results of the seccnd test are given
in Fig. 3.

From inspection of these plots it
is clear that the 8 and 10-pecle models
provided insufficient recognition accuracy.
For the 12 to lé-pole models the recogni-
tion error rate was acceptable and there
was a slight difference in the recognition
accuracy for them, particularly for code-
book sizes of 32 and more. As a practical
matter, it is generally desirable to
use the minimum number of poles necessary
to model accurately the significant features
of the signal. Therefore, it was decided
that the 12-pole model was sufficient
for the recognizer under consideration.

7 CONCLUSIONS

This paper has studied the effect
of P on the distortion measure and perform-
ance of VQ in IWSR. Two sets of experi-
ments were run on a database of 700 isolated
digits from 7 speakers. Increasing P
increases the VQ distortion, however
it improves its performance outside the
training data. The results strongly
suggest that, for the VQ recognizer under
consideration, the minimum, wvalue of
P should be 12. This reinforces the
result reported elsewhere for the DTW
recognition systems, that the minimum
P should be 2 poles for each kHz band
of the filter plus two extra poles.
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ABSTRACT

This paper describes a module for acoustic/
phonetic transcription in a continucus speech under-
standing system. This module segments input utter-
ances into sequences of phone classes which belong
to one of six broad phonetic categories. In a higher
system level such segment sequences are used to
hypothesize possible word candidates from a lexicon.

This module is hierarchically implemented in
two stages: a polynomial classifier for a frame-by-
frame classification of phone classes followed by a
segmentation stage using Hidden Markav Models (HMM)
of phone class segments.

INTRODUCTION

This paper describes an acoustie/phonetic module
for a continuous speech understanding system which
is being developed within the framework of the
European Community ESPRIT Project No, 26.

Since continuous speech recognition presuppeses
an unlimited vocabulary, units smaller than words
must be used for recognition. In our system two
kinds of small phonetic units are used: phonemes and
diphones on the one hand /1/ and phone classes (plo-
sives, fricatives, ete.) on the other. The number of
phone classes to be distinguished is low (5 to 10)
whereas the number of phonemes and diphones is much
higher (100 to 200). Using this double representa-
tion of phonetic units, the recognition part of our
system can be effectively iImplemented in three
levels (Fig. 1).
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Fig. 1 Block diagram of the recognition stage in
the continuous speech understanding system

The data reduction block in the first 1level
computes mel-frequency cepstral coefficients (MFCC)
as parametric representations of speech frames /2/.

For the second level, cepstral vectors form the
input to both a vector quantizer and a preclassi-
fier which hypothesizes phone classes. Vector quan-
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tization reduces the amount of data while preserving
all information wneeded to correctly eclassify the
various sounds, The preclassifier transforms speech
signals into broad phonetic categories and in the
process computes segment boundaries and likelihoods,
too. The statistical knowledge consists of a coef-
ficient matrix for polynomial classification and
HMMs of phone class segments, phone class durations,
rules, and error models for smoothing/segmentation,

In the third level the preclassifier output is
used to extract a raduced number of word candidates
from a word lexicon. This reduced set of word can-
didates is then verified and scored by the verifica-

tion module which uses HMMs of phonemes and di-
phones as statistical knowledge.
PRECLASSIFIER MODULE

A hierarchical organization of the accustic/

phonetic trasunseription can greatly reduce the number
of computations required in the word wverification
module. To this end, the selected set of phone clas-
ses must guarantee a high selectivity between the
words in the lexicon while at the same time pre-
serving a high reliability in the preclassification,
Detailed invescigations have shown that these two
opposing requirements can be best met using six
phonetic categories which are labeled as follows:

pl: plosives and silence

fr: fricatives and affricates

In: sonorants (liquids and nasals)
fv: front vowels

cev: central vowels

bv: back vowels

The preclassifier is implemented in two stages

(Fig. 2). The first stage consists of a polynomial
classifier followed by a decision quantizer, both
performed frame by frame. The classifier estimates

the likelihoods that a cepstral vector belongs to
each of the predefined phone classes by evaluating
the following matrix product:

d = Ax 189
where d is a decision vector containing estimated
likelihoods, A is a coefficient matrix, and x is a

vector which contains linear, quadratie, and cubic
terms of cepstral vector components.
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Fig. 2 Block diagram of the preclassifier with its
associated statistical knowledge sources

Since determing the coefficient matrix A requires
a large amount of computation and storage and a very
large speech data base, it is computed off line with
automatically labeled spaech data . Due to the large
computational and storage requirements, this classi-



fier must be speaker-independent if it is to be at
all practical,

The classification according to eq. (1) is im-
plemented in a two-level structure. First we esti-
wate the likellhoods of three combined classes
(pl+fr, 1n+fv, and cv+bv), which are then separated
in their respective subclasses 1in a second level,
This hierarchical structure increases performance
and requires less computation than a parallel struc-
ture which estimates all six classes simultaneously.

Along with the estimated likelihoods the classi-
fler produces a reliability score. This score repre-
sents a unique decision for one class, a decision
for two of the six classes, or a reject if no reli-
able decision can be made. According to this score,
a decision vector is quantized and transformed’into

a symbol, We have one symbol for the reject, 6 sym-
bols for wunique decisions, and 15 symbols for all
possible two-case decisions or 22 symbols in all.
Since the first stage of the preclassifier module

transforms a cepstral vector inte a symbol, it can
be viewed as a vector quantizer which incorporates
phonetic information. Hence, at the output of this
stage an utterance 1s represented by a sequence of
symbols, which then have to be smoothed and segment-
ed by the second stage of the preclassifier.

Such a sequence may contain local irregularities
(corresponding to spurious decisions, particularly
during transitions) which have to be smoothed out in
order to correctly segment an utterance. Using
a simple fixed-length majoricy wvoting filter for
smoothing is not very effective because this does
not take statistical information on segment dura-
tions into account. Better segmentation results are
obtained by statistical decoding using HMMs of phone
classes and transitions as well as Information on
phone class durations,

Fig. 3 illustrates the complete preclassification
process. The example used here 1s the German time
phrase ‘neun Uhr drei' (9:03) with following phoneme
/diphone and phone class descriptions;

phon. /diph.: - n o ¥YnURddr r a 1 -
phone clas.: pl 1n bv £v 1n bv cv pl In ev £v pl

The first row of Fig. 3 shows the phoneme/diphone
segments which were manually labeled for this exam-
ple (transition segments are not shown). The second
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Fig. 3 phone class segmentation of the German time
phrase ‘'neun Uhr drei' (9:03)
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row shows the output of the first preclassifier
stage. Dark areas are unique decisions, and shaded
areas are two-class decisions. The third row shows
the result of the segmentation. Obviously there are
two errors in the segmentation (shaded areas). The
first back vowel 'o' is split into two short bv and
c¢v segments, and the liquid 'r' is merpged with the
following central vowel 'a’.

In order to reduce the number of such segmenta-
tlon errors we will implement both a set of rules
which directly include the speech signal energy in
the segmentation process and also statistical models
for the most frequent preclassification errors. A
frequent error, for example, is the smoothing out of
a short sonorant segment between twe vowels, How-
ever, such a missing segment can be easily recovered
using the energy contour which shows a clear dip in
the sonorant segment.

Error models which define the likelihoods of
context-dependent preclassification errors will be
used to generate alternative segmentations. In order
to evaluate error models some experiments with a
larger preclassified data base are in progress,

The output of the preclassifier are error modeled
phene class sequences forming the input to the mnext
recognition stage. In this stage the lexical module
first generates syllabic segments from the phone
class sequences. Then syllabic segments are used to
select a set of word candidates which are possible
in the given part of an utterance.

PRECLASSIFIER PERFORMANCE

This section summarizes the preliminary perform-
ance of two preclassifiers which were computed from
Italian and German speech data. The classifiers were
trained with 720 words from four Italian speakers
and 500 words from two German speakers.

The frame-by-frame classifications in the firsc
stage of the preclassifiers have quite low error
rates between 3% and 6%. Only segments labeled as
stationary phonemes are considered here because its
difficult to define an error rate during transitions.
Error rates were obtained using the 'k best of six
classes' rule, where k = 1 for unique decisions and
k = 2 for two-case decisions.

The segmentation is based on the Viterbi algo-
rithm; rules and error models have not yet been
implemented. For isolated words we had an segment
error rate of about 10%. Using the German preclas-
sifier we made some additional experiments with 100
connected digit strings and 100 five-word sentences.
With this material, which did not belong to the
training data, we had segment error rates of about
12% for connected digit strings and about 16% for
the sentences, respectively. By applying energy
information and errors models, error rates can be
decreased and the reliability of the preclassifier
further improved.

Using the preclassifier approach described above,
speech signals can be reliably segmented into six
broad phonetic categories which minimize the ambi-
gulty in the lexicon access.
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Le signal de parole est caractérisé par une alternance
de zones spectralement assez stables, entrecoupées de régions
transitoires. Les sysiémes de reconnaissance proposés par le
passé reposent sur des propriétés de stabilité specirale ef de
stationnarilé; ils obtiennent des performances mitigées pour
les régions de transition. Une représeniation de ¢cs régions
par modéle AR évolutif, valide sur loule la durée d'une ré-
gion lransiloire, esl proposée. Les coefficients du modéle
dépendent du temps el a’cxpriment gur une base limitée de
fonctions temporelles. Celle méthode de représentation est
appliquée d la reconnaissance de segments transitoires C-V
eztraits de parole naturelle, et comparée & des méthodes plus
classiques.

INTRODUCTION

La modélisation autorégressive est bien connue en traite-
ment de la parole sous le nom de prédiction linéaire [1]. Elle
oblige 4 un compromis entre précision et stationnarité qui
consiste & découper le signal en fenétres d'une dizaine de
millisecondes.

La modélisation AR évolutive, telle que mise au point
par Y.Grenier [2], n'exige pas la stationnarité du signal et de
ce fait est mieux adaptée aux régions transitoires de la pa-
role. Le développement d’un espace de représentation adé-
quat et d'une métrique adaptés a la représentation évolutive
fait I'objet de ce travail.

MODELISATION AR EVOLUTIVE

Le modéle AR d’ordre p s'écrit habituellement:

ye+ a1+ ... + aplp-p = bogy (1)

5i le processus n'est pas stationnaire, les coefficients a; de-
viennent dépendants du temps et sont appelés coefficients
évolutifs:

wtalt-Ny 1+ +ap(t~ply-p=1bolt)e (2)
Leur expansion sur une base de m fonctions du temps s’écrit

m~—1

aift) = 3 a;;/;(t) (3)

=0

et rend possible leur calcul [2]. Les a;; sont appelés com-
posanis snvarfanis du modeéle évolutif. En représentant les
fonctions de la base sous la forme d’un vecteur F(t) =
[fo(t) f1(t).../m-1(t)], le modéle évolutif M(t) est obtenu
par

MT() = AFT(1) (@)
ou la matrice A est formée des composants a,;. La station-

narité n’étant plus nécessaire, un modéle évolutif peut étre
calculé pour un segment de parole arbitrairement long.

* EN.S.T., Paris, France
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COEFFICIENTS EVOLUTIFS DU CEPSTRE

Pour un modéle stationnaire. les coefficients cepstraux
se déduisent des coeflicients de prédiction grace & une rela-
tion récursive {[1]). Les coefficients cepstraux évolutifs sont
définis par une extension de cette relation:

ki
alt) =)+ Y —
k=1

ei-k(t)ar(t) (5)

L’expansion des ¢;{1) sur une base de m fonctions orthogo-
nales sur l'intervalle r permet de dériver une approximation
des composants cepsirauz invariants:

f—lk_'-m--l m-1
Cig = Gig+ 3, 2 Climk)e L hafrg  (6)
k=1 r=0 =0

pouri=1,..,pet g =0,...,m— I, et ol les constantes [,
peuvent étre précalculées:

A XOTAOYAGY!
= LAY »

Le filtre de prédiction doit étre stable afin de garantir un
comportement raisonnable des composants cepstraux. La
stabilisation d"un modéle est eflectuée selon la technique de
{3], qui consiste & évaluer le polynéme A(z) sur un cercle de
rayon supérieur a 1.

DISTANCE ENTRE MODELES EVOLUTIFS

Des essais préliminaires sur la distance euclidienne en-
tre spectres logarithmiques, coefficients de prédiction,de ré-
flexion, et du cepstre ont montré les mémes tendances pour
le modele évolutif que celles observées par 1] et [4). La
métrique euclidienne sur les coefficients cepstraux a été re-
tenue pour les tests de reconnaissance.

La distance euclidienne entre deux segments de parole
décrits par deux trajectoires de paramétres, i.e. deux suites
A et B de N points & p dimensions s’écrit habituellement:

N-1p
2
d(4,B) = 3_ 3 (b;(n) — a;(n)) (8)
n=0 =]
L’équivalent pour deux trajectoires évolutives décrites par
des composants invariants est

m=1 P
de(Ae, Be) = Z hq Z(biq = aiq)2 (9)

g=0 Q=1
oit les eocfficients by dépendent de la base de m fonctions.
M:Lﬁmm (10)

ANAMORPHOSE TEMPORELLE

Les segments sont modélisés sur 'intervalle r, subis-
sant une normalisation finéaire du temps. Des déformations
non-linéaires peuvent étre obtenues directement dans le do-
maine des composants invariants. Soit la transformation
temporelle ! = u(t). Si T est unc matrice de transforma-
tion dont les éléments sont

L L) () .

KR,



un modéle transformé s'exprimera en fonction de la base
originale et de composants transformés A' = AT:

MT(u(t)) = AFT(y = ATFT() = A'FT(1)  (12)

En paramétrisant u(f) par un polynéme ag+apt+agt®+
oo+ agt?, la matrice devient:

I' = {v%;} = {nj{a0,21,...04)} (13)
La transformation optimale est celle qui minimise la distance
entre un modéle B et un modéle A anamorphosé:

d: = mind, (AT, B) = min A{A, B, aqg,...,2q) (14)

avec des contraintes qui restreignent aux transformations
plausibles: positivité de la pente (pas d’inversion du temps),
degré peu élevé du polynome u(t), intervalle transformé
situé dans 'intervalle r. Le probléme se résoud par un al-
gorithme d’optimisation non-linéaire classique.

SEGMENTATION

L’évaluation des techniques précédentes est faite sur
des segments transitoires. Leurs frontiéres ont été définies
comme étant les points de pente maximum d’une fonction
de stabilité:

_1 3 =42
vin) =3 3 Iri(n) = r(n+3)| (15)
i=15=-2
Les r;(n} sont les coefficients de réfiexion d’une fenétre n.
Les régions considérées non-stationnaires sont ainsi celles ol
la dérivée seconde de la stabilité est positive. Cette défini-
tion ne comporte pas de seuils arbitraires ou dépendants du
signal.
EXPERIENCES ET RESULTATS

Les expériences ont porté sur des transitions consonnes-
voyelle de langue francaise. Dix séries des 18 syllabes /le/
/re/ S/ /we/ /ye/ /ve/ fle/ /se/ fle/ /ae/ /me/ /ne/
/pe/ /te/ /ke/ /be/ /de/ /qe/ prononcées par un seul
locuteur adulte méle, en ordre aléatoire, ont été filtrées,
numérisées & 12 bits, puis segmentées en régions instables.
Parmi ces régions, 175 situées immédiatement avant le noyau
vocalique stable ont été extraites et modélisées avec 16 pdles
et 4 fonctions de base (polyndmes de Legendre}. Ces dimen-
sions sont basées sur 'optimisation du critére d'Akaike. Les
composants invariants de prédiction ont ensuite été trans-
formés en composants invariants cepstraux. Environ 19%
des modéles ont dii étre stabilisés. Les modéles cepstraux
évolutifs obtenus ont été soumis & quatre expériences:

1. Les dix séries ont été divisées en deux moitiés de 5
séries; la distance euclidienne entre chaque segment
d’une moitié et tous les autres segments de l'autre
moitié a été évaluée, sans anamorphose. Cette procé-
dure a produit 175 tests de reconnaissance.

2. La procédure 1 a été répétée en introduisant une
anamorphose de degré d = 2 dans ['évaluation de
Ja distance,

3. Chaque série a été comparée a des références obtenues
en combinant les segments des 9 autres séries (“leave
one out”),

4. La procédure 3 a été répétée avec, pour chaque série,
des références auxquelles elle avait participé. Ainsi
les segments testés avaient servi & 'apprentissage.
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{ Taux de reconnaissance (175 tests)
| Expérience Rang du premier correct
no. ‘ 1 - 2 3
1 57% 66% 70%
L 57% | 68% 60%
3 58% | 69% 78%
4 72% 82% 88%

La comparaison des expériences 1 et 2 montre que le
taux de reconnaissance n’est pas modifié sensiblement par
I'anamorphose. Seulement 16% des erreurs commises dans
'une ne le sont pas dans {’autre. L’anamorphose ne dégrade
pas la capacité de discrimination de la mesure de distance,
mais il ne semble pas y avoir d’avantage a l'utiliser pour des
segments aussi courts. L’algorithme de création de référen-
ces, mis en évidence dans 'expérience 3, se révéle efficace.

Les candidats aux erreurs les plus fréquentes se retrou-
vent parmi les segments qui ont dii subir une stabilisation.
48T des erreurs sur ceux-ci proviennent d'une confusion avec
un autre segment stabilisé. On peut s’attendre 4 une amélio-
ration marquée du taux de reconnaissance si une autre mé-
thode de stabilisation peut étre mise au point, qui n’aplatisse
pas 'enveloppe spectrale.

Ces résultats peuvent étre comparés aux expériences de
{5) sur des séries consonnes-voyelle frangaises similaires; 12
systémes de reconnaissance disponibles sur le marché en-
ropéen avajent alors obtenu un taux de reconnaissance situé
entre 40% et 85%.

CONCLUSIONS

Cette étude montre qu'il est possible de développer,
pour la modélisation évolutive, des techniques semblables
& celles dont on se sert en prédiction linéaire. L’espace peut
étre muni d’une métrique utilisable pour la reconnaissance
et de transformations permettant une anamorphose tem-
porelle. Les résultats obtenus permettent déja d'identifier
les points faibles des techniques développées, sur lesquels
devraient s'attarder de futurs travaux.
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SPEAKER ADAPTATION
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ABSTRACT: An inter-related phoneme template system is
proposed together with its two nonsupervised learning
algorithms. Their efficiency is verified through some
computer experiments of word recognition,

1. INTRODUCTION

This paper is concerned with automatic speaker
adaptation for speaker independent recognition, A new
phoneme template system composed of inter-raelated
rhoneme templates is proposed[l] along with twe
efficient non-gupervised learning algorithma, One is
based on the selection of the inter-related phoneme
templates from a set of templatas prepared before-
hand. The other is based on the creation of new
templates appropriate for each speaker, The former
algorithm is performed in “on-line" mode, that is,
the selection is made every time a word is uttered,
It is useful for rapid adaptation. The latter is
performed in “batch®™ mode, that is, the creation is
made after a reasonable amount of words are obtained.
Although the adaptation is done one or twe days after
the first usage, almost complete adaptation can be
made in this learning algorithm. The performance of
these two non-supervised learning algorithms is
verified by computer simulation of a word recognition
system.

2, INTER-RELATED PHONEME TEMPLATES

2.1 Construction method

step l: For each speaker, make augmented feature
vectors of the dimensionality 54 by combining every
feature vector of the dimensionality d of the frame
corresponding to Japanese five vowels,

step 2: Apply k-means method([3]) to the augmented
vectors and obtain representative vectors of the
clusters (one from each cluster),

step 3: Decom-
pose the represent-
ative wvectors into
the original form,
each of which is
considered as a
template of a vowel,
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2.2 An example of the
inter-related phoneme

template 8

Fig. 1 shows
four inter-related 2 4 & 8 10
templates (pentagons) F1l =100 [Hz]
represented in a two
dimensional space
composed of the first
and second formants
frequencies. Speech samples are drawn from the
isolated vowels uttered by ten male adults., The
vertices of each pentagon are template patterns,

3. NON-SUPERVISED LEARNING METHOD OF ON-LINE TYPE

3.1 Alqorithm

Let use-count of a template be defined as a
number of input patterns which match best with the
template. and let use-count of an inter-related
template be defined as a sum of the use~count of the
templates contained in it. Then, we have the
following learning(selection) algorithm,

12

Fig. 1 Some examples of inter-
related phoneme templates,
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step 1: Calculate the wuse-count of all the
templates.

step 2: Select the inter-related template of the

maximal usa-count,

This algorithm is based on the selection of the
templates according te the use-count which are
obtained without using the identities of the input
patterns. Therefore, it is a non-supervised learning
algorithm, The selection can be performed in any time
period and in any scheme,

3.2 Evaluation Mo mheh 1y
53.1 Vowel recogni- 3.0 '\ 3.0

wes- OUALE
—_— 1A

tion

a) Speech samples

Japanese five 2.0 x z.0f

vowels uttered conse-— \\\
cutively like /ieaocu/ x
by 15 male adults 1.0
were analyzed with
LPC method {10kH=z
sampling, auto-corre- 0.0
lation, order 12, and
hamming window of
length 20ma with
shift interval 10ms).
Each speaker uttered
a sequence of vowels
five times, Two of
them were used for

.o-ﬂpl—-l—.l
45 0.0 17

nuaber of vowals

0 15 20
nusber of damplas

Fig. 2 Learning
process(l). Fig, 3 Learning
procees{2).

Table 1. Recognition rates,

template construction epkr |bef, L. aft, L.
{600 frames in all, Re % | RIR &|Rc &
600 = 15men x Svowels ¥KI | 100 50 98

x Bframes), and the SN 98 24 100
rest  of them were MA 92 80 26
used for learning and KXo a8 10 o8
recognition (675 YA 90 22 98
frames in all, 675 = Yu 98 =25 95
15men x Svowels x YM 98 16 100
9frames). AVE. 96.3 25 98,0

b} Recognition method

Recognition is made using the template matching
in the 4-dimensional Fischer space constructed based
on the samples for template construction,

c) Experiment

As described in a), the speakers used for
template construction and recognition are identical,
s0 this is a closed recognition as to the speaker,

Ten  inter-related templates were obtained
according to the method described in sectien 2. Pig.
2 depicts the learning process of vowel recognition,
The vertical axis shows the error rates{%) and the
horizontal one the number of vowels given to the
system. The letter "x" denotes the error rate of the
conventional templates and the letter "o" that of the
proposed template, In order to ses the effect of the
order of vowels on the learning performance,
simulation was done for two kinds of sequences., The
error rates corresponding to the sequence /ouvaie/ are
depicted by broken line and those corresponding to
feiavo/ are depicted by solid one. Selection of the
templates is done as follaws: Every time when
learning of a vowel is done, for the conventional
templates, one template corresponding to the vowel is

chosen from the templates. For our template, on the
other hand, six inter-related templates are chosen
after the learning of the first vowel is done, Pour,

threa, two and cne inter-related template are chosen
after the learning of the second, third, feourth and
last vowel is done, respectively. It is seen from
Fig. 2 that learning of ocur templates does not depend
on the sequence of vowels, while that of the
conventiconal ones depends largely on the sequence.
Fig. 3 shows the relation between the error
rates and the number of learning samples given to the



system until it makes the final selection of the
template. This figure demonstrates that learning of
the inter-related templates is much faster than that
of the conventional ones. Some advantages of the non-
supervised learning method of the inter-related
template are summarized below,

1} Adaptation is fast.

2} Learning process is stable.

3} Learning process is reliable,
3.2.2 Word recognition

Vocabulary of the system is composed of Japanese

ten digits 0(/rei/)} through  9{/kyu/}. Open
recognition as to seven male adults was done, where
eight inter-related templates were prepared before
hand. Table 1 shows the recognition rates for seven
speakers. RIR parameter represents the ratio ‘of the
improved recognition rate of vowels contained in the
digits. This results shows the effectiveness of our

non-supervised algorithm.
4. NON-SUPERVISED LEARNING OF BATCH TYDE

The learning method proposed above is based on
the selection of a template from a set of them
prepared in advance. Therefore, performance of the
learning depends on the speakers, that is,
adaptation({selection) is done successfully only when
at least one template appropriate ta the speaker is
stored in the system, When no such template is
stored, however, much improvement can not be attained
by the learning. In order to make the learning more
effective, another learning method is propesed in
this section.

The learning method creates new templates
appropriate to the speakers rather than selection of
them. To do this, the algorithm needs a reasonable
amount of sample words. Consequently, adaptation to a
speaker is made one or two days after his first use
of the system. This is why the algorithm is said to

be of batch type.

recognition
system

4.1 Algorithm
The block diagram of

the total system is shown
in Fig. 4, in which a
block surrounded by
broken line corresponds
to the proposed learning

feature parameter
LPC cepstrum of order
12 and energy

algorithm, O
4.1.1 Clustering of input el 2 L TR
words i A
A clustering method LflleJ
(23 is applied to [ === =x 1

respective sets of words | fclusterinf of word;]

|
uttered by a speaker, | identification I
Since the clustering | of clusters I
algorithm requires only a [ [
distance matrix as input —
data, it is  easily : Segmentation :
executed.
X lust £ ph mes
4.1,2 Identification of IE _us_ef"flf _pﬁole_e‘u
the categories of the
£ 1
clusters [Egeation of templates
Clusters obtained

Fig. 4 Block diagram of

above are labeled accord- the total system.

ing to the majority rule
using the labels given by
the system itself. There are two alternatives of the
treatment of the minorities in the rest of the
operations:

A) Reject them and

B) Relabel them to the category of the majority.
In the case of A), the new templates are created by
using only words supposed to be recognized
successfully by the system. In the case of B), on the
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other hand, such words that are supposed to be mis-
recognized are also used for creating new templates,
4,1,3 Segmentation

Segmentation of every word is done by using the
energy and label associated with it.
4.1.4 Creation of the inter-related templates

According to the operation thus far, a set of
frames labeled one of the Japanese vowels are
obtained. New templates are created from these frames
by clustering procedures shown below.

step 1: K-means method of number of clusters B
is applied to the whole set of frames.

step 2: For each vowel, count the number of
frames belonging to respective clusters.

step 3: PFor each vowel, select major groups
until they cover 80% of population of the vowel. And
consider them as the

templates of the correspond- Table 2 Recognition

ing vowel. rates(y).
step 4: Register the
template as an inter- Spky T-1] T-2 |71-3
related template, A 198,0| 94.0(100
B [91.8] 97,9| 91.8
4.2 Evaluation C [98.0]100 {100
Performance evaluation D 193.9| 98,0|100
of the proposed learning E [90.0( 92.0] 918.0
method was done in word F 198.,0| 98,0| 98,0
recognition of 32 words, G [68.8| 91.3| 91,5
Phoneme templates were _H ]76.0| B4.0| 94.0
obtained from the words AVE|[89.4] 94.4] 96.9

uttered by 31 male adults,
Fifteen times utterances of
ten words in the vocabulary

Table 3 Improvement of
vowel recognition(s),

made by eight speakers other Speaker | 1-3>2 | 1->3
than the 31 speakers were F 3.7_| 29.86
used for the evaluation. Ten G 54.4 | 57.9
utterances were used for

initial recognition and collection of data for the

non-supervised learning. The final recognition was
done by using the rest of 5 utterances.

We have three sets of templates:

: 31 templates before learning
:+ Template created using category

identification A) in step 2,
T-3: Template created using category

identification B) in step 2,

The results are shown in Tables 2 and 3, Table 2
shows the recognition rates of the respective
speakers and Table 3 shows the values of RIR. Tt is
seen  from both tables that the batch type non-
superviged learning algorithm attains much
improvement especially for the speakers having low

initial recognition rates. Furthermore, performance
of T-1 is slightly better than that of T-2,

This is because T-3 is congtructed from the mis~
recognized words as well as recognized ones.

5. CONCLUDING REMARKS

Inter-related phoneme templates thave been
proposed together with two types of non-supervised
learning algorithms, The results of the computer
experiment has demonstrated the efficiency of them
and shown the possibilities of this application to
the real world situations.

-1
T-2

(References)

(1] Mizoguchi, R., et al.:"Word recognition system
for unspecified people based on inter-related phoneme
templates”, Trans. of the IECE Japan, Vol. Je7-a, 6,
pp. 572-579, 1984.

[2] Mizoguchi, R., et al,: "A nonparametric algorithm
for detecting clusters using hierarchical structure",
IEEE Trans., PAMI-2, 4, pp. 292-300, 1980,

[3) Anderberg, M.R,:"Cluster analysis for
applications", Academic Press, 1973,



ON THE ROBUSTNESS OF PHONETIC INFORMATION IN
SHORT-TIME SPEECH SPECTRA

Meg Withgott and Marcia A. Bush1

Stanford University, Center for the Study of Language
and Informatjon, Stanford, California 94305, ysa

Schlumberger Palo Alto Research, 3340 Hillview Avenue,
Palo Alto, California 94304, USA

Abstract: Speech recognition techniques which take
fixed-time slices as input to a matcher face the task of
mapping from arbitrary pieces of the physical signal to
abstract linguistic units. This paper examines the
reliability with which individual vector-quantized LPC
spectra  can  be mapped to various sets of
acoustic-phonetic classes.  The database for the
experiments consisted of approximately 130,000 spectra
from a pre-labeled corpus of 616 5-digit strings, and
classification was performed on the basis of a maximum
likelihood decision rule. Classification accuracy, when
the same database was used for training and testing,
ranged from 94.0% for a simple voiced-voiceless
distinction to 42.7% for a set of 45 acoustic-phonetic
classes used in earlier connected digit recognition
experiments [1,2].

Introduction

It is commonly accepted that the variability
inherent in speech makes it difficult to recognize
linguistic units such as aliophones directly from
sequences of short-time spectra. This observation has, in
part, motivated wark on broad phonetic classification
schemes, in which an initial labeling of the recognition
vocabulary is made on the basis of presumably robust
acoustic-phonetic categories which then is used to
identify subsets of the vocabulary for more detailed
acoustic processing. Studies have shown that, for
instance, a coarse-grained classification based on
manner of articulation reduces a 20,000-item wordlist
into approximately 100 phonetic cohorts (i.e., wordlist
sublists) [3]. Relatively little quantitative data are
available, however, to determine whether classification
strategies designed and tested on the basis of abstract
phonetic or phonemic considerations are actually useful
in labeling large corpora of speech signals. Similarly,
little is known about trade-offs between classification
accuracy and the granularity of the labeling scheme.

This paper examines the reliability with which
individual vector-quantized LPC spectra can be mapped
to three types of acoustic-phonetic classes: one based on
manner of articulation; a second based on
multidimensional distinctive features (see e.g. [4]); and
a third "system-specific" type influenced both by
knowledge of the classifier's front end and of acoustic
characteristics of individual classes in the recognition
vacabulary.

Procedure

The database for the experiments consisted of

129,812 spectra from a pre-labeled corpus of 616 S-digit 101

strings. The connected-speech utterances were spoken
by 56 adult tatkers (27M, 29F) from 22 geographically
defined dialect groups, and form a subset of the
training portion of Texas Instruments’ connected digits
database [5]. The initial label set comprised 45
acoustic-phonetic classes used in earlier connected digit
recognition experiments [1,2]. Labeling was done
primarily by hand, with simple durational rules for
automatically dividing diphthongs and certain sonorant
and word-boundary regions.

Signal preprocessing consisted of digital
downsampling of the Tl data from 20 KHz to 8 KHz (i.e.,
a 4 KHz bandwidth) and preemphasis by
first-differencing. Short-time spectra were computed
using an 11-pole LPC analysis, with a 256 msec
Hamming widow and a 10 msec frame rate, and were
vector quantized to a size 1024 codebook.

Classification of spectra was performed using a
maximum-likelihood decision rule and, in these
preliminary experiments, the same database was used
for training and testing.

Classification Schemes

As noted above, three classification schemes were
examined. Each involved grouping the initial 45-label
set into smaller numbers of acoustic-phonetic
categories. The grouping was complicated slightly by
the fact that the initial labeling of the data was partially
automated and thus not completely phonemic {e.g.,
glides typically included a short portion of the adjacent
vowel). Such phenomena were uniform, however,
across the three classification schemes.

With respect to the first classification, based on
manner of articulation, label sets of size 4 (silence,
fricative, nasal, vowel) and 6 (silence, weak fricative,
strong fricative, nasal, glide and vowel) were used.

The second, multidimensional classification
employed diverse distinctive features so that a given
label represents a vector of cross-classified values. In
cantrast, manner forms a unidimensional classification.
Figure 1 shows a distinctive feature tree corresponding
to the complete [-sonorant] subset of the distinctive
feature categories. Such trees vyield relatively
coarse-grained classes at the top nodes and
finer-grained classes as the tree is descended. A binary
partitioning of the initial label set led to the
[ +/-sonorant] distinction.

SONPRANT
|
T -
no | |
n-i il ACUTE
+ -
n-f t-gap l : l
k-gap
l sl \!' l t—lrl

krs

Figure 1: Distinctive Feature Tree for "consonants”
A partial tree for the third scheme, which is

system-specific and multidimensional, is shown in Figure



2. As noted above, this classification strategy takes into

account both characteristics of front-end processing and
acoustic characteristics of individual acoustic-phonetic

classes in the recognition vocabulary. For example,
UNVOICED/ VOICED

SIL + WKFRIC/STFRIC ~ NASAL/NONNASAL

"l\‘ L A rINLN-r

£ HIGHF2/NON-HIGHF2

A A

Tree for the system-specific

Figure 2: Partial

classification

weak fricatives and silent intervals are collapsed into a
single class because they are difficult to discriminate on
the basis of LPC spectra alone. On the other hand, the
release portions of the [t]'s in the digits 2 and 8 are
classified as strong and weak fricatives, respectively, on
the basis of context-dependent acoustic manifestations.

Results and Discussion

Figure 3 shows overall classification accuracy (i.e., the
percentage of short-time spectra correctly classified) as a
function of number of acoustic-phonetic categories for
the three classification schemes. Percentages are similar
across the classification schemes when small numbers of
categories are used. (For the purpose of comparison, a
fourth classification with arbitrary six-way partitions
was created and found to exhibit classification accuracy
of 48.4%).

Categories| ™M | Toaures | speific
2 93.5 94.0
4 846 846 87.0
6 79.0 73.7 79.2
10 67.4 73.5
21 64.3
45 427
Figure 3:. Overall classification acuracy (percent
correct) versus number of acoustic-phonetic
categories for the three classification schemes.

An advantage of multidimensional classifications,
such as the feature-based and system-specific
classifications, as opposed to a unidimensional
classification such as manner, is that they support a
selective traversal down one or more branches of a
classification tree. The choice of whether to collapse or
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differentiate categories can therefore be determined on
the basis of the lexicon, or the discriminability of
individual classes.

Figure 4 shows overall classification accuracy as a
function of the branch traversed for the system-specific
scheme, and shows, for example, that a 9-way
classification determined by a broad unvoiced class
being more finely-differentiated was equal to the
performance of a 6-way classification when the voiced

branch was descended. The same advantage does not

‘I:I;meer branch traversal
Categories unvoiced voiced
3 89.0 92.0
4 84,6 88.8
6 823
9 83.0
10 742
Figure 4. Overall classification accuracy (percent
correct) for system-specific scheme as a function
of the branch traversed.

show up in a 3-way or 4-way comparison, and thus
classification accuracy depends both on how categories
are sub-divided and on how many sub-divisions are
formed. We are also able to note that combining
categories representing relatively broad classes with
categories containing a single segment type which
proves to be highly discriminable in the vocabulary of
interest {e.q., the early vocalic region in 4 {AOR1) in this
database) can be advantageous.

Summary

Multidimensionality appears to be a desirable trait
of classification systems for applications in automatic
speech recognition. This is because the identity and
grain-size of the classes can be determined freely both
by what features are the most useful for discriminating
lexical items, and by what classes prove to be the least
confusable for a particular classifier.

T. K‘ Tter Aug 86: Division of Engineering, Box D, Brown
University, Providence, Ri 02912, USA
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ABSTRACT: In this paper, a discrimination method of
voiced plosives is proposed using two sets of
parameters; one, that describes the transition of

acoustic parameters by fitting their transition loci
with regression lines and the other, the acoustic
parameters themselves at the beginning point of the
transition. The gradient of the regression lines ig
found to be effective for discriminating among voiced
plosives.

1. INTRODUCTION

It is generally assumed that the acoustic
properties of voiced plosives lie both near the burst
and in the transition part to following wvowels,[1]
Proposed here is a method for discriminating voiced
plosives by employing both instantanecus properties

near the burst point and dynamic properties in
transient part, The transition properties of a
consonant  followed by a vowel are especially
dependent on the following vowel. In this paper a

following=vowel dependent discrimination method is
adopted and analysis periods are adjusted for each
folloewing wvowel, Its performance is evaluvated on
igolated syllables uttered by 38 male adults.

2, FITTING THE PARAMETER TRANSITION WITH REGRESSION
LINES

2.1 Analysis and Discrimination of Voiced Plosives

The acoustic parameters of voiced plosives
change drastically at the burst and during the
succeeding short period. However, the variations of
the parameters in slow transition parte are expected
to be sufficiently described with regression lines,
i,e. the transition of each acousti¢ parameter can be
approximated with a line, the number of analysis
frames to be fitted by regression lines is fixed here
to be ten regardless of the frame shift interval.

The LPC analysis of order 12 jis performed on 10
successive frames in the transition part starting at
the burst point to the following vowel. The analysis
start point is defined by time delay Td from the
burst point and is determined according to the
following vowel together with the frame shift
interval Ts. The short-time energy and the LPC
cepstrum coefficients are obtained for 10 frames,
where the short-time energy is expressed in dB

normalized by the short-time power of the following
vowel part.
The time series of each parameter is

approximated with a regression line. The gradients of
the regression lines are employed as the parameters
to describe transition properties, and the short-time
energy and LPC cepstrum parameters of the first frame

are used as those for instantanecus properties,
Therefore, 26 parameters in all {( 13 first frame
parameters and another 13 gradient parameters ) are

employed for mutual discrimination voiced plosives.
Speech samples employed here are 15 isolated CV
syllables; /b/, /d/ and /g/ as the leading consonants
followed by Japanese vowels /a/, /fe/, /i/, /o/ and
/u/, uttered by 38 males in a large anechoic chamber.
(The total number of utterance is 15x38a570, i.e.
114(=570/5) for each following vowel ) The speach
samples were quantized at 10 ksamples/sec with 12 bit
accuracy after low-pass filtering of 4.5kHz cut-off
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and -260 dB/oct suppression characteristics.
The discrimination score is evaluated by the
leaving-one-out method. In this paper, the Fisher
space[2] is employed to reduce the dimension of
parameters from 26 down to 2. The discrimination is
pecformed as decision by majorities in 3-nearest
neighbors on the 2-dimensional Fisher space.

fregquency

2.2 Investigation on Analysis Periods

The optimal analysis periods, which are
determined by the window length for one frame
analysis (Tw), the location of the initial analysis

frame (Td) and the frame shift interval (Ts), are
investigated for each following vowel assuming that
the burst points were detected by visual inspection,
and the following vowels, a priori known. The
investigation range for each parameter is as follows;

Tw = 10, 15 and 20msec.

Ts =1, 2, 3, 5 and Tmsec.

Td = =12 through 12 by 2msec step.

The discrimination test is performed under 195
{=3x5x%13) combinations of analysis conditions,

The discrimination performance was compared
among the window length of 10, 15 and 20msec, The
discrimination results remain almost the same
ragardless of the window Jlength. Therefore, the
window length is fixed to 20msec in the rest of this
paper considering the stability of analysis.

The total length for each CV syllable to be
analyzed is determined by the frame shift interval
Ts. The analysis start point is identified by T4
wvhich is the time delay relative to the burst point.
Positive Td means that the analysis is started at T4
maec after the burst, The optimal analysis period
which yields the best discrimination score for each
following vowel is shown in Fig. 1. Table 1l{a) shows
the best discrimination scoree under condition that
the burst points were detected by visual inspection,
and the following vowel, a priori known.

Table 1 compares the discrimination score with
and without employing the gradient parameters of
the regression lines. It is recognized from Table 1
that introduction of the gradient parameters improves
the discrimination score by 5% on average for the
five following vowels. Fig. 2 shows the comparison of
the distribution of the phoneme templates on the 2-
dimensional Fisher space for both the discrimination
schemes with and without parameters for following
vowel /u/. The clusters of the with-gradient case
have less overlaps and are clearly separated one

another compared to the without-gradient case. The
Figher ratio is improved from 3.3 to 12.5,
burst point
: — t fa/
N
L
¢ t /47
p———ef O/
FT—————————-——d fu/
1 ] I 1 [l i
=20 0 20 40 60 80
[maesc)
Fig.l The optimal analysis period for each following
vowel,

Table 1 Discrimination score of voiced plosives{I).
Burst point detection : by visual inspection
Following Vowels : a priori known

Discrimination Score(t)
Gradient Following Vowel
Parameters /a/ /e/ /i/ /o/ [fu/ average

96 B9 92 95 93 23
94 83 B84 91 B89 es

{a)used
{b)not used
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Fig.2 A comparison of sample distributiop on the
Fisher space ( follewing vowel /u/ ).

3. DETECTION OF BURST POINTS AND RECOGNITION OF
FOLLOWING VOWELS

In the previous section, it is assumed that the
burst points are detected by visual inspection and
that vowels, a priori known. This section describes
a recognition system of voiced plosives with
automatic detection of burst points and automatic
recognition of following vowels.

3.1 Automatic Detection of Burst Points

Automatic detection of burst points is realized
by using the distance measure of the LPC cepstrum
parameters between a lame pair of frames, where two
frames start at the same point, and end at different
points, The lengths of the long and the short frames
are 20 and 17msec, respectively. The correct
detection rate of the proposed method for burst point
detection is evaluated under the following criterion.
If the difference of the detected point and the real
burst point is less than 3msec, the detection is
. presumed to be correct. Under the criterion above,
the score is 92% in average.

3,2 Recognition of Following Vowels

Recognition of following vowels is realized also
employing decision by majorities on the Fisher space
projected from a 16-dimensional space scaned by the
LPC cepstrum parameters, For test samples, 5 frames
near the center of vowel part are analyzed and
assigned to one of the five Japanese vowels according
to decision by majorities in S5-nearest neighbors in
the Fisher space. Then, the final decision is made
again by majorities in the result of the successive
five frames. The recognition score of the following
vowels by this algorithm is 99% using leaving-one-out
method.

4. AUTOMATIC DISCRIMINATION OF VOICED PLOSIVES

In this asection, voiced plosives are
automatically discriminated. The following vowel is
f£irst recognized, and the Fisgher space is

automatically chosen among those prepared for the
five Japanese vowels separately. The analysis
periods are determined referring the burst point
Qetected automatically,

Table 2{a) shows the recognition scores based on
the automatic identification of the following
vowels. The notation of the recognition unit C in
Table 2 indicates that the recognition score is that
concerning the consonants only, regardless of
recegnition error concerning the vowels. In case of
recognition unit CV, the acore is recognition
inecluding the vowel identification, 4i.e. the score
means recognition rate of CV syllables. Although the
score is a little bit worse than Table 1, however,
the score is over 90% in average. Table 2 shows the
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Table 2 Discrimination score of voiced plosives(II),
Burst point detection : automatic
Following vowel recognition : automatic

Dimcrimination Score(%}

Gradient  Rec. Following Vowel
Parameters Unit /a/ /e/ /i/ /of /u/ average
(a)used c 93 90 91 95 B9 92

cv 93 88 91 95 89 91

91 B2 82 89 a7 86

LTI 90 B2 82 89 85 86

-~

Table 3 Discrimination score of voiced plosives by
the following vowel independent discrimination system.
Burst point detection : automatic

Following Vowel
fal tel i) [fof /u/

B5 80 84 84 88 84

average
Score(%)

comparison of the score obtained by using the
gradient parameters and that without using them, From
this Table, it can be said that introduction of the
gradient parameters improves the score by 5% for
automatic CV syllable recognition,

5. FOLLOWING-VOWEL INDEPENDENT DISCRIMINATION

As described above, a Figher space is prepared
for each following vowel for vowel-dependent Qis-
crimination aiming at improvement in discrimination
ability. In order to justify the vowel~dependent
discrimination, a following-vowel independent
discrimination is tried on the speech data., Table 3
shows the scores of following vowel independent
discrimination. The test samples are classified into
three categories with decision by majorities in 5-
nearest neighbors in a 4-dimensional Pisher sgpace.
The vowel-dependent scheme is proved to be very
effective for discrimination of voiced plosives,

6. CONCLUSION

A  following~vowel dependent discrimination
system for voiced plosives is proposed employing
additional parameters for describing the dynamic
properties. The dynamic properties are extracted as
the gradients of regression lines which approximate
the trangition of the acoustic parameters The
short-time energy and the LPC cepstrum parameters are
employed as the acoustic parameters here, The speech
samples are CV gyllables uttered by 38 male adults
with voiced plosives for € and Japanese vowels for V.

The analysis periods are adjusted according to
following vowels. In case that the burst points are
automatically detected and following vowels are
recognized by the system, discrimination score is
91%. It is proved to be effective for discrimination
of voiced plosives

(1) to introduce gradient parameters of
regression lines to describe the dynamic property,
and

(2) to adjust the analysis condition for each
following vowel and adopt a following-vowel dependent
algorithm,
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This paper describes a speech recognition systemn [or
large vocabulary text input, The system Tecognizes connected
Japanese syllables by both continuous pattern matching and
speaker-adaptation based on the Multiple Similarity (M3)
method. The recognition algorithm consists of syﬁaue
boundary detection, vowel and consonant recognition and
lexical verification. The reference pattern vectors adapt to
each speaker by K-L expansion through covariance matrix
modification. Recognition experiments on a 17,877 word
Japanese vocabulary showed 92.6'% accuracy for 10 male 4,400
phrase utterances.

INTRODUCTION

While many speech recognition systems have been
developed in the last decade, few word recognition systems
have been accepted for text input application owing to poor
accuracy and limited vocabulary. DI matching is a prevailing
technique for word pattern matching, but it’s not practical
enough except for speaker-dependent small-vocabulary word
recognition. The Multiple Similarity(MS) word pattern
matching method is extremely powerful, but limited to a
speaker-independent small vocabulary 1 . Likewise, the multi-
template method is not applicable to a large vocabulary.
Several word recognition systems based on probabilitistic
model have been developed|2|, but they require a lot of
computation for large vocabulary recognition. On the other
hand, the phoneme or syllable based recognition methods, the
syntactic methods, are abhsolutely required for both continuous
speech  recognition and practical large vocabulary
recognition[3]. However, the accuracy of the phonoclogical
units has been insufficient due to no effectual training
algorithms. While rule-based speech recognition method is
being studied to achieve full use of speech knowledge|d],
automatic learning is still a open problem in Al research.

In this paper, an approach to achieving a large
vocabulary word recognition system is first described. Then
the proposed system is presented concerning acoustical and
phonetic and lexical representations, continuous pattern
matching and speaker adaptation. Finally experimental
results are shown.

APPROACH

In order to attain a practical large vocabulary word
recognition system or voice-activated word processor, we focus
on the following points as design concepts:

a} High recognition accuracy

b) Strong and automatic speaker adaptation mechanism
¢} Ease of utterance for novice users

d) Hardware realization and LS} implementation.

Taking these points into account, we have developed
new connected syllable recognition and speaker adaptation
mel,hods_'S]. The recognition system--consisting of syllable
segmentation, vowel recognition and consonant recognition--
employs MS calculation and acoustic labeling on a time-
continuous frame by frame basis. We introduce a promising
MS based approach because of the reliability and accuracy of
the MS method in speaker-independent word recognizers|l]
and character readers6,. Conventional pattern matching
methods, like DP matching, are so sensitive to pattern
variation that they cannot be applied to syllable recognition.
Rule-based phoneme recognition systems are being developed
to utilize speech-speciflic knowledge. However, the learning
mechanism {automatic knowledge acquisition) is still poor to
date. Hence the pattern recognition oriented approach is
much more promising than the rule-based one for
implementing the speaker adaptation mechanism. The
continuous MS matching is suitable for hardware realization.
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Also the vowel and COnsonant pattern vectors are ree_xsonab]ly
reprcscnted by considering thejr inherent properties. n
additien, our MS based adaptation method has 2 huge
capacity O represent the phoneme pattern variability in
detail--a_large degree of freedom, therefore it is robust and
reliable in regard lo pattern variation and distorlion..Whlle
the connected syllable approach is restrictive, the continuous
MS matching and adaptation methods are applicable to
further continuous speech recognition research. he
recognition system demands user’s cooperation, that is, clear
utterance for connected syllable recognition. Our main
purpose for developing this system is that novice users can
input a lot of data more comfortably and efficiently by using
this recognizer than keyboard.
Figure 1 shows a newly developed recognition system.

Yavre) ang
Spasch | Spectrel Acoustic word
m— sbelin Consonant Ly
Anglynis L 9 Recognition Recognition
ns Continucus Syllaole
Aylerance Hs Bounaary Lenigon
vectars Hatc ing Detection
T +
Cavariance Cantiruous Traning
ps Lg{ AL X [2}] e Data
Exgansion Hodifrcatton Recognition Collection
'

Fig.1 Blockdiagram of Recognition and Adaptation System

RECOGNITION AND ADAPTATION ALGORITHMS
Acoustic Representation

Input signal is converted into a 12-bit digital signal at
12kHz-sampling frequency. Spectral analysis is done by 3 sets
of 4-pole digital band-pass filters. These filter outputs are
squared and smoothed over 16ms. frames, and converted inlo
logarithmic ones and then sampled at every 8ms. The overall
energy is simultaneously obtained every 8ms. The 16-channel
filter and B8-channel filter outputs are fed inlto vowel and
consonant MS calculation, respectively. The 4- channel filter
outputs are used for acoustic labeling.

The MS method utilizes the structure of pattern
variation on patlern space for each category. Therefore
paramelric analysis, like LPC, is not used. Instead, non-
parametric filter bank analysis is used. Modeling in pattern
space based on the MS method is more reasonable and
effective than that in speech signal for speech recognition.

Continuous Multiple Similarity Method

The MS method has been theoretically derived and
experimentally proved to be powerful and effective by several
optical character readers [5] and speaker-independent word
recognizers}l]. The telephone speech recognizer accomplished
a high performance in spite of significant pattern distortion.
However, it cannot directly apply to phoneme or syllable
recognition, as phoneme or syllable patterns have much less
information than word utterance patterns. In order to obtain
accuracy, real-time processing and adaptalion mechanism, we
propose the continuous MS pattern matching method. This
method, based on the time-continuous MS calculation every 8
ms., is suitable for hardware realization. The problem in
applying the MS method to connected syllable is how to
represent the vowel and consonant feature vectors as N-
dimensional feature vectors.

Vowel and Consonant Pattern Vector Representation

Each Japanese syllable has either one of five vowels or a
syllabic nasal. The vowel is more durable and stable than the
consonant. Therefore vowel recognition is a crucial component
of all the recognition system. Considering these points, we
represent the vowel pattern as a 16-dimensional vector(one
frame 16 channel frequency spectrum) for the continuous
vowel MS calculation. ;

As contrast with the vowel, the consonant part 1s “O‘i
stable and inherently characterized by tinie-variant spe{:tt.ra
patterns. Therefore we represent the consonant pat ern
vector as a multiple-frame time-frequency spectrum, Not as a




one-frame spectrum. The consonant 64-dimensional vectors,
generated by 8-channel! frequency spectra over 8 frames, have
128ms. duration and are continuously matched by consonant
reference vectors every 8ms.

“coustic Labeling

Although the continuous MS pattern matching might
work considerably well for both vowel and consonant
recognition, we also introduce the acoustic labels in order to
complement the MS values. A similar acoustic labeling was
effectively employed in the telephone speech recognition
systcm[lﬁ The 4-channel spectrum and overall energy are fed
into the labeling processing.

Syllable Boundary Delection s

Loose syllable boundaries(start and endpoints) are
needed as clues for vowel and consonant recognition, as the
highly efficient and stable continuous matching is employed.
These points are determined by not only a time series of
overall energy, 4-channel spectrum and acoustic label but also
syllable duration constraints. Syllable recognition accuracy
depends signilicantly upon the syllable detection performance.

Byllable{Vowel and Consonant} Recognition

Vowel region is estimated by both the loose syllable
boundary information and acoustic label sequences. Then
vowel recognition is carried out by using a time series of vowel
similatities and acoustic labels in the estimated vowel region.
A segmented input syllable is classified to one of 6
vowels(/a/,/i/,/u/./e/,/o/,/N/). The 15 entries of MS
reference vectors are prepared for the accurate vowel
recognition.

The vowel recognition result focuses the syllable
candidates on ones that include the recognized vowel. It can
significantly lighten the computation load and also consonant
pattern variation based on co-articulation effect. The
consonant region is determined by the syllable boundary,
vowel recognition result and acoustic labels. Then consonant
recognition is realized by using a time series of consonant MS
values. The simplest recognition way is where the consonant
category with the maximum MS value within the region is
regarded to be a recognized consonant(syllable) as a result.
The second and the third rank candidates with likelihood are
also obtained by using their MS values for lexical verification
at next stage.

Speaker Adaptation

While the proposed speaker adaptive recognition system
works without training, recognition accuracy can dramatically
increase after the sophisticated adaptation’5|. Most traditional
adaptation methods, based on the multi-template technique
or some statistical learning method like perceptron or linear
discriminants, are not clear and not structural from lack of
speech knowledge utilization. In contrast, the MS based
adaptation and recognition methods positively utilize the
structure of pattern variability. Namely, the speaker-adapted
reference vectors of each category represent a specific
speaker's essential pattern distribution, to accomplish
robustness and reliability. An important problem is how to
extract the training pattern vectors from the whole speech
patiern. We consistently introduce the continuous MS
matching not only for recognition but also adaptation.
Training patterns including a vowel or consonant part are
approximately extracted in terms of the acoustic labels and
syHable boundaries. Then the continuous MS calculation is
done on these patterns. Subsequently, the fixed training
patiern vectors are extracted from the frames with the
greatest MS values. Next, the covariance matrices are
modified by these vectors. Finally the K-L expansion of the
covariance matrices generates the reference pattern veclors.
As the learning progresses, the extracting position can change
to successively precise positions. Thus stable and robust
reference pattern vectors can be obtained at the adaptation
stage as the user utilize the recognizer more and more. Both
enormous capacity and knowledge acquisition mechanism are
remarkable advantages of the proposed method.
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Word /Phrase Recognition

Dealing with only clearly spoken connected syllables, the
system ignores possibility of ihe syllable insertion and
deletion. Thus the lexicon for phrase(word} recognition is
simply re[rr&ented using syllables. Word or phrase recognition
is carried out by lexical verification between the syllable
candidates with their likelihood and the lexicon. For real-time
processing, lexical search space reduction is made by using
three preceding syllable candidates. As the lexical processing
is quite simple, further research is necessary to improve the
word recognition performance. N

EXPERIMENTAL RESULTS

A 10 male training data set(50 samples per consonant,
100 samples per vowel) was collected for 101 Japanese
syllables for adaptation of each speaker. Another test data set
including 4,400 phrases(9,230 syllables) was collected for
evaluation of large-vocabulary recognition at the speed from 3
to 4 syllables per second. Table 1 shows the accumulated
syllable recognition scores for both data sets. The
accumulated scores, 97.8% and 100% suggest the stability and
robustness due to a large capacity of the MS based method.
More than 99.0% vowel recognition accuracies were obtained
for the same data. Table 2 gives the phrase recognition score
for a 17,877 word vocabulary. While simple lexical matching
is used, the phrase(word) recognition score is considerably
high because of the high syllable recognition accuracy. The
results also demonstrate the reliability of the MS based
continuous matching and adaptation.

Traming Doto Set | Test Dolo Set
150,500 syloblest | (9,230 sylobles)
Bes! Condidate 989% 91 4%
3 Bes! Condudale 1000% 97 7%

Table 1 Syllable Recognition Score

Test Data Set

9,230 sylloblas)
4,400 phrases

92 6%

offer lexicol verificolion
using 3-best-candidate

lihruse Recognition Role

Table 2 Phrase Recognition Score '

CONCLUSION

A text input recognition system using connected syllable
recognition has been developed for novice keyboard users. The
system employs both continuous matching and speaker-
adaptation based on the MS method, The experimental
results have shown that the proposed system is accurate
enough to act as a practical voice-activated word processor or
large vocabulary data entry system. Since the dominant
computation of the MS recognition and learning methods is
muitiplication-accumulation, a real-time machine can be
easily realized by LS] implementation.
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