Validation of 3-D poroelastic finite element from the impedance measurement of a vibrating foam sample
Keywords:
Acoustic wave transmission, Elasticity, Finite element method, Mathematical models, Porous materials, Poroelasticity, TortuosityAbstract
The real 3-D motion of porous materials was validated by comparing it with skeleton motion and acoustic coupling. The impedance of a resonant porous sample in a duct with lateral air gap was measured. A quasistatic measurement method was used to investigate both isotropic and axisymmetrical viscoelastic skeletons. For the experiment, the porous sample and the boundary conditions are so chosen that one resonance of the skeleton can be observed in the frequency range of 50 Hz to 500 Hz. The use of isotropic law is efficient when mechanical parameters are related to the kind of deformation of the material.Downloads
Published
How to Cite
Issue
Section
License
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.