A cepstral-domain algorithm for pitch estimation from noise-corrupted speech
Keywords:
Acoustic variables measurement, Boolean functions, Clutches, Continuous speech recognition, Cosine transforms, Discrete cosine transforms, Electric fault location, Accurate, Adverse effects, Cepstral, Cepstrum, Linear predictions, Noisy speeches, Pitch estimations, Power cepstrum, Power spectralAbstract
A study was conducted to develop an accurate algorithm for pitch estimation from noisy speech observations with an aim to significantly reduce the pitch-errors for a wide range of speakers. The study proposed to employ a Discrete Cosine Transform (DCT) based power spectral subtraction scheme for enhancing noisy speech prior to pitch estimation. The de-noised speech was inverse filtered, to yield an output, referred to as the Linear Prediction (LP) residual, to remove the adverse effect of formants. The objective of the proposed method is the introduction of a DCT power cepstrum (DPC) of the LP residual that exhibits a more prominent peak at the true pitch, relative to that demonstrated by the conventional cepstrum of noisy speech.Published
How to Cite
Issue
Section
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.