Comparison of two methods of transfer path analysis applied to snowmobile for noise source identification
Abstract
The purpose of this paper is to propose a vibro-acoustic modeling of a snowmobile suspension in order to determine the elements and transfer paths that contribute most to the global noise of this mechanical system. Two approaches, Transfer Path Analysis (TPA) and Operational Transfer Path Analysis (OTPA) are compared. The first one consists in using measurements of mechanical impedance, the operational data, and the airborne transfer functions obtained according to the reciprocity principle. In the second approach, the airborne transfer functions are no longer measured, but are now calculated using an inverse method and operational data only. Consequently, two different matrix models for these airborne transfer functions are obtained. In both cases, the mechanical excitation forces are determined by inverse method using singular value decomposition. Finally, an experiment is set up to conclude on which approach provides the best reconstruction and identification of contributors to the radiated noise. The applicability and rapidity of each model are also discussed in the conclusion.Published
How to Cite
Issue
Section
License
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.