3D Finite Element Model of the Human Thorax to Study its Low Frequency Resonance Excited by an Acoustic Harmonic Excitation onto the Chest Wall

Authors

  • Arife Uzundurukan <ol><li>Université de Sherbrooke</li><li>Université de Sherbrooke</li></ol>
  • Philippe Micheau <ol><li>Université de Sherbrooke</li><li>Université de Sherbrooke</li></ol>
  • Sébastien Poncet <ol><li>Department of Mechanical Engineering, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, Canada</li></ol>
  • Pierre Grandjean <ol><li>Université de Sherbrooke</li><li>Université de Sherbrooke</li></ol>
  • Daria camilla Boffito <span> </span>3. Polytechnique Montréal

Abstract

According to the 2019 Canadian cystic fibrosis (CF) annual report, 4344 patients suffer from CF, which represents an increase of 33.3 % in the last two decades. It is devastating by a build-up of excessive, thick, and sticky mucus, which causes obstruction of breathing. Physiotherapy based on a harmonic acoustic pressure applied onto chest wall is used for mucus drainage. One hypothesis behind this approach is that vibrations act on the viscoelastic, shear-thinning, and thixotropic properties of bronchial mucus, liquefying it to ease expectoration. This study aims to develop a numerical tool to study the vibrations induced in the lungs as a function of acoustic excitation. The method is based on a 3D numerical finite element model of the human thorax developed in the frequency domain using COMSOL 5.5 Multiphysics®. The realistic model based on computed tomography scans consists of the tracheobronchial tree, the lungs, the rib cage, the scapula, and the soft tissues. The numerical results present the vibratory harmonic responses (20-60 Hz) of the thorax when excited by a 28 mm radius and 160 dB external acoustic pressure. The chest-resonance frequency is obtained close to 28 Hz, which is consistent with reported experimental data.

Author Biographies

Arife Uzundurukan, <ol><li>Université de Sherbrooke</li><li>Université de Sherbrooke</li></ol>

Department of Mechanical Engineering, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, CanadaCentre de Recherche Acoustique-Signal-Humain de l'Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, Canada

Philippe Micheau, <ol><li>Université de Sherbrooke</li><li>Université de Sherbrooke</li></ol>

Department of Mechanical Engineering, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, CanadaCentre de Recherche Acoustique-Signal-Humain de l'Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, Canada

Sébastien Poncet, <ol><li>Department of Mechanical Engineering, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, Canada</li></ol>

Department of Mechanical Engineering, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, Canada

Pierre Grandjean, <ol><li>Université de Sherbrooke</li><li>Université de Sherbrooke</li></ol>

Department of Mechanical Engineering, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, CanadaCentre de Recherche Acoustique-Signal-Humain de l'Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke (QC), J1K2R1, Canada

Daria camilla Boffito, <span> </span>3. Polytechnique Montréal

3. Department of Chemical Engineering, C.P. 6079, Succ. CV Montréal (QC), H3C3A7, Canada

Additional Files

Published

2021-08-17

How to Cite

1.
Uzundurukan A, Micheau P, Poncet S, Grandjean P, Boffito D camilla. 3D Finite Element Model of the Human Thorax to Study its Low Frequency Resonance Excited by an Acoustic Harmonic Excitation onto the Chest Wall. Canadian Acoustics [Internet]. 2021 Aug. 17 [cited 2024 May 24];49(3):52-3. Available from: https://jcaa.caa-aca.ca/index.php/jcaa/article/view/3897

Issue

Section

Proceedings of the Acoustics Week in Canada