Impulse noise hazard - What do we know about it?
Keywords:
Algorithms, Bone, Hazards, Mathematical models, Muscle, Personal computers, Basilar membrane, Hearing hazard, Impulse noise hazardAbstract
The auditory Harard Assessment Algorithm for Human (AHAAH) was created to define impulse noise and to provide a tool that would make an assessment of the hearing hazard from impulse noise levels above 150 dBPeak. A mathematical model of the entire ear, including the external, middle, inner parts, muscles, and bones was created. The ultimate receptor of noise, the basilar membrane was divided into 23 locations, in the model. It was found that the basilar membrane oscillates, when the impulse is entered in the model. The upward flexes for each of the 23 locations were tracked, their amplitude in microns was squared, and the sum for each location was maintained. The model operated on a personal computer (PC) in WINDOWS environment and the waveform of the signal to be assessed, was entered in the program as an ASCII file. The AHAAH method has been tested in animals and validated in human and was found to be correct in 95% of the tests, with protected hearing.Downloads
Published
How to Cite
Issue
Section
License
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.