EFFECT OF VARIABILITY IN MICRO-GEOMETRY OF POLYURETHANE FOAMS ON THE DOUBLE WALL TRANSMISSION LOSS
Abstract
The numerical formulations used for the modeling and design of sound absorbing materials are constructed based on a set of physical parameters, known as the Biot's parameters (for isotropic materials these are comprised of 5 non-acoustical parameters and 4 mechanical parameters). These parameters are inter-correlated and are microstructure-dependent. There is in consequence a need for the development of links between the cellular structure of the foams and the Biot's parameters before realistically using these models for material-level optimization. In this sense, a microstructure-based model has been developed by Doutres et al. [J. Appl. Phys. 110, 064901 (2011)] to link the microstructure (thickness and length of struts and the closed windows content) of polyurethane (PU) foams to their non-acoustical parameters. In this study, a global sensitivity analysis using Fourier Amplitude Sensitivity Test (FAST) is performed to investigate the impact of the variability, associated with the irregularities in microstructure, on the TL of double wall system.
Downloads
Published
How to Cite
Issue
Section
License
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.