A Biomechanical Model For Infant Speech And Aerodigestive Movements
Abstract
A central question in speech acquisition is how infants are able to learn speech movements rapidly and with limited input. A relatively untested but appealing hypothesis is that some core speech movements may build on preexisting aerodigestive movements like swallowing and suckling (e.g. [MacNeilage, 2008, The Origin of Speech]; [Studdert-Kennedy & Goldstein, 2003, Launching Language]). We will present a model of an infant tongue and palate using a 3D biomechanical simulation platform (www.artisynth.org; e.g., [Stavness et al., 2012, J. Biomech. 45(16): 355-94]; [Gick et al., 2014, Compu. Meth. in Biomech. & Biomed. Eng.: Imag. & Vis. 2(4): 217-222]). This model, generated from CT and MRI imaging data, will be capable of simulating both swallowing and simple speech movements. The results of simulations using this model will provide useful insight into infant motor control, and will help to supplement neurological, clinical and kinematic evidence relating speech and aerodigestive movements. [Funding from NSERC].Downloads
Published
How to Cite
Issue
Section
License
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.