Identification of Sources and Their Directivity in the Global Underwater Radiated Noise from a Merchant Ship
Abstract
The global marine traffic is intensifying and generates noise pollution, directly affecting marine biodiversity. To limit the effects of marine traffic on the environment, traffic noise must be reduced. Current standard (ANSI/ASA S12/64-2009) models a ship’s acoustic signature as a single, punctual and omnidirectional source. However, the noise sources under consideration, like engines and propellers, are actually spatially distributed over the ship’s dimensions. This project aims to analyse separately individual noise source and establish their directivity pattern, to better understand and model underwater noise radiated by ships.
The SASMAR station (Signatures Acoustiques Sous-MArines Rayonnées as Underwater Radiated Noise Signatures) was deployed in the maritime railway in the St-Lawrence Estuary to measure merchant ships acoustic signatures. Including four vertical three-hydrophone arrays, its unique design allows measuring underwater radiated noise of individual ships from starboard and port side at three vertical angles.
In this study, three passages of a merchant and passengers ship through the station are analysed. From the narrow band acoustic signatures, specific features like frequency peaks corresponding to machinery and wide band low frequency noise typical from cavitation are identified. Since underwater radiated noise is measured from multiple directions while the ship approaches then sails away from the measuring station, a directivity map is also built for each identified source.
Knowledge of sources directivity at various frequencies will allow the improvement of ships underwater radiated noise models and better assessment of the impact of shipping on the marine environment. Also, source directivity will improve the understanding of ship detection by cetaceans and therefore the prevision of collision risk.
Additional Files
Published
How to Cite
Issue
Section
License
Author Licensing Addendum
This Licensing Addendum ("Addendum") is entered into between the undersigned Author(s) and Canadian Acoustics journal published by the Canadian Acoustical Association (hereinafter referred to as the "Publisher"). The Author(s) and the Publisher agree as follows:
-
Retained Rights: The Author(s) retain(s) the following rights:
- The right to reproduce, distribute, and publicly display the Work on the Author's personal website or the website of the Author's institution.
- The right to use the Work in the Author's teaching activities and presentations.
- The right to include the Work in a compilation for the Author's personal use, not for sale.
-
Grant of License: The Author(s) grant(s) to the Publisher a worldwide exclusive license to publish, reproduce, distribute, and display the Work in Canadian Acoustics and any other formats and media deemed appropriate by the Publisher.
-
Attribution: The Publisher agrees to include proper attribution to the Author(s) in all publications and reproductions of the Work.
-
No Conflict: This Addendum is intended to be in harmony with, and not in conflict with, the terms and conditions of the original agreement entered into between the Author(s) and the Publisher.
-
Copyright Clause: Copyright on articles is held by the Author(s). The corresponding Author has the right to grant on behalf of all Authors and does grant on behalf of all Authors, a worldwide exclusive license to the Publisher and its licensees in perpetuity, in all forms, formats, and media (whether known now or created in the future), including but not limited to the rights to publish, reproduce, distribute, display, store, translate, create adaptations, reprints, include within collections, and create summaries, extracts, and/or abstracts of the Contribution.