Experiments on The Use of Demisyllables For Automatic Speech Recognition

Auteurs-es

  • G. Ruske

Résumé

The paper describes methods for an explicit segmentation of the speech signal into demisyllable segments by evaluating the output of a loudness model. Syllable nuclei are indicated by maxima of a smoothed loudness function. Consonant clusters and vowels are introduced as decision units in order to reduce the inventory of classes. Two methods for classification of consonant clusters are compared: template matching and a feature extraction approach based on acoustic cues. Sentence recognition operates on phonetic word models adapted to the demisyllable structure.

Fichiers supplémentaires

Publié-e

2022-12-03

Comment citer

1.
Ruske G. Experiments on The Use of Demisyllables For Automatic Speech Recognition. Canadian Acoustics [Internet]. 3 déc. 2022 [cité 21 nov. 2024];14(3 bis):49-50. Disponible à: https://jcaa.caa-aca.ca/index.php/jcaa/article/view/3517

Numéro

Rubrique

Actes du congrès de la Semaine canadienne d'acoustique