From microstructure to acoustic behaviour of porous materials
Keywords:
Acoustic waves, Algorithms, Computational methods, Computerized tomography, Foams, Microstructure, Porosity, Porous materials, Thermodynamic properties, Viscosity, Acoustic energy, Helmoltz equations, Kelvin structure, Sound absorptionAbstract
A method to determine the macroscopic parameters of absorbent materials from the knowledge of their cellular microstructure, either identified by computer microtomography or scaled by macro-micro geometrical model is discussed. All the relevant quantities have been computed on cellular systems. Study of the fluid velocity field for a hexagonal porous system reveal significant quantitative agreement between macroscopic parameters derived and measured from real aluminum foam. The results reveal the deep relationship between Kelvin structure and real reticulated foams.Downloads
Published
How to Cite
Issue
Section
License
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.