Prediction of flow-induced noise in transport vehicles: development and validation of a coupled structural - Acoustic analytical framework
Keywords:
Acoustic fields, Acoustic noise measurement, Architectural acoustics, Computer simulation, Enclosures, Mathematical models, Models, Vehicles, Acoustic enclosure, Acoustic systems, Analytical formulation, Analytical model, Analytical results, Different sizes, Experimental studies, Induced noise, Interior noise, Measurement locations, Natural modes, Noise transmission, Random excitations, Transport vehicles, Vehicle cabinAbstract
In this study, a complete analytical model framework able to accurately predict the flow-induced noise in the interior of a transport vehicle cabin is presented. The mathematical model framework presented represents a coupled structural-acoustic system, consisted by a plate subjected to a random excitation or to flow-induced noise, and an acoustic enclosure representing the transport vehicle cabin. The coupled analytical model is developed using the contribution of both structural and acoustic natural modes. It is shown that the analytical framework can be used for the prediction of flow-induced noise for different types of transport vehicles, by changing some of the parameters, as shown by the good agreement between the analytical results and several experimental studies. The results indicate that the analytical model is sensitive to the measurement location, with the change in position significantly affecting the predicted interior noise levels, as should be expected. Different sizes for the acoustic enclosure, as well as different types of panels were investigated. This study demonstrates the importance of including the acoustic receiving room (i.e., the vehicle cabin) contribution in the analytical formulation, in order to accurately predict the noise transmission and interior noise levels.Downloads
Published
How to Cite
Issue
Section
License
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.