Aeroacoustic prediction of an automotive cooling fan
Keywords:
Acoustic wave transmission, Aerodynamics, Computational aeroacoustics, Mach number, Temperature measurement, Acoustic radiation, Aerodynamic simulations, Automotive fan, Blade passage, Blade tip, Directivity, Near fields, Recirculations, Short durations, Sound pressure level, Thickness noiseAbstract
The acoustic radiation is computed by a Ffowcs-Williams and Hawkings analogy based on the near field fluctuations provided by the aerodynamic simulation. Considering the Mach numbers at the blade tip, only the thickness noise and the loading noise are computed and the effects of the quadmpole noise are neglected. Only 3 blade passage periods were recorded for the purpose of this paper. Although this short duration cannot yet yield well resolved tones, it shows the correct trend. The sound pressure level at each microphone shows a dipole-like directivity with a maximum on the rotor axis. The results for both meshes confirm the predicted tone at the frequency of the impact between the tip recirculation structure and the blades (600 Hz). Aerodynamic simulation of an automotive fan has been successfully achieved. This computation has highlighted the dominant flow structures that are the dominant sources of unsteadiness on the rotor surfaces and therefore the major sources of noise.Published
How to Cite
Issue
Section
Copyright on articles is held by the author(s). The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide exclusive licence (or non-exclusive license for government employees) to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future)
i) to publish, reproduce, distribute, display and store the Contribution;
ii) to translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution;
iii) to exploit all subsidiary rights in the Contribution,
iv) to provide the inclusion of electronic links from the Contribution to third party material where-ever it may be located;
v) to licence any third party to do any or all of the above.